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The Waddington landscape provides an intuitive metaphor to view development as a

ball rolling down the hill, with distinct phenotypes as basins and differentiation pathways

as valleys. Since, at a molecular level, cell differentiation arises from interactions among

the genes, a mathematical definition for the Waddington landscape can, in principle, be

obtained by studying the gene regulatory networks. For eukaryotes, gene regulation is

inextricably and intimately linked to histone modifications. However, the impact of such

modifications on both landscape topography and stability of attractor states is not fully

understood. In this work, we introduced a minimal kinetic model for gene regulation

that combines the impact of both histone modifications and transcription factors. We

further developed an approximation scheme based on variational principles to solve

the corresponding master equation in a second quantized framework. By analyzing the

steady-state solutions at various parameter regimes, we found that histone modification

kinetics can significantly alter the behavior of a genetic network, resulting in qualitative

changes in gene expression profiles. The emerging epigenetic landscape captures the

delicate interplay between transcription factors and histone modifications in driving

cell-fate decisions.

Keywords: gene expression noise, minimum action, chromatin state, gene network, self-regulating gene

1. INTRODUCTION

A little more than five decades ago, Waddington introduced the metaphor to view cellular
differentiation into distinct lineages and cell types as a sequence of transitions among basins in a
landscape, wherein basins indicate stable phenotypes (Waddington and Kacser, 1957). The appeal
of this metaphor to intuition has inspired efforts of theoretical formulation at the molecular level by
studying genetic networks formed by transcription factors (TF) (Sasai and Wolynes, 2003; Hornos
et al., 2005; Kærn et al., 2005; Walczak et al., 2005a,b; Xu and Tao, 2006; Goldberg et al., 2007; Kim
and Wang, 2007; Shahrezaei and Swain, 2008; Cao et al., 2010; Venegas-Ortiz and Evans, 2011;
Wang et al., 2011, 2014; Zhang et al., 2013; Zhang and Wolynes, 2014; Lv et al., 2015; Chen et al.,
2016; Qiu et al., 2020). These studies highlighted the importance of gene expression noise in driving
the transition among steady states. Noise is a manifestation of the inherent stochasticity of chemical
reactions and arises in gene regulatory networks as a result of protein production/degradation and
TF binding/unbinding. Noise, or fluctuation, is non-negligible due to the finite number of protein
molecules and the single molecule nature of DNA. Stochastic noise and network topology together
define the epigenetic landscape, much like the one envisioned by Waddington, that quantifies the
stability of various cell-defining gene expression levels or patterns.
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For eukaryotic organisms, in addition to transcription
factors, epigenetic marks such as DNA methylation and histone
modifications also play essential roles in regulating gene
expression (Lister et al., 2009; Lu et al., 2009; Artyomov et al.,
2010; Krishnakumar and Kraus, 2010; Margueron and Reinberg,
2010; Mariani et al., 2010; Andrew Angel, 2011; Miller-Jensen
et al., 2011; Furey and Sethupathy, 2013). They are known to
affect local chromatin packaging and global genome organization
(Zhou et al., 2011; Schlick et al., 2012; Rowley and Corces,
2018; Parsons and Zhang, 2019; Qi et al., 2020; Xie et al.,
2020), which in turn can regulate DNA accessibility to regulatory
proteins. Furthermore, DNA methylation directly impacts the
DNA binding affinity of transcription factors (Tate and Bird,
1993; Zhou et al., 2016; Flavahan et al., 2019). Importantly, the
chemical modifications themselves may give rise to steady states
independent of the TF-centric genetic network. For example,
modification of nucleosomes recruits enzymes affecting the
neighboring nucleosomes, causing them to be similarly modified
(Bannister and Kouzarides, 2011). Many elegant theoretical
attempts have demonstrated how such interactions can bring
about collective changes of many nucleosomes and allow them to
exhibit distinct multistable states (Dodd et al., 2007; Sedighi and
Sengupta, 2007; David-Rus et al., 2009; Micheelsen et al., 2010;
Sneppen and Mitarai, 2012; Dayarian and Sengupta, 2013; Jost,
2014; Sood and Zhang, 2020). Therefore, it is crucial to account
for the dynamics and regulation of epigenetic modifications
when constructing the landscape for cellular differentiation
in eukaryotes.

Many research groups have studied the interplay between
genetic and epigenetic switches in regulating gene expression.
For instance, generalized genetic networks that couple each
gene to a binary or ternary variable representing the collective
histone states have been used as models for stem cells to
account for epigenetic degrees of freedom, albeit in a coarse
grained fashion (Artyomov et al., 2010; Binder et al., 2013;
Sasai et al., 2013; Ashwin and Sasai, 2015; Huang and Lei,
2018; Folguera-Blasco et al., 2019). These studies found a
significant dependence of the probability landscape of protein
expression computed from stochastic simulations on chromatin
state dynamics. Similarly coarse-grained treatment of epigenetic
switches was shown to introduce hysteresis (Bhattacharyya
et al., 2020) and homeorhesis (Matsushita and Kaneko, 2020)
to the dynamics of gene regulatory networks. Notably, Zhang
et al. (2019) explicitly considered the modification of individual
nucleosomes and studied the impact of suchmodifications on the
probability landscape of a single self-activating gene and a pair of
mutually repressive genes. However, the lack of analytical results
has made the sensitivity analysis of the computed landscape
with respect to parameter values, which may vary along cell
differentiation, numerically challenging.

In this work, we investigate the combined impact of
TF binding and epigenetic modifications in regulating the
expression of a self-activating gene. Rather than coarse-
graining the epigenetic switch into a binary or ternary
variable, we explicitly account for the dynamical modification of
individual nucleosomes. The variational approach (Eyink, 1996;
Sasai and Wolynes, 2003) was used to compute steady-state

probability distributions from deterministic equations and avoid
computationally intensive stochastic simulations. Moreover, we
generalize the typically used Poisson ansatz to better treat
systems with particle conservation constraints, such as our
epigenetic switch, that are more naturally described using
SU(2) than Bosonic operators (Sood and Zhang, 2020). The
approach enabled a convenient exploration of the model’s
steady-state behavior across a wide range of parameters. Our
study suggests that fast, random perturbations to individual
histone modifications lead to the formation of a poised,
uncommitted chromatin state, which in turn can drive noisy
gene expression seen in stem cells. As the rate of such
random perturbations decreases and the role of cooperative
modifications of nucleosome prevails, the system transitions to a
bistable regime resembling a differentiated state. The transition
goes through an activated state with high gene expression,
highlighting the robustness of the network in activating gene
expression due to the feedback between genetic and epigenetic
switches. We further compared variational results with stochastic
simulations and discussed potential improvements in the
accuracy of the variational method.

2. MODEL

We consider a simplified model of eukaryotic gene regulation
that accounts for TF binding/unbinding as well as histone
modifications. The model couples the regulatory network of a
self-activating gene with an epigenetic switch that can lead to
active and repressive chromatin states.

For self-activating genes, their protein products bind with the
promoter to upregulate the transcription rate. As illustrated in
Figure 1, proteins are produced and destroyed with rates of g and
k, respectively. The protein production rate is further dependent
on whether the gene’s promoter is bound by TF (state 0) or not
(state 1), and we have g1 < g0 since the proteins are activators.
Here TFs correspond to gene transcription products, and they
bind to the promoter with rate h as dimers. The corresponding
unbinding rate is f . Binding rate depends on protein copy
number np as well as the number of modified nucleosomes nx as
detailed in Equation (3) below. Self-activating genes are known to
occur both as isolated entities (Ptashne et al., 1980; Johnson et al.,
1981; Hasty et al., 2000; Rosenfeld et al., 2002) and as common
motifs of larger interacting networks (Ralston and Rossant, 2005;
Loh et al., 2008; Orkin and Zon, 2008). They have been the subject
of extensive theoretical study as models of cellular differentiation
(Sasai and Wolynes, 2003; Hornos et al., 2005; Walczak et al.,
2005a,b; Xu and Tao, 2006; Goldberg et al., 2007; Kim and
Wang, 2007; Shahrezaei and Swain, 2008; Venegas-Ortiz and
Evans, 2011; Wang et al., 2011; Zhang et al., 2013; Zhang and
Wolynes, 2014). The epigenetic switch concerns a cluster of N =

60 nucleosomes, each of which can exist in a modified (X) or
unmodified (Y) state. The kinetics of chromatin system can be
described with the non-linear dynamics given below

X + X + Y
s1 ,s0
−−→ 3X, Y + Y + X

z
−→ 3Y , (1)
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FIGURE 1 | Illustration of the kinetic model that couples the regulatory

network of a self-activating gene with the reaction network of histone

modifications. The gene is auto-regulatory as the protein produced by the

gene (red circles) binds to the promoter region (yellow) with rate h and unbinds

with rate f . Depending on whether the regulatory protein is bound (State 0) or

unbound (State 1), the rate of protein production is g0 or g1. Proteins degrade

with rate k. Conversions between modified (X) and unmodified (Y)

nucleosomes can occur “randomly” (irrespective to the status of other

nucleosomes) with a basal rate q. Nucleosome modifications can also occur

more cooperatively with rate of z and s.

X
q
−→ Y , Y

q
−→ X. (2)

The inter-conversion between modified and unmodified
nucleosomes can either proceed via Equation (1) that requires
a pair of similarly modified nucleosomes to alter the state of a
nucleosome, or via noisy conversion (Equation 2) with first-
order kinetics. The former is meant to account for nucleosomes
being actively interconverted by modifying and removing
enzymes recruited by the similarly modified nucleosomes in
their vicinity. It is this recruitment that forms the positive
feedback in the system (Dodd et al., 2007; Micheelsen et al., 2010;
Xie and Zhang, 2019; Sood and Zhang, 2020). s, z, and q are the
rate constants of the corresponding reactions.

The coupling between the genetic and epigenetic switch is
achieved by introducing a dependence of protein binding rate on
the number of modified nucleosomes, i.e.,

h(np, nx) = ho
np(np − 1)

1+ exp
(

−0.5(nx − 35)
) . (3)

This dependence is motivated by the realization that actively
modified chromatin (nx > 35) exists in a more open state
that is more accessible to regulatory proteins. The particular
expression [1 + exp(−0.5(nx − 35))]−1 as the probability for
chromatin being open is typical of a two state system, assuming
that the energetic difference between open and closed chromatin
depends linearly on the number of modified nucleosomes.

Furthermore, the recruited conversion rate of unmodified to
modified nucleosomes depends on TF binding with s0 >

s1, assuming that TFs can attract modification enzymes to
chromatin. The values for the kinetic parameters were set relative
to the degradation rate k as g1 = 4, g0 = 65, ho = 1, f =

100, s1 = 8, s0 = 10s1, z = 8. The random histone modification
rate, q, was varied over a wide range of values as detailed below.
We used k = 1s−1, though changing this value will not affect the
steady state distributions and only renormalizes the timescale in
the model.

We carried out stochastic simulations of the kinetic model
using the Gillespie algorithm (Gillespie, 1977). Each plot shown
in Figure 2 was obtained from averaging over 100 independent
105-second-long simulations. These trajectories were initialized
with random configurations, and the number of modified
nucleosomes and protein molecules along each trajectory was
recorded at every second. We then combined the values from all
trajectories to estimate the steady state probability distributions,
Pss. For the plots shown in Figure 3 we used q = 10 and
set nx = 40 and np = 20 at t = 0. 200 independent
trajectories were performed to produce the average numbers
recorded at every 0.5 s.

3. THEORY

We reformulated the master equation describing the dynamical
evolution of the kinetic network as an imaginary time
Schrödinger equation

∂t |9(t)〉 = � |9(t)〉 . (4)

The state vector |9(t)〉 =

(

91(t)
90(t)

)

is a superposition of

all possible configurations weighted with their corresponding
probabilities such that 9i(t) =

∑

np ,nx
Pi({np, nx}; t) |np, nx〉

for i = 0, 1. The two components correspond to the DNA
state with regulatory proteins unbound (state 1) or bound (state
0), respectively. This reformulation makes use of a second
quantization based method (the Doi-Peliti approach), which has
been successfully employed in the study of reaction-diffusion
processes (Lee and Cardy, 1995), gene switches (Sasai and
Wolynes, 2003; Zhang and Wolynes, 2014), and other systems
(Täuber, 2014). In previous work, we applied the Doi-Peliti
approach to the epigenetic switch using operators that are a
representation of the SU(2) algebra (Sood and Zhang, 2020). The
SU(2) algebra allows us to treat the constraint of conservation of
particle in number in a mathematically elegant and convenient
way. When coupled to the self-activating gene, the stochastic
Hamiltonian for the system described in Figure 1 is given by

� = g(a†
p − 1)+ k(ap − a†

pap)+ s[J+n̂
2
x − n̂

2
xn̂y] (5)

+ z[J−n̂
2
y − n̂

2
y n̂x]+ q[J− − n̂x]+ q[J+ − n̂y]

+

(

−h(n̂p, n̂x) f
h(n̂p, n̂x) −f

)

,
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FIGURE 2 | Comparison between the probability distributions obtained from the variational approach and from stochastic simulations. (A–C) Steady state probability

distributions for the number of modified nucleosomes computed using the variational method (black solid line) and from stochastic simulations (red dots) for q = 100

(A), 10 (B), and 0.5 (C). (D–F) Steady state probability distributions for the number of protein molecules computed using the variational method (black solid line) and

from stochastic simulations (red dots) for q = 100 (D), 10 (E), and 0.5 (F). (G–I) Steady state probability distributions as a function of both number of proteins and

modified nucleosomes computed using the variational method for q = 100 (G), 10 (H), and 0.5 (I), showing two, one and two fixed points, respectively.

where g =

(

g1 0
0 g0

)

, s =

(

s1/N
3 0

0 s0/N
3

)

, z =

(

z/N3 0
0 z/N3

)

,

k =

(

k 0
0 k

)

, q =

(

q/N 0
0 q/N

)

, and h(n̂p, n̂x) =

n̂p(n̂p−1)

1+exp(−0.5(n̂x−35))
. The operator a†

p creates a protein molecule

when it acts on a state, a†
p |np, nx〉 = |np + 1, nx〉, whereas ap

serves to remove a protein molecule when acting on the same
state, ap |np, nx〉 = np |np − 1, nx〉. J+ converts an unmodified
nucleosome to a modified one by acting on a state, J+ |np, nx〉 =
(N − nx) |np, nx + 1〉, while J− acts to convert a modified
nucleosome to an unmodified one, J− |np, nx〉 = nx |np, nx − 1〉.
n̂p denotes the number operator, as its action on a ket gives
the number of protein molecules, n̂p |np, nx〉 = np |np, nx〉. In a
similar fashion, n̂x gives the number of modified nucleosomes
when it acts on a ket, n̂x |np, nx〉 = nx |np, nx〉, and n̂y gives
the number of unmodified nucleosomes, n̂y |np, nx〉 = (N −

nx) |np, nx〉. n
2 = n(n− 1) denotes the falling factorial.

Exact solutions to Equation (4) are difficult to obtain.
Instead, we make use of an approximate, yet succinct and
powerful, variational approach originally introduced by Eyink
(Eyink, 1996; Alexander and Eyink, 1997). First, we realize that

the imaginary time Schrödinger equation is equivalent to the
functional variation of the following action Ŵ with respect to 8,
i.e., δŴ

δ8
= 0 for

Ŵ =

∫

dt 〈8|∂t − �|9〉 . (6)

By designing trial functions for 8 and 9 parameterized with
αL = α1

L,α
2
L, · · · ,α

K
L and αR = α1

R,α
2
R, · · · ,α

K
R , minimizing the

action leads to a set of ordinary differential equations,

K
∑

l=1

[

〈

∂8

∂αm
L

〉

∂9

∂αl
R

dαl
R

dt
−

〈

∂8

∂αm
L

∣

∣

∣

∣

�

∣

∣

∣

∣

9

〉

]

αm
L =0

= 0, (7)

form = 1, · · · ,K. (8)

Also, we demand (to stay true to the probabilistic interpretation)
〈8(αL = 0)〉9(αR) = 1. The variational approach was first
applied with great success to stochastic gene regulatory networks
by Sasai andWolynes (2003). In its original formulation, Poisson
distributions were used as trial functions, with the Poisson mean

Frontiers in Genetics | www.frontiersin.org 4 January 2021 | Volume 11 | Article 636724

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sood and Zhang Coupled Genetic and Epigenetic Switches

FIGURE 3 | Dynamical trajectories determined from the variational approach agree well with stochastic simulations in favorable regimes. (A) Time evolution of the

average number of modified nucleosomes computed using the variational method (black solid line) and stochastic simulations (red dots). (B) Time evolution of the

average number of modified nucleosomes computed using the variational method (black solid line) and stochastic simulation (red dots). We used q = 10, M = 60,

and set c1p1 = 0, c0p0 = 20, c1t1 = 0, c1t0 = 0.66 as the initial values when solving the deterministic equations (Equation 11).

being the variational parameter. Since protein molecules can
be approximately treated as products of a birth-death process,
the probability distribution to find np molecules should be
Poisson at large t (Sasai and Wolynes, 2003). Furthermore, the
stochastic Hamiltonian for genetic networks consists of only
Bosonic operators, the coherent states of which correspond to
Poisson distributions. In this work, we exploit the symmetry
imposed on the system by particle number constraints to derive
a new variational trial function for the chromatin switch. As
shown in the Supplementary Material, an excellent candidate is
the binomial distribution function since the coherent states for
the SU(2) operators in our stochastic Hamiltonian are binomial
(Fu and Sasaki, 1997, 1998). Taken together, we can thus use the
following ansatz as variational functions for the coupled genetic
and epigenetic switch

|9〉 =





c1 exp
(

p1(a
†
p − 1)

)

(1− θ1)
N exp

(

θ1
1−θ1

J+

)

|0, 0〉

c0 exp
(

p0(a
†
p − 1)

)

(1− θ0)
N exp

(

θ0
1−θ0

J+

)

|0, 0〉



 ,

(9)

and

〈8| =
(

〈0, 0|eapeJ− exp
(

α1 + λ
(p)
1 ap + λ

(x)
1 J−

)

〈0, 0|eapeJ− exp
(

α0 + λ
(p)
0 ap + λ

(x)
0 J−

))

. (10)

The set of variational parameters is αR = {c1, c0, p1, p0, θ1, θ0}.
Here c1(c0) represents the probability of the DNA being in state 1
(state 0), while p1(p0) and Nθ1(Nθ0) represent the mean number
of proteins and modified nucleosomes when DNA is in state 1

(state 0). αL = {α1,α0, λ
(p)
1 , λ

(p)
0 λ

(x)
1 , λ

(x)
0 } are the corresponding

conjugate variables.
Plugging (10) and (9) into (7), we obtain the following set of

variational equations

dc1

dt
= c0f − c1

〈

h(np, nx)
〉

1
(11a)

dc0

dt
= −c0f + c1

〈

h(np, nx)
〉

1
(11b)

c1
dp1

dt
+ p1

dc1

dt
= c1g1 − c1kp1 + c0fp0 − c1

〈

nph(np, nx)
〉

1

(11c)

c0
dp0

dt
+ p0

dc0

dt
= c0g0 − c0kp0 − c0fp0 + c1

〈

nph(np, nx)
〉

1

(11d)

Nθ1
dc1

dt
+ Nc1

dθ1

dt
= c1

( s1

N3

) 〈

n
2
x(N − nx)

〉

1

− c1

( z1

N3

)

〈

(N − nx)
2(nx)

〉

1

+ c1
q

N
(−〈nx〉1 + 〈N − nx〉1)

+ c0fNθ0 − c1
〈

nxh(np, nx)
〉

1

(11e)

Nθ0
dc0

dt
+ Nc0

dθ0

dt
= c0

( s0

N3

) 〈

n
2
x(N − nx)

〉

0

− c0

( z0

N3

)

〈

(N − nx)
2(nx)

〉

0

+c0
q

N
(−〈nx〉0 + 〈N − nx〉0)− c0fNθ0

+ c1
〈

nxh(np, nx)
〉

1
.

(11f)

The angular brackets represent ensemble averaging
over protein numbers and modified nucleosomes, i.e.,

〈·〉i =
∑

np ,nx
· e

−pi

np!
p
np
i

(N
nx

)

θ
nx
k
(1 − θk)

N−nx . We also make

the simplifying approximation for the average binding rate

as
〈

h(np, nx)
〉

=
〈

np(np−1)

1+exp(0.5(nx−35))

〉

≈
〈np(np−1)〉

1+exp(0.5(〈nx〉−35))
.

Numerical integration of Equation (11) yields the
time evolution of the variational parameters αR, from
which the probability distributions can be determined
using Equation (9).

We solved Equation (11) using scipy.integrate.odeint()
module in python with a time step of 0.01 s. The initial
conditions were varied and individual trajectories were
integrated for 105 s till convergence to obtain the steady
state results.
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4. RESULTS

Using the variational equations, we studied the dependence
of steady-state solutions on the rate of noisy histone mark
modification, q. For comparison, we carried out stochastic
simulations of the kinetic network using the Gillespie algorithm
(Gillespie, 1977) at selected q-values. The noisy modification
rate and, in particular, its relative value to the rate for recruited
conversions is an important parameter for cell differentiation.
For example, recruited conversions arise due to the diffusion
of histone-modifying enzymes from modified nucleosomes
to the nearby unmodified ones. The more open chromatin
conformation seen in stem cells with larger inter-nucleosome
distances (Gaspar-Maia et al., 2011; Mas et al., 2018) will,
therefore, suppress recruited conversions in favor of the noisy
ones. As cells differentiate, chromatin will becomemore compact,
and the importance of noisy conversions will decline. Previous
studies of isolated epigenetic switches (Dodd et al., 2007;
Micheelsen et al., 2010; Sood and Zhang, 2020) also found q as
an important parameter that controls the onset and maintenance
of bistability in the epigenetic switch.

In Figure 2, we show the probability distributions obtained
from stochastic simulations and from the variational approach
at q = 100, 10, and 0.5. We notice that the Binomial ansatz
introduced in the Theory section captures the distribution for
the number of modified nucleosomes with quantitative accuracy
(Figures 2A–C). The Poissonian ansatz also performs well for the
distribution of protein numbers at small and medium q values,
though deviations from stochastic simulations are apparent at
large q (Figures 2D–F). The inconsistency between the two
distributions in that regime is mainly due to underestimating the
population of intermediate states that bridge the high and low
gene expression values by the variation method.

In addition to steady-state solutions, the time evolution of
observables, such as the mean number of proteins and modified
nucleosomes, can be determined using the variational approach
as well. As shown in Figure 3, in parameter regimes where the
effect of fluctuations is not too drastic, the dynamical trajectories
determined using Equation (11) are in quantitative agreements
with those computed using stochastic simulations.

Given its reasonable performance, we next applied the
variational approach to study the network model’s steady-state
behavior at a broader range of q-values. As already mentioned,
q is an important variable that might be tuned along the
developmental axis for cell differentiation. For large q values,
chromatin stabilizes in an undecided state with roughly half the
nucleosomes modified (active) and the other half carrying no
modification (repressive). The corresponding protein expression
is noisy with a broad probability distribution. Stochastic
simulations further support a significant mixing between “on”
and “off” gene states, and an unambiguous assignment of either
state is not warranted (Figure 2D). When the value for q is
quenched, we observe the emergence of a coherent epigenetic
state along with coherent gene expression. Therefore, both
switches are turned on and the combined system exhibits a single
attractor. At even lower values of q, both the epigenetic and gene
switch exhibit bistability.

We note that the chromatin state changes described above
differs from that of an isolated epigenetic switch studied
previously (Sood and Zhang, 2020). There, we saw a shift from a
unimodal probability distribution indicating an equal admixture
of modified and unmodified nucleosomes to a symmetric
bimodal probability distribution as the value for q is quenched.
The appearance of a single coherent epigenetic state in Figure 4 is
a result of the coupling with the gene switch in our model, which
breaks the symmetry between active and repressive chromatin
states. The coupling works both ways. In an isolated gene switch,
a single state with high gene expression is not expected either.
Modulating the kinetics of TF binding to the promoter only
resolves a broad probability distribution exhibiting no coherent
gene expression to a bistable state with high and low levels of gene
expression (Walczak et al., 2005a).

5. DISCUSSION

We introduced a kinetic model that couples a genetic network
with an epigenetic switch to study the combined role of
transcription factors and histonemodifications in regulating gene
expression. An approximation scheme based on the variational
approach was further developed to obtain steady-state solutions.
This method is unencumbered by the complexity associated with
numerical simulations and more detailed analytical calculations.
It would be a useful tool for exploratory studies of the parameter
space and identifying regions of interest. While we focused our
analysis on a single gene, the variational method can be relatively
easily generalized to networks with multiple interacting genetic
and epigenetic switches that provide more realistic modeling of
stem cell differentiation (Zhang and Wolynes, 2014).

We explored the behavior of the network model across a wide
range of parameters. Our model exhibits a poised state for the
gene switch at high q, where the chromatin system contains
an equal admixture of modified and unmodified nucleosomes.
The network in this parameter regime appears to qualitatively
capture the behavior of chromatin and gene expression in
undifferentiated stem cells. In particular, stem cells are known
to exhibit bivalent chromatin with both activating and repressive
marks (Bernstein et al., 2006; Vastenhouw and Schier, 2012) and
noisy gene expression profiles (Kar et al., 2017).We point out that
the exact definition of bivalent chromatin remains controversial,
and multiple mechanisms have been proposed for its formation
(Azuara et al., 2006; Sneppen and Ringrose, 2019; Lim and
Meshorer, 2020). Additional studies are needed to determine
whether the stochastic conversion observed here is the key driver
for the observed chromatin bivalency.

Upon quenching q, the gene is activated along with a
concomitant resolution of the chromatin state. The coupling
between the two switches reinforces the stability of the active
state and can lead tomore robust upregulation of gene expression
upon cell differentiation. It also ensures that the genetic and
epigenetic switches are always in sync. We observe at most
two steady states representing active chromatin with high gene
expression and repressive chromatin with low gene expression.
We note that the inactive state only becomes stable at minimal
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FIGURE 4 | Variation of the steady state probability distribution for the number of proteins (A) and modified nucleosomes (B) as a function of the noisy histone

modification rate, q.

q values, arguing for strong noise suppression for gene silencing.
Its limited stability may explain the presence of DNAmethylation
on top of histone modifications to safeguard the silent state
against perturbations that might arise from fluctuation in protein
concentration or histone marks during cell division.

The strong dependence of the landscape tomography on q
shown in Figure 4 suggests that the histone modification rate
may act like a knob to be tuned along the developmental axis
to facilitate cellular differentiation. Of course, the presented
landscape is probably too crude a simplification to be termed
the Waddington landscape since many additional factors that
contribute to the stability of gene expression patterns could be
varied along the developmental axis as well.

In favorable regimes, the variational approach produces
results of quantitative accuracy. The discrepancy between the
probability distribution obtained from stochastic simulations and
the variational method in the high q region can be attributed
to the fact that the Poisson ansatz does not sufficiently account
for the variance and the effect of fluctuations which become
increasingly important as the value for q increases. This situation
can be remedied by going beyond the Poisson ansatz, and
utilizing the superposition ansatz as described in Ohkubo (2008).
Mathematically, this wouldmean tomodify our ansatz as follows,

|9〉

=





∫ ∞
0 dp1 F (p1; {λ

(1)
j }) c1 exp

(

p1(a
†
p − 1)

)

(1− θ1)
N exp

(

θ1
1−θ1

J+

)

|0, 0〉
∫ ∞
0 dp0 F (p0; {λ

(0)
j }) c0 exp

(

p0(a
†
p − 1)

)

(1− θ0)
N exp

(

θ0
1−θ0

J+

)

|0, 0〉



 .

(12)

This new “superposition ansatz” is constructed by the
superposition of the coherent states (i.e., Poisson distribution) as
defined in (12), where now F serves as the variational function.
Hence, the real probability distribution is obtained by the
superposition of the Poisson distributions of mean pi weighed

by the distribution F with parameters {λ
(i)
j }. We anticipate that

doing so can not only improve the agreement between theory
and simulation but can in principle allow for the computation of
time evolution of other interesting quantities such as variance,
and covariance in addition to means. However, in general the
choice of an appropriate F is a non-trivial problem, and thus
has been avoided in this text in favor of a clearer exposition.
The choice of appropriate variational functions can be guided
by the work done on exact solutions of the master equations
of genetic switches (Hornos et al., 2005; Shahrezaei and Swain,
2008; Ramos et al., 2011).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

AS and BZ conceived and designed the work, interpreted the
results, and wrote the manuscript. AS carried out computer
implementation and data analysis. BZ supervised the project.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Institutes of Health
(Grant 1R35GM133580).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.636724/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 7 January 2021 | Volume 11 | Article 636724

https://www.frontiersin.org/articles/10.3389/fgene.2020.636724/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sood and Zhang Coupled Genetic and Epigenetic Switches

REFERENCES

Alexander, F. J., and Eyink, G. L. (1997). Rayleigh-ritz calculation of

effective potential far from equilibrium. Phys. Rev. Lett. 78, 1–4.

doi: 10.1103/PhysRevLett.78.1

Angel, A., Song, J., Dean, C., and Howard, M. (2011). A polycomb-based

switch underlying quantitative epigenetic memory. Nature 476, 105–108.

doi: 10.1038/nature10241

Artyomov, M. N., Meissner, A., and Chakraborty, A. K. (2010). A model

for genetic and epigenetic regulatory networks identifies rare pathways for

transcription factor induced pluripotency. PLoS Comput. Biol. 6:e1000785.

doi: 10.1371/journal.pcbi.1000785

Ashwin, S. S., and Sasai, M. (2015). Effects of collective histone state dynamics

on epigenetic landscape and kinetics of cell reprogramming. Sci. Rep. 5, 1–12.

doi: 10.1038/srep16746

Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jörgensen, H. F., John, R. M., et al.

(2006). Chromatin signatures of pluripotent cell lines.Nat. Cell Biol. 8, 532–538.

doi: 10.1038/ncb1403

Bannister, A. J., and Kouzarides, T. (2011). Regulation of chromatin by histone

modifications. Cell Res. 21, 381–395. doi: 10.1038/cr.2011.22

Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J.,

et al. (2006). A bivalent chromatin structure marks key developmental genes

in embryonic stem cells. Cell 125, 315–326. doi: 10.1016/j.cell.2006.02.041

Bhattacharyya, B., Wang, J., and Sasai, M. (2020). Stochastic epigenetic dynamics

of gene switching. Phys. Rev. E 102:042408. doi: 10.1103/PhysRevE.102.042408

Binder, H., Steiner, L., Przybilla, J., Rohlf, T., Prohaska, S., and Galle, J.

(2013). Transcriptional regulation by histone modifications: towards a theory

of chromatin re-organization during stem cell differentiation. Phys. Biol.

10:026006. doi: 10.1088/1478-3975/10/2/026006

Cao, Y., Lu, H.-M., and Liang, J. (2010). Probability landscape of heritable and

robust epigenetic state of lysogeny in phage lambda. Proc. Natl. Acad. Sci. U.S.A.

107, 18445–18450. doi: 10.1073/pnas.1001455107

Chen, H., Thill, P., and Cao, J. (2016). Transitions in genetic toggle switches

driven by dynamic disorder in rate coefficients. J. Chem. Phys. 144:175104.

doi: 10.1063/1.4948461

David-Rus, D., Mukhopadhyay, S., Lebowitz, J. L., and Sengupta, A. M. (2009).

Inheritance of epigenetic chromatin silencing. J. Theor. Biol. 258, 112–120.

doi: 10.1016/j.jtbi.2008.12.021

Dayarian, A., and Sengupta, A. M. (2013). Titration and hysteresis

in epigenetic chromatin silencing. Phys. Biol. 10:036005.

doi: 10.1088/1478-3975/10/3/036005

Dodd, I. B., Micheelsen, M. A., Sneppen, K., and Thon, G. (2007). Theoretical

analysis of epigenetic cell memory by nucleosome modification. Cell 129:813.

doi: 10.1016/j.cell.2007.02.053

Eyink, G. L. (1996). Action principle in nonequilibrium statistical dynamics. Phys.

Rev. E 54, 3419–3435. doi: 10.1103/PhysRevE.54.3419

Flavahan, W. A., Drier, Y., Johnstone, S. E., Hemming, M. L., Tarjan, D. R., Hegazi,

E., et al. (2019). Altered chromosomal topology drives oncogenic programs in

SDH-deficient gists. Nature 575, 229–233. doi: 10.1038/s41586-019-1668-3

Folguera-Blasco, N., Pérez-Carrasco, R., Cuyàs, E., Menendez, J. A., and

Alarcón, T. (2019). A multiscale model of epigenetic heterogeneity-

driven cell fate decision-making. PLoS Comput. Biol. 15:e1006592.

doi: 10.1371/journal.pcbi.1006592

Fu, H.-C., and Sasaki, R. (1997). Negative binomial and multinomial states:

probability distributions and coherent states. J. Math. Phys. 38, 3968–3987.

doi: 10.1063/1.532102

Fu, H.-C., and Sasaki, R. (1998). Probability distributions and coherent states of,

and algebras. J. Phys. A 31, 901–925. doi: 10.1088/0305-4470/31/3/006

Furey, T. S., and Sethupathy, P. (2013). Genetics driving epigenetics. Science 342,

705–706. doi: 10.1126/science.1246755

Gaspar-Maia, A., Alajem, A., Meshorer, E., and Ramalho-Santos, M. (2011). Open

chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12,

36–47. doi: 10.1038/nrm3036

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem. 81, 2340–2361. doi: 10.1021/j100540a008

Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007). Epigenetics: a landscape

takes shape. Cell 128, 635–638. doi: 10.1016/j.cell.2007.02.006

Hasty, J., Pradines, J., Dolnik, M., and Collins, J. J. (2000). Noise-based switches

and amplifiers for gene expression. Proc. Natl. Acad. Sci. U.S.A. 97, 2075–2080.

doi: 10.1073/pnas.040411297

Hornos, J. E. M., Schultz, D., Innocentini, G. C. P., Wang, J., Walczak, A. M.,

Onuchic, J. N., et al. (2005). Self-regulating gene: An exact solution. Phys. Rev.

E 72:051907. doi: 10.1103/PhysRevE.72.051907

Huang, R., and Lei, J. (2018). Dynamics of gene expression with positive feedback

to histonemodifications at bivalent domains. Int. J. Modern Phys. B 32:1850075.

doi: 10.1142/S0217979218500753

Johnson, A. D., Poteete, A. R., Lauer, G., Sauer, R. T., Ackers, G. K., and Ptashne,

M. (1981). λ repressor and cro–components of an efficient molecular switch.

Nature 294, 217–223. doi: 10.1038/294217a0

Jost, D. (2014). Bifurcation in epigenetics: Implications in

development, proliferation, and diseases. Phys. Rev. E 89:010701.

doi: 10.1103/PhysRevE.89.010701

Kærn, M., Elston, T. C., Blake, W. J., and Collins, J. J. (2005). Stochasticity in

gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464.

doi: 10.1038/nrg1615

Kar, G., Kim, J. K., Kolodziejczyk, A. A., Natarajan, K. N., Triglia, E. T.,

Mifsud, B., et al. (2017). Flipping between Polycomb repressed and active

transcriptional states introduces noise in gene expression. Nat. Commun. 8,

1–13. doi: 10.1038/s41467-017-00052-2

Kim, K.-Y., and Wang, J. (2007). Potential energy landscape and robustness

of a gene regulatory network: toggle switch. PLoS Comput. Biol. 3:e30060.

doi: 10.1371/journal.pcbi.0030060

Krishnakumar, R., and Kraus, W. L. (2010). Parp-1 regulates chromatin structure

and transcription through a kdm5b-dependent pathway.Mol. Cell 39, 736–749.

doi: 10.1016/j.molcel.2010.08.014

Lee, B. P., and Cardy, J. (1995). Renormalization group study of the a+b->0

diffusion-limited reaction. J. Stat. Phys. 80, 971–1007. doi: 10.1007/BF02179861

Lim, P. S. L., and Meshorer, E. (2020). Dppa2 and dppa4 safeguard bivalent

chromatin in order to establish a pluripotent epigenome. Nat. Struct. Mol. Biol.

27, 685–686. doi: 10.1038/s41594-020-0453-1

Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini,

J., et al. (2009). Human DNA methylomes at base resolution show widespread

epigenomic differences. Nature 462, 315–322. doi: 10.1038/nature08514

Loh, Y.-H., Ng, J.-H., and Ng, H.-H. (2008). Molecular framework underlying

pluripotency. Cell Cycle 7, 885–891. doi: 10.4161/cc.7.7.5636

Lu, R., Markowetz, F., Unwin, R. D., Leek, J. T., Airoldi, E. M., MacArthur, B.

D., et al. (2009). Systems-level dynamic analyses of fate change in murine

embryonic stem cells. Nature 462, 358–362. doi: 10.1038/nature08575

Lv, C., Li, X., Li, F., and Li, T. (2015). Energy landscape reveals that the budding

yeast cell cycle is a robust and adaptive multi-stage process. PLoS Comput. Biol.

11:e1004156. doi: 10.1371/journal.pcbi.1004156

Margueron, R., and Reinberg, D. (2010). Chromatin structure and the inheritance

of epigenetic information. Nat. Rev. Genet. 11, 285–296. doi: 10.1038/nrg2752

Mariani, L., Schulz, E. G., Lexberg, M. H., Helmstetter, C., Radbruch, A.,

Löhning, M., et al. (2010). Short-term memory in gene induction reveals the

regulatory principle behind stochastic il-4 expression. Mol. Syst. Biol. 6:359.

doi: 10.1038/msb.2010.13

Mas, G., Blanco, E., Ballaré, C., Sansó, M., Spill, Y. G., Hu, D., et al. (2018).

Promoter bivalency favors: an open chromatin architecture in embryonic stem

cells. Nat. Genet. 50, 1452–1462. doi: 10.1038/s41588-018-0218-5

Matsushita, Y., and Kaneko, K. (2020). Homeorhesis in waddington’s

landscape by epigenetic feedback regulation. Phys. Rev. Res. 2:023083.

doi: 10.1103/PhysRevResearch.2.023083

Micheelsen, M. A., Mitarai, N., Sneppen, K., and Dodd, I. B. (2010). Theory

for the stability and regulation of epigenetic landscapes. Phys. Biol. 7:026010.

doi: 10.1088/1478-3975/7/2/026010

Miller-Jensen, K., Dey, S. S., Schaffer, D. V., and Arkin, A. P. (2011). Varying

virulence: epigenetic control of expression noise and disease processes. Trends

Biotechnol. 29, 517–525. doi: 10.1016/j.tibtech.2011.05.004

Ohkubo, J. (2008). Approximation scheme for master equations:

variational approach to multivariate case. J. Chem. Phys. 129:044108.

doi: 10.1063/1.2957462

Orkin, S. H., and Zon, L. I. (2008). Hematopoiesis: an evolving paradigm for stem

cell biology. Cell 132, 631–644. doi: 10.1016/j.cell.2008.01.025

Frontiers in Genetics | www.frontiersin.org 8 January 2021 | Volume 11 | Article 636724

https://doi.org/10.1103/PhysRevLett.78.1
https://doi.org/10.1038/nature10241
https://doi.org/10.1371/journal.pcbi.1000785
https://doi.org/10.1038/srep16746
https://doi.org/10.1038/ncb1403
https://doi.org/10.1038/cr.2011.22
https://doi.org/10.1016/j.cell.2006.02.041
https://doi.org/10.1103/PhysRevE.102.042408
https://doi.org/10.1088/1478-3975/10/2/026006
https://doi.org/10.1073/pnas.1001455107
https://doi.org/10.1063/1.4948461
https://doi.org/10.1016/j.jtbi.2008.12.021
https://doi.org/10.1088/1478-3975/10/3/036005
https://doi.org/10.1016/j.cell.2007.02.053
https://doi.org/10.1103/PhysRevE.54.3419
https://doi.org/10.1038/s41586-019-1668-3
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1063/1.532102
https://doi.org/10.1088/0305-4470/31/3/006
https://doi.org/10.1126/science.1246755
https://doi.org/10.1038/nrm3036
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/j.cell.2007.02.006
https://doi.org/10.1073/pnas.040411297
https://doi.org/10.1103/PhysRevE.72.051907
https://doi.org/10.1142/S0217979218500753
https://doi.org/10.1038/294217a0
https://doi.org/10.1103/PhysRevE.89.010701
https://doi.org/10.1038/nrg1615
https://doi.org/10.1038/s41467-017-00052-2
https://doi.org/10.1371/journal.pcbi.0030060
https://doi.org/10.1016/j.molcel.2010.08.014
https://doi.org/10.1007/BF02179861
https://doi.org/10.1038/s41594-020-0453-1
https://doi.org/10.1038/nature08514
https://doi.org/10.4161/cc.7.7.5636
https://doi.org/10.1038/nature08575
https://doi.org/10.1371/journal.pcbi.1004156
https://doi.org/10.1038/nrg2752
https://doi.org/10.1038/msb.2010.13
https://doi.org/10.1038/s41588-018-0218-5
https://doi.org/10.1103/PhysRevResearch.2.023083
https://doi.org/10.1088/1478-3975/7/2/026010
https://doi.org/10.1016/j.tibtech.2011.05.004
https://doi.org/10.1063/1.2957462
https://doi.org/10.1016/j.cell.2008.01.025
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sood and Zhang Coupled Genetic and Epigenetic Switches

Parsons, T., and Zhang, B. (2019). Critical role of histone tail entropy in

nucleosome unwinding. J. Chem. Phys. 150:185103. doi: 10.1063/1.5085663

Ptashne, M., Jeffrey, A., Johnson, A., Maurer, R., Meyer, B., Pabo, C.,

et al. (1980). How the λ repressor and CRO work. Cell 19, 1–11.

doi: 10.1016/0092-8674(80)90383-9

Qi, Y., Reyes, A., Johnstone, S. E., Aryee, M. J., Bernstein, B. E.,

and Zhang, B. (2020). Data-driven polymer model for mechanistic

exploration of diploid genome organization. Biophys. J. 119, 1905–1916.

doi: 10.1016/j.bpj.2020.09.009

Qiu, B., Zhou, T., and Zhang, J. (2020). Molecular-memory-driven phenotypic

switching in a genetic toggle switch without cooperative binding. Phys. Rev. E

101:022409. doi: 10.1103/PhysRevE.101.022409

Ralston, A., and Rossant, J. (2005). Genetic regulation of stem

cell origins in the mouse embryo. Clin. Genet. 68, 106–112.

doi: 10.1111/j.1399-0004.2005.00478.x

Ramos, A. F., Innocentini, G. C. P., and Hornos, J. E. M. (2011). Exact

time-dependent solutions for a self-regulating gene. Phys. Rev. E 83:062902.

doi: 10.1103/PhysRevE.83.062902

Rosenfeld, N., Elowitz, M. B., and Alon, U. (2002). Negative autoregulation

speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793.

doi: 10.1016/S0022-2836(02)00994-4

Rowley, M. J., and Corces, V. G. (2018). Organizational principles of 3D genome

architecture. Nat. Rev. Genet. 19, 789–800. doi: 10.1038/s41576-018-0060-8

Sasai, M., Kawabata, Y., Makishi, K., Itoh, K., and Terada, T. P. (2013). Time scales

in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells.

PLoS Comput. Biol. 9:e1003380. doi: 10.1371/journal.pcbi.1003380

Sasai, M., and Wolynes, P. G. (2003). Stochastic gene expression as a

many-body problem. Proc. Natl. Acad. Sci. U.S.A. 100, 2374–2379.

doi: 10.1073/pnas.2627987100

Schlick, T., Hayes, J., and Grigoryev, S. (2012). Toward convergence of

experimental studies and theoretical modeling of the chromatin fiber. J. Biol.

Chem. 287, 5183–5191. doi: 10.1074/jbc.R111.305763

Sedighi, M., and Sengupta, A.M. (2007). Epigenetic chromatin silencing: bistability

and front propagation. Phys. Biol. 4, 246–255. doi: 10.1088/1478-3975/4/4/002

Shahrezaei, V., and Swain, P. S. (2008). Analytical distributions for stochastic

gene expression. Proc. Natl. Acad. Sci. U.S.A. 105, 17256–17261.

doi: 10.1073/pnas.0803850105

Sneppen, K., and Mitarai, N. (2012). Multistability with a metastable mixed state.

Phys. Rev. Lett. 109:100602. doi: 10.1103/PhysRevLett.109.100602

Sneppen, K., and Ringrose, L. (2019). Theoretical analysis of polycomb-trithorax

systems predicts that poised chromatin is bistable and not bivalent. Nat.

Commun. 10:2133. doi: 10.1038/s41467-019-10130-2

Sood, A., and Zhang, B. (2020). Quantifying epigenetic stability with minimum

action paths. Phys. Rev. E 101:062409. doi: 10.1103/PhysRevE.101.062409

Tate, P. H., and Bird, A. P. (1993). Effects of DNA methylation on DNA-

binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231.

doi: 10.1016/0959-437X(93)90027-M

Täuber, U. C. (2014). Critical Dynamics A Field Theory Approach to Equilibrium

and Non-Equilibrium Scaling Behavior. Cambridge: Cambridge University

Press.

Vastenhouw, N. L., and Schier, A. F. (2012). Bivalent histone modifications

in early embryogenesis. Curr. Opin. Cell Biol. 24, 374–386.

doi: 10.1016/j.ceb.2012.03.009

Venegas-Ortiz, J. and Evans, M. R. (2011). Analytical study of an exclusive

genetic switch. J. Phys. A 44:355001. doi: 10.1088/1751-8113/44/35/

355001

Waddington, C., and Kacser, H. (1957). The Strategy of the Genes: A Discussion of

Some Aspects of Theoretical Biology. London: Allen & Unwin.

Walczak, A. M., Onuchic, J. N., and Wolynes, P. G. (2005a). Absolute rate

theories of epigenetic stability. Proc. Natl. Acad. Sci. U.S.A. 102, 18926–18931.

doi: 10.1073/pnas.0509547102

Walczak, A. M., Sasai, M., and Wolynes, P. G. (2005b). Self-consistent

proteomic field theory of stochastic gene switches. Biophys. J. 88, 828–850.

doi: 10.1529/biophysj.104.050666

Wang, J., Zhang, K., Xu, L., and Wang, E. (2011). Quantifying the Waddington

landscape and biological paths for development and differentiation.

Proc. Natl. Acad. Sci. U.S.A. 108, 8257–8262. doi: 10.1073/pnas.1017

017108

Wang, P., Song, C., Zhang, H., Wu, Z., Tian, X.-J., and Xing, J. (2014). Epigenetic

state network approach for describing cell phenotypic transitions. Interface

Focus 4:20130068. doi: 10.1098/rsfs.2013.0068

Xie, W. J., Qi, Y., and Zhang, B. (2020). Characterizing chromatin folding

coordinate and landscape with deep learning. PLoS Comput. Biol. 16:e1008262.

doi: 10.1371/journal.pcbi.1008262

Xie, W. J., and Zhang, B. (2019). Learning the formation mechanism of domain-

level chromatin states with epigenomics data. Biophys. J. 116, 2047–2056.

doi: 10.1016/j.bpj.2019.04.006

Xu, B.-L. and Tao, Y. (2006). External noise and feedback regulation: Steady-

state statistics of auto-regulatory genetic network. J. Theor. Biol. 243, 214–221.

doi: 10.1016/j.jtbi.2006.06.003

Zhang, B., and Wolynes, P. G. (2014). Stem cell differentiation as a

many-body problem. Proc. Natl. Acad. Sci. U.S.A. 111, 10185–10190.

doi: 10.1073/pnas.1408561111

Zhang, K., Sasai, M., andWang, J. (2013). Eddy current and coupled landscapes for

nonadiabatic and nonequilibrium complex system dynamics. Proc. Natl. Acad.

Sci. U.S.A. 110, 14930–14935. doi: 10.1073/pnas.1305604110

Zhang, Y., Liu, N., Lin, W., and Li, C. (2019). Quantifying the interplay between

genetic and epigenetic regulations in stem cell development. New J. Phys.

21:103042. doi: 10.1088/1367-2630/ab4c82

Zhou, V. W., Goren, A., and Bernstein, B. E. (2011). Charting histone

modifications and the functional organization of mammalian genomes. Nat.

Rev. Genet. 12, 7–18. doi: 10.1038/nrg2905

Zhu, H., Wang, G., and Qian, J. (2016). Transcription factors as readers

and effectors of dna methylation. Nature Reviews Genetics. 17, 551–565.

doi: 10.1038/nrg.2016.83

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Sood and Zhang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 9 January 2021 | Volume 11 | Article 636724

https://doi.org/10.1063/1.5085663
https://doi.org/10.1016/0092-8674(80)90383-9
https://doi.org/10.1016/j.bpj.2020.09.009
https://doi.org/10.1103/PhysRevE.101.022409
https://doi.org/10.1111/j.1399-0004.2005.00478.x
https://doi.org/10.1103/PhysRevE.83.062902
https://doi.org/10.1016/S0022-2836(02)00994-4
https://doi.org/10.1038/s41576-018-0060-8
https://doi.org/10.1371/journal.pcbi.1003380
https://doi.org/10.1073/pnas.2627987100
https://doi.org/10.1074/jbc.R111.305763
https://doi.org/10.1088/1478-3975/4/4/002
https://doi.org/10.1073/pnas.0803850105
https://doi.org/10.1103/PhysRevLett.109.100602
https://doi.org/10.1038/s41467-019-10130-2
https://doi.org/10.1103/PhysRevE.101.062409
https://doi.org/10.1016/0959-437X(93)90027-M
https://doi.org/10.1016/j.ceb.2012.03.009
https://doi.org/10.1088/1751-8113/44/35/355001
https://doi.org/10.1073/pnas.0509547102
https://doi.org/10.1529/biophysj.104.050666
https://doi.org/10.1073/pnas.1017017108
https://doi.org/10.1098/rsfs.2013.0068
https://doi.org/10.1371/journal.pcbi.1008262
https://doi.org/10.1016/j.bpj.2019.04.006
https://doi.org/10.1016/j.jtbi.2006.06.003
https://doi.org/10.1073/pnas.1408561111
https://doi.org/10.1073/pnas.1305604110
https://doi.org/10.1088/1367-2630/ab4c82
https://doi.org/10.1038/nrg2905
https://doi.org/10.1038/nrg.2016.83
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods
	1. Introduction
	2. Model
	3. Theory
	4. Results
	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


