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ABSTRACT
Geometry and topology are fundamental concepts, which underlie a wide range of fascinating physical
phenomena such as topological states of matter and topological defects. In quantummechanics, the
geometry of quantum states is fully captured by the quantum geometric tensor. Using a qubit formed by an
NV center in diamond, we perform the first experimental measurement of the complete quantum geometric
tensor. Our approach builds on a strong connection between coherent Rabi oscillations upon parametric
modulations and the quantum geometry of the underlying states. We then apply our method to a system of
two interacting qubits, by exploiting the coupling between the NV center spin and a neighboring 13C
nuclear spin. Our results establish coherent dynamical responses as a versatile probe for quantum geometry,
and they pave the way for the detection of novel topological phenomena in solid state.

Keywords: quantum geometry, topological physics, quantummeasurement, quantum control, quantum
information

INTRODUCTION
The quantum geometric tensor (QGT) constitutes
a central and ubiquitous concept in quantum me-
chanics, by providing a geometric structure to the
Hilbert space [1–5]. The imaginary part of this ten-
sor corresponds to the well-known Berry curvature
[6,7], which acts as an effective ‘electromagnetic’
tensor in parameter space. This geometric quantity,
which is formally associated with the parallel trans-
port of wave functions [8], is responsible for strik-
ing observable phenomena such as the geometric
phase [8], the anomalous Hall effect [9] and topo-
logical states of matter [10]. In contrast, the real
part of the QGT constitutes the Fubini-Study met-
ric [2,3,5], which defines a notion of distance (a
Riemannianmetric) in parameter space through the
overlap of wavefunctions. This ‘quantum metric’,
which is intimately related to quantum fluctuations
and dissipative responses of the system [2,5,11,12],
has been shown to play an important role in vari-
ous contexts, including quantum phase transitions
[13], open quantum systems [14], orbital mag-
netism [15,16], localization in insulators [11], semi-

classical dynamics [17,18], excitonic Lamb-shifts in
transition-metal dichalcogenides [19], superfluidity
in flat bands [20] and topological matter [21,22].
In the context of quantum information, the quan-
tum metric is equivalent to the quantum Fisher
information, which is a witness for multipartite
entanglement [23].

Various manifestations of the QGT have been
observed in experiments, using very different phys-
ical platforms and probes. On the one hand, the
local Berry curvature has been detected in ultra-
cold atomic gases [24–26], coupled optical fibers
[27], and solids [28,29]. On the other hand, a first
manifestation of the quantummetric—the so-called
Wannier-spread functional of Bloch bands [30]—
was recently measured in cold atoms [31], based on
the proposal [32]; see [12,33–35] for other propos-
als todetect quantumgeometry.Nevertheless, direct
and systematic measurement of the complete QGT
has never been performed.

Here, we report on the first experimental mea-
surement of the complete QGT, using a qubit
formed by anNV center spin in diamond. Following
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the proposal of [32], we exploit the relation be-
tween the QGT and the response of quantum
systems upon parametric modulations to map out
the full Fubini-Study metric as well as the local
Berry curvature of the underlying quantum states.
We then apply our method to a system of two
interacting qubits, obtained by coupling the NV
center spin to a nearby 13C nuclear spin. Our results
not only enforce the deep connections between out-
of-equilibrium dynamics and quantum geometry
[36–44], but also reveal a universal tool for detection
of geometric and topological properties in quantum
systems.

DETECTING THE QGT THROUGH RABI
OSCILLATION
We start by considering the Hamiltonian H(λ)
of a generic discrete quantum system, which de-
pends on a set of dimensionless parameters λ =
(λ1, λ2, · · · , λN), where N is the dimension
of parameter space. For a single qubit, the rel-
evant parameter space corresponds to the two-
dimensional Bloch sphere. Defining the eigen-
states and eigenvalues of this generic Hamiltonian,
H(λ) |n(λ)〉 = εn (λ)|n(λ)〉, a geometric struc-
ture emerges upon projecting the dynamics onto a
single (non-degenerate) band εn(λ). The resulting
quantum geometry is captured by the QGT, which
is defined as [7]

χ (n)
μν = 〈

∂μn(λ)
∣∣(1 − ∣∣n(λ)〉 〈n(λ)∣∣)∣∣∂νn(λ)

〉
.

(1)

For simplicity, hereafter we denote ∂μ ≡ ∂λμ
. The

real part Re (χμν) = gμν is the Fubini-Study met-
ric, which introduces a notion of distance in param-
eter space, while the imaginary part Im (χμν) =
−Fμν/2 is related to the Berry curvature Fμν re-
sponsible for the Berry phase. It is useful to express
the QGT in the form

χ (n)
μν =

∑
m �=n

×
〈
n (λ)

∣∣∂μH (λ)
∣∣m (λ)

〉 〈m (λ)|∂νH (λ)|n (λ)〉
(εm (λ) − εn (λ))2

,

(2)

so as to highlight the relation between this geometric
quantity and the coupling matrix elements connect-
ing the eigenstates |n(λ)〉 and |m(λ)〉 upon a para-
metric modulation [32],

�n↔m (λ) ∝ 〈
m (λ)

∣∣∂μH (λ)
∣∣ n (λ)〉 . (3)

EXPERIMENTAL SETUP
In our experiment, we first perform a full quantum-
geometric measurement using a two-level system, as
described by the general Hamiltonian

H (θ, ϕ) = A
2

(
cos θ sin θe−iϕ

sin θe iϕ − cos θ

)
, (4)

where the angles (θ, ϕ) form the relevant parame-
ter space (the Bloch sphere). Considering the low-
energy dressed state, the components of the QGT
read g θθ = 1

4 , gϕϕ = 1
4 sin

2θ, g θϕ = 0, Fθϕ =
sin θ/2.Thesecomponents fully characterize theun-
derlying quantum geometry: the quantum metric g
corresponds to the natural metric of a sphere S2,
embedded in R3 with fixed radius R = 1

2 , while the
Berry curvature Fθϕ corresponds to the ‘magnetic’
field of a fictitious Dirac monopole located at the
center of that sphere [22].

The experimental setup is sketched in Fig.
1D. The two-level system in Eq. (4) is obtained
from a single nitrogen-vacancy (NV) center in an
electronic grade diamond. We apply a magnetic
field Bz = 509G along the NV axis to lift the
degeneracy of the statesms = ±1. A two-level sys-
tem is supported by the spin sublevels ms = 0 and
ms = −1. We first prepare the system in the
eigenstate of the Hamiltonian H(θ0, ϕ0), i.e.
n(θ0, ϕ0)〉 = cos θ0

2 | − 1〉 + sin θ0
2 e

iϕ0 |0〉. This
is achieved by first applying a 532 nm green
laser pulse to initialize the NV center spin in the
ms = 0 state. A subsequent microwave pulse
Hi (t) = � sin(ω0t + ϕ0)σx , applied over a dura-
tion tθ0 = θ0

�
, rotates the NV center spin around the

axis n̂(ϕ0) = (cosϕ0, sinϕ0, 0) by an angle θ0.The
initial state preparation is verified by a spin-locking
type experiment, which confirms that the NV spin
is prepared in the eigenstate of H(θ0, ϕ0) [see
supplementary data].

The precise control over the AWG allows us to
engineer the microwave driving field with accurate
amplitude and phase modulation. This leads to im-
plementation of the generic two-level system

H (t) = ω0

2
σz + V (t) σx , (5)

where V (t) = (A sin θt) cos[ω0t − f (t) + ϕt].
In the experiment, we calibrate the driving am-
plitude in the Hamiltonian [Eq. (5)] with the
output power of the AWG by measuring the Rabi
frequency of theNV center spin [see supplementary
data]. The amplitude modulation A sin θt and the
phase modulation − f (t) + ϕt are synthesized
by waveform programming in the AWG. The ad-
ditional phase control functionhas the form f (t) =
A

∫ t
0 cos θτdτ ∼= A cos θ0 J 0(aθ)t − (4A sin θ0/ω)

J 1(aθ)sin2(ωt/2), where J 0,1 are the zeroth and
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Figure 1. Probing quantum geometry through coherent responses on parametric mod-
ulations. (A–C) show different types of parametric modulations (θt , ϕt ), including
(A, B) linear parametric modulation θt = θ0 + aθ sin(ωt ), ϕt = ϕ0 + aϕ sin(ωt ) for
measurement of the diagonal [off-diagonal] element of the Fubini-Study metric with
aθ = 0 or aϕ = 0 (A) [aθ = ±aϕ �= 0 (B)]; (C) elliptical parametric modulation for the
measurement of the local Berry curvature (as indicated by color map) with θt = θ0 +
aθ sin(ωt ) and ϕt = ϕ0 ± aϕ cos(ωt ). (D) Experimental setup used for the quantum-
geometric measurement, based on an NV center spin in diamond. A green laser pulse
polarizes the NV center spin into the | ms = 0〉 state. The engineered microwave cre-
ated from an arbitrary waveform generator (Tektronix AWG 70002A, 16GS/s) is ampli-
fied before being delivered to the sample and coherently drives the NV center spin. The
NV center spin state is detected by an APD via spin-dependent fluorescence. (E) An ex-
ample of parametric-modulation resonance measurement. The probability that the NV
center spin remains in the initial eigenstate at time T = 400 ns as a function of the
modulation frequency, for a linear parametric modulation θt = θ0 + aθ sin(ωt ), ϕt =
ϕ0 with (θ0, ϕ0) = ( 5π6 , 0) and aθ = 0.1.

first order Bessel functions of the first kind, re-
spectively [see supplementary data]. Taking the
limit ω0 � A, such an engineered microwave
driving field allows us to realize the effective Hamil-
tonian in Eq. (4) with the designed parametric
modulation [see supplementary data]:

He f f (t) ∼= A
2

× [
cos θtσz + sin θt

(
cosϕtσx + sinϕtσy

)]
.

(6)

The parametric modulation drives a coherent
transition between the eigenstates of H(θ0, ϕ0),
which is detected by rotating the NV center spin
around the axis n̂(ϕ0) by an angle 2π − θ0. This ro-
tationmaps the eigenstates ofH(θ0, ϕ0) back to the
NV center spin state |0〉 and | − 1〉, which is then
measured by spin-dependent fluorescence.

EXPERIMENTAL RESULTS
In the experiment, we implement two types of mod-
ulations [32]: (a) a ‘linear’ modulation θt = θ0 +
aθ sin(ωt), ϕt = ϕ0 + aϕ sin(ωt); (b) an ‘ellipti-
cal’ modulation θt = θ0 + aθ sin(ωt), ϕt = ϕ0 +
aϕ cos(ωt); see Fig. 1A–C. Setting aθ , aϕ � 1, the
time-dependent Hamiltonian can be expressed as

H(θt , ϕt) ∼= H(θ0, ϕ0) + aθ(∂θ H) sin(ωt)
+ aϕ(∂ϕH) sin(ωt) : l i near
+ aϕ(∂ϕH) cos(ωt) : e l l i pt i c al .

(7)
After preparing the NV center spin in the eigen-

state |n(θ0, ϕ0)〉 of theHamiltonian H(θ0, ϕ0), we
apply the engineered microwave driving field with
parametricmodulation [see Eq. (5)] and fix the time
duration T . We sweep the parametric modulation
frequency ω, and measure the probability p0(T)
that the NV spin remains in the initial eigenstate
|n(θ0, ϕ0)〉. In Fig. 1E, we show an example of such
a parametric-modulation resonance measurement;
see supplementary data for the experimental data us-
ing other types of modulations. The results indicate
that a coherent transition between the eigenstates
becomes resonant when ω ∼= A ≡ ωc . We then
measure the resonant coherent oscillation upon
parametric modulation with ω =ωc , as shown in
Fig. 2A–C.TheobservedRabi frequencies under res-
onant parametric modulations, which reveal the in-
formation about the coupling matrix elements con-
necting the eigenstates [see Eq. (3)] upon paramet-
ric modulation, are shown in Fig. 2D–F. The exper-
imental results allow us to determine the quantum
geometry of the prepared dressed states precisely.

As a central result, we show in Fig. 3 the ex-
perimental extraction of the full QGT, based on
Rabi-oscillation measurements. This provides a
first demonstration that coherent responses upon
parametric modulations can be used as a powerful
tool to access the complete geometry of a discrete
quantum system. We point out that the present
quantum-geometry measurement is based on
coherent dynamic responses upon periodic driving,
and in this sense, it does not rely on any adiabaticity
constraints (i.e. small modulation velocity [36,37]).
It should be noted, however, that this method uses
small modulation amplitudes, and hence small
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Figure 2. Coherent transitions induced by parametric modulations. (A, B) Resonant
oscillation under a linear parametric modulation with aθ = 0, aϕ = 0.08 (A) and
aθ = 0.1, aϕ = 0.1 (B). (C) Resonant oscillation under an elliptical parametric
modulation with aθ = 0.1, aϕ = 0.1. The other experimental parameters are: (A)
ωc = (2π )20.98 MHz (θ0 = π

6 , green), (2π )21.61 MHz (θ0 = π

3 , red), (2π )20.73
MHz (θ0 = π

2 , blue); (B) ωc = (2π )19.11 MHz (θ0 = π

6 , green), (2π )17.8 MHz (θ0 =
5π
12 , red), (2π )16.72 MHz (θ0 = π

2 , blue); (C) ωc = (2π )19.11 MHz (θ0 = π

6 ,
green), (2π )17.8 MHz (θ0 = 5π

12 , red), (2π )16.72 MHz (θ0 = π

2 , blue). (D–F) Rabi
frequency of resonant coherent transitions upon parametric modulations (in the unit
of resonant frequency ωc ), as a function of the parameter θ0, for linear (D, E) and ellip-
tical (F) parametric modulations. The curves show theoretical predictions. In (A–F), we
set the parameter ϕ0 = 0.
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Figure 3. Extraction of the complete quantum geometric tensor. (A) The measured
Fubini-Study metric, compared with the theoretical predictions gθϕ = 0 (green curve),
gϕϕ = sin2 θ0/4 (red curve) and gθθ = 1/4 (blue curve). (B) The measured local Berry
curvature F θϕ is compared with the theoretical prediction F θϕ = sin θ0/2 . The exper-
imental parameters are the same as in Fig. 2.

Rabi frequencies, which require systems exhibiting
long coherence times. The agreement between the
experiment results and the theoretical predictions
can be improved by increasing the measurement
time, which allows for better determination of the
oscillation frequency. Furthermore, in contrast with
the excitation-rate measurement of [31,32,41], the
QGT is extracted fromRabi oscillations [39], where

the initial state is recovered after eachRabi period; in
principle, this allows for detection of geometry and
topology through a non-destructive measurement.

Besides, our quantum-geometry measurement
can also be used to characterize the topology of the
underlying system. For this analysis, we extend the
Hamiltonian to the form

H (θ, ϕ) = A
2

(
cos θ + r sin θe−iϕ

sin θe iϕ − cos θ − r

)
,

(8)
where r is a tunable parameter. As for Eq. (4), the
geometry of the Hamiltonian in Eq. (8) is that of
a fictitious monopole located close to a sphere S2,
whose position in parametric space depends on the
additional parameter r . The topology of the system
then relies on whether this fictitious monopole is
located inside the sphere or not, as captured by
the Chern number C = 1

2π ∫S2 Fθϕdθdϕ [13].
Figure 4 shows the Berry curvature measurement
in two distinct topological phases. In the non-trivial
regime, the Chern number can equally be deter-
mined from themetric C = 1

2π ∫S2 (2
√
ḡ )dθdϕ =

1
2π ∫S2 |Fθϕ|dθdϕ, where ḡ = g θθ gϕϕ − (g θϕ)2 is
the determinant of the QGT [22]. Altogether, these
results indicate that topology can indeed be finely
analyzed based on our geometric-detection scheme.

APPLICATION TO INTERACTING QUBITS
As a secondapplication,we further extendour exper-
iment to extract theQGTof an interacting two-qubit
system. The interacting two-qubit system is formed
by an NV center electron spin coupled to a 13C nu-
clear spin located in the vicinity of theNVcenter.We
determine the strength of the corresponding spin-
spin interactions using a pulsed optically detected
magnetic resonance experiment; we obtain the in-
teraction parameters: Ax ≈ 2.79 MHz and Az ≈
11.832 MHz [see Eq. (9) below]. By engineering
microwave driving fields with designed frequency
and phase, we obtain the following effective Hamil-
tonian

Hrot (θ, ϕ) = �mw

2
× [

cos θσz + sin θ
(
cosϕσx + sinϕσy

)]

+
(

γn B‖
2

− Az

4

)
τz − Ax

4
τx

− Az

4
σz ⊗ τz − Ax

4
σz ⊗ τx , (9)

where σ and τ are Pauli operators associated with
the first and secondqubits, respectively.Henceforth,
we denote the eigenstates of the Hamiltonian in
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Figure 4. Berry curvature measurement across the topological transition. (A, B) show
themeasured local Berry curvature F θϕ for the Hamiltonian in Eq. (8), which describes a
Dirac monopole located inside (A, r = 0.5) and outside (B, r = 1.5) the Bloch sphere.
The curves represent the corresponding theoretical values. The Chern number extracted
from the data is indicated in both panels.
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Figure 5. Quantum geometry of an interacting two-qubit system. (A) The measured
Fubini-Study metric, compared with the theoretical predictions: gθϕ (green curve), gϕϕ

(red curve) and gθθ (blue curve). (B) The measured local Berry curvature F θϕ is com-
pared with the theoretical prediction (curve). The amplitude of the driving field [see
Eq. (9)] is �mw = 2.13 MHz. The Chern number estimated from the integral of the
Berry curvature is C = 0.00 ± 0.01, which is in agreement with the prediction (C = 0)
in this strongly interacting regime.

Eq. (9) as |�1〉, |�2〉, |�3〉, |�4〉, according to
their ordered eigenenergies ε1 < ε2 < ε3 < ε4.

The competition between the local term (�mw)
and the spin-spin interaction in the Hamiltonian
Eq. (9) leads to a rich topological phase diagram. In
the regime�mw � �

(c 1)
mw , where

�(c 1)
mw = 1

2

[
−γn B‖ +

√(
γn B‖ − Az

)2 + A2
x

]
,

(10)
the spin-spin interaction becomes less significant
and we thus recover the topological properties of
the two-level system, for which the Chern number
is C = 1 in the eigenstate |�3〉 (see the measure-
ments described in the previous section); note that
the other eigenstates exhibit similar behaviors. The
spin-spin interaction eventually dominates upon de-
creasing the value of the local parameter; below the
critical value, �mw < �

(c 1)
mw , the Chern number of

the eigenstate changes fromC = 1 to C = 0, which
can be seen as a drastic effect of the spin-spin in-
teraction. This vanishing of the Chern number in
the strongly interacting regime is clearly captured by
our QGTmeasurement, as reported in Fig. 5.These
results demonstrate the measurement of both the
Fubini-Study metric and the Berry curvature deep

in the interacting regime, and show excellent agree-
ment with theoretical predictions [see supplemen-
tary data].

As previously noted, the QGT contains infor-
mation regarding the entanglement properties of
interacting systems, through the concept of quan-
tum Fisher information [23]. As an interesting per-
spective, our detection method could be applied to
more complex interacting systems in view of reveal-
ing their quantum fluctuations and entanglement
properties.

CONCLUSION
To summarize, we have experimentally demon-
strated a powerful connection between the quan-
tum geometric tensor and the coherent dynamic
response of a quantum system upon a parametric
drive. Based on this fundamental relation,we first ex-
tracted the complete QGT, including all the com-
ponents of the Fubini-Study metric and those of the
local Berry curvature, by driving Rabi oscillations in
a single qubit. These measurements clearly revealed
the topological (monopole-type) structure associ-
ated with this simple setting. We point out that this
method is readily applicable toobserveother intrigu-
ing topological defects, such as tensor monopoles
defined in 4D parameter spaces [22]. Furthermore,
we have applied this detection method to an inter-
acting two-qubit system, which suggests potential
applications to many-body quantum systems with
geometric features [12,32,45]. Altogether, our re-
sults demonstrate that coherent dynamic responses
can serve as a powerful tool to access the geometric
and topological properties of quantum systems and
open a way to explore the fundamental role of the
QGT in various scenarios, ranging frommany-body
systems to open quantum systems.

NOTE ADDED
Materials and methods are available as supplemen-
tary material. Two other experimental measure-
ments of the QGT were reported after the com-
pletion of our work [46], in polaritons [47] and
superconducting qubits [48].

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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