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Abstract: Oxidative stress and the resulting damage to DNA are inevitable consequence of
endogenous physiological processes further amplified by cellular responses to environmental
exposures. If left unrepaired, oxidative DNA lesions can block essential processes such as
transcription and replication or can induce mutations. Emerging data also indicate that oxidative
base modifications such as 8-oxoG in gene promoters may serve as epigenetic marks, and/or provide
a platform for coordination of the initial steps of DNA repair and the assembly of the transcriptional
machinery to launch adequate gene expression alterations. Here, we briefly review the current
understanding of oxidative lesions in genome stability maintenance and regulation of basal and
inducible transcription.
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1. Introduction

Millions of years ago the evolution of photosynthesis provided oxygen to our planet Earth.
Subsequently living organisms not only have used oxygen in their energy production and metabolism
but also developed several protective systems in which they can deal with toxicity generated from
reactive oxygen species (ROS). To maintain a healthy status, oxidants and antioxidants should be in
equilibrium. The imbalance between oxidants production and detoxification causes oxidative stress
which is the precursor to oxidative damage to proteins, lipids, and DNA compromising their structure
and functions. This in turn can impair normal physiological functions and lead to a variety of diseases
and aging [1–3].

Oxidative damage to DNA is especially problematic since DNA cannot be resynthesized or
turned over. Reactive oxygen species, which include reagents such as superoxide anions (O2

•−),
hydrogen peroxide (H2O2), and hydroxyl radicals (•OH) can be produced from oxidative metabolism
in mitochondria and other endogenous sources such as peroxisomes and inflammatory cells [3]. Many
environmental factors have been identified as exogenous sources for ROS initiation, including but
not limited to exposures to chemicals like bisphenol A or toxins like organophosphate insecticides,
ultraviolet, and ionizing radiations [1]. The ROS can attach to DNA due to higher reactivity with strong
nucleophilic sites on nucleobases. A variety of mutagenic products, such as base modifications or base
transversions can be generated through the reactions with either the DNA bases or the deoxyribose
sugars [1]. Furthermore, oxidative damage to DNA may lead to mutations that activate oncogenes or
inactivate tumor suppressor genes as well as modification of gene expression [3].
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Sequence characteristics of the DNA render certain regions of the genome more susceptible to
oxidative stress [4,5]. Mitochondrial DNA (mtDNA) is more accessible to free radical injury owing to its
proximity to the site of O2

•− generation from the electron transport chain [6]. The production of ROS by
mitochondria leads to mtDNA damage and mutations which in turn lead to progressive mitochondrial
dysfunction and to a further increase in ROS production [7,8]. The absence of histone protection and
availability of fewer repair mechanism also makes mtDNA more susceptible to ROS damage than
the nuclear genome [6,9]. As an abundant endogenous source of DNA damage, ROS-induced stress
is widely attributed to promote catastrophic consequences for aging [2] and related diseases such as
cancer [10] and neurodegeneration [11].

Here we review how oxidative stress challenges the duplication and transmission of genetic
information by causing direct DNA damage, regulating the activity of DNA repair enzymes,
and altering basal and inducible transcription (Figure 1). We also discuss the epigenetic role of
oxidative base modifications in coordinating DNA repair and adequate gene expression changes
following oxidative stress.

Figure 1. Mechanisms of oxidative-stress-induced genetic and epigenetic alterations. Damage to
DNA bases due to oxidative stress induced from the plethora of extracellular and intracellular factors
is deleterious, leading to stalled replication forks and mutations. Mammalian cells utilize the base
excision repair (BER) pathway alone and in concert with various replication restart mechanisms to
get rid of oxidative lesions and ensure faithful duplication of genome. Genetic response to oxidative
stress involves alteration in gene expression by both the classical gene regulatory mechanisms and by
epigenetic processes. Classical gene regulation implicates transcription-factor based gene regulation
to influence gene transcription. Epigenetic mechanisms are those that do not involve changes in the
genome sequence, but rather in nuclear architecture, chromosome conformation, and histone and DNA
modifications. For example, epigenetic involvement of ROS has been attributed to oxidative conversion
of 5-mC to 5-hmC. Oxidative conversion of G to 8-oxoG at the promoter regions activates expression of
redox-regulated genes suggesting that oxidative base modification may also represent an epigenetic
mark serving as sensors of oxidative stress. Involvement of DNA repair (largely BER) in coordinating
the gene regulatory response to oxidative stress is indicated by dashed arrow.

2. Specific Oxidative Base Modifications

More than a hundred different types of base damage have been identified as products of oxidative
stress [12]. All four DNA nucleobases are susceptible to damage by ROS leading to modification of
their structure and alteration of the base-pairing properties (Table 1).
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Table 1. DNA base modifications that commonly exist after oxidative stress.

DNA Base Oxidized Base Modification

Guanine (G)

8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG)
8-oxoG is further oxidized to:
Spiroiminodihydantoin
Guanidinohydantoin
2,6-diamino-4-hydroxy-5 formamidopyrimidine (FapyG)

Cytosine (C) 5-hydroxy-2′-deoxycytidine (OH5C)

Adenine (A)
8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxoA)
4,6-diamino-5-formamidopyrimidine (FapyA)
2-hydroxydeoxyadenosine-5′-triphosphate (2OHA)

Thymine (T)
Thymine glycol (Tg)
5,6-dihydrothymine (DHT)
5-hydroxymethyluracil (5hmU)

Guanine (G) is the most frequently oxidized base due to its low oxidation potential. As a
result, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG) is the most abundant oxidative DNA lesion
which is moderately mutagenic resulting into G:C to T:A transversion and has been associated
with cellular transformation and cancer initiation [13,14]. Structural studies showed that 8-oxoG
induces only minor distortions to the DNA helical structure that are localized near the modification
site. The base pairing preference is determined by the conformation; anti-8oxoG base pairs with
cytosine (C) whereas syn-8-oxoG functionally mimics thymine (T) and base-pairs with adenine
(A) thus giving rise to A:8-oxoG mismatches which potentially results in CG→AT transversion
mutations [15]. Replicative DNA polymerases are slowed down at 8-oxoG and insert both correct
cytosine and incorrect adenine opposite 8-oxoG, but they preferentially extend A:8-oxoG mispairs.
However, during replication events, the cells have an opportunity to utilize the translesion synthesis
(TLS) polymerases, mainly the Y-family polymerases, for rapid bypass of 8-oxoG lesion to prevent
replication fork arrest [16,17]. The 8-oxoG is also highly susceptible to further oxidative damage,
yielding the additional mutagenic base lesions spiroiminodihydantoin and guanidinohydantoin.
Oxidation of guanine also results in fragmentation of the purine imidazole ring leading to another
major oxidative lesion, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) [12,13]. Oxidation
of adenine can lead to two major products: 8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxoA) and
4,6-diamino-5-formamidopyrimidine (FapyA). A less prevalent adenine modification upon oxidative
damage is 2-hydroxydeoxyadenosine-5′-triphosphate (2OHA) [12,13].

Cytosine can be the target of oxidation only at the 5,6-double bond to form a major oxidative
product 5-hydroxy-2′-deoxycytidine (OH5C) which can be found on DNA spontaneously and after
exposure to ROS generating chemicals [12,18]. In contrast, a cytosine analogue, methylcytosine (5mC),
can be attacked by free radicals at both the 5,6-double bond and the 5-methyl group and several
oxidation products of 5mC can be generated [12,18]. Thymine base can also be attacked by free
radicals on either the 5,6-double bond or the 5-methyl group, generating various oxidative products.
Thymine glycol (Tg) is one of the most examined oxidative products generated by the ring opening
on the 5,6-double bond of thymine causing inhibition to replicative polymerases and a mutagenic
signature indicative of translesion synthesis [17]. Moreover, thymine can be oxidized to produce the
5,6-dihydrothymine (DHT) which despite being targeted for repair, does not appear to cause mutations
or cytotoxicity [18]. The free radical attack on the 5-methyl group of thymine produces numerous
oxidation products including 5-hydroxymethyluracil (5hmU) which can base pair with both adenine
and guanine, thus leading to T:A→C:G transition [19].

3. Repair of Oxidative DNA Damage

As such, cells regularly encounter a spectrum of DNA damage ranging from small non-helix
distorting lesions to bulkier adducts that cause significant structural changes to the DNA double
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helix. Base excision repair (BER) is the main repair pathway of the oxidatively generated 8-oxoG and
other non-helix disturbing lesions [14,20–23]. Base excision repair essentially involves (i) excision of a
damaged or inappropriate base by DNA glycosylase, (ii) incision of the phosphodiester backbone by
apurinic/apyrimidinic (AP) endonuclease at the resulting abasic site creating a single-strand break
(SSB), (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to
replace the excised nucleotide, and (v) sealing of the final, remaining nick. In addition to BER, other
DNA repair pathways including mismatch repair (MMR) and nucleotide excision repair (NER) also
contribute to minimize the genotoxic impact of oxidative base lesions as summarized recently [24].

4. Oxidative DNA Damage and Replication Stress

The repair of oxidative DNA lesions is essential to avoid stress when cells enter the replicative
phase of the cell cycle [25]. To shield the genome from oxidative damage, DNA replication in yeast
is restricted to the reductive stage of the metabolic cycle when oxygen consumption is minimal [26].
However, higher eukaryotes must deal with both physiological and pathological levels of ROS while
DNA synthesis is ongoing.

Oxidative lesions and BER intermediates interfere with replication, cause single- (SSB) and
double-strand breaks (DSB) in DNA, and lead to chromosomal aberrations [27]. Unrepaired SSBs can
stall replication machinery which may activate the error-prone damage tolerance mechanism or may
lead to fork collapse into a potentially cytotoxic DSB [28]. In addition, closely spaced oxidative lesions,
also referred to as oxidative clustered DNA lesions (OCDL), can be converted to DSBs during BER [29].

The single-strand DNA template at the replication fork is more susceptible to oxidative base
damage and strand breaks than the nonreplicating DNA [30]. Replication fork progression is blocked
by BER-initiating lesions [31] as well as by the DNA structure intermediates arising from the repair of
oxidized bases [32]. The G-rich sequences at telomeres [5] and promoters that are known to accumulate
oxidative DNA damage also display high rates of replication forks stalling [33]. One of the ways
by which cells mitigate negative impact of elevated ROS on the replicating genome is by reducing
replication fork speed [34].

Mechanisms that play key roles in the reactivation of arrested replication forks may also act as a
barrier against genetic instability triggered by the endogenous oxidative/replication stress axis [34,35].
We have recently demonstrated that RecQ like 1 (RECQL1 or RECQ1) helicase which is critical for
resetting of replication fork for resumption of normal DNA synthesis [36] is also important for BER [37].
Using live in cell-repair assays and biochemical reconstitution, we identified that RECQ1 helicase
activity and ERCC1-XPF endonuclease in cooperation with poly(ADP-ribose) polymerase (PARP1)
and Replication Protein A (RPA) mediate a novel sub-pathway of conventional long-patch BER [37].
This process is facilitated by the well-established interaction among RECQ1, PARP1, and RPA [37,38].
Although RECQ1 modulates cellular response to oxidative stress [38], whether RECQ1 is required
to sustain fork progression following oxidative stress is yet unknown. Nevertheless, physical and
functional cooperation of DNA replication and BER is emerging as a major regulatory mechanism for
preventing genomic instability [39,40].

In addition to inducing DNA damage and nucleotide pool imbalance [35], oxidative stress can
alter replication by oxidation induced inactivation of key DNA repair proteins such as RPA [41] or
by modulating the levels of Ku70 and Ku80 proteins essential for DSB repair by non-homologous
end joining [42]. Oxidative stress leads to activation of the ataxia-telangiectasia mutated (ATM)
kinase, the major sensor and regulator of the cellular response to DSBs [43]. Downstream to oxidative
stress-dependent activation, ATM protects cells from ROS accumulation by stimulating NADPH
production and promoting the synthesis of nucleotides required for the repair of DSBs [44] and a
number of other processes to promote restoration of redox homeostasis [45]. Indeed, cells defective in
DNA damage response show endogenously elevated levels of ROS [35].
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Collectively, these observations emphasize intricate mechanisms that coordinate replication
dynamics, activation of DNA damage response and DNA repair as directed by the redox status of
the cell.

5. Oxidative DNA Damage and Gene Expression Changes

Cellular response to oxidative stress involves highly regulated alteration in gene expression
which is shared with gene expression patterns observed in aging [46], cancer [47], and other
diseases [48,49]. The in vivo gene expression signature of oxidative stress suggests p53 plays an
important role and upregulation of p53 targets genes as a common response to oxidative stress across
diverse organs and species [50]. The cellular concentration of ROS appears to influence the selective
activation of transcription factors involved in signaling pathways including the nuclear factor erythroid
2-related factor 2 (Nrf2), mitogen-activated protein (MAP) kinase/AP-1, and nuclear factor-kB (NF-kB)
pathways, as well as hypoxia-inducible transcription factor 1α (HIF1A) [51]. Oxidative stress and redox
signaling may also affect gene expression by altering the functions of histones and DNA modifying
enzymes [52].

The presence of 8-oxoG in the template strand would be expected to impair transcription by
stalling of RNA pol II [53,54]; however, 8-oxoG in gene promoters is also associated with gene
activation [55,56]. Oxidation of bases may serve as critical sensors through which ROS signals are
sensed and the transcription from the redox responsive genes is regulated [52,57]. Consistent with
this, the increased level of 8-oxoG in the mtDNA of mice lacking 8-oxoguanine DNA glycosylase
(OGG1), the enzyme responsible for recognition and repair of 8-oxoG, is associated with differential
expression of genes involved in ROS-mediated signaling including pro-inflammatory genes [58].
In another study, ROS generated by tumor necrosis factor alfa (TNFα) exposure of human cells led
to OGG1 enrichment primarily at the regulatory regions of a large number of genes constituting
signal transduction pathways that modulate redox-regulated metabolic and immune responses for an
immediate global cellular response [59]. Studies from various groups have collectively suggested that
the redox levels orchestrate OGG1 to play a role either in gene transcription or in lesion repair; and the
magnitude of base lesions, predominantly of 8-oxoG, defines the fate of cells [24,60–62].

APE1 is another dual function protein involved both in the BER pathways of DNA lesions, acting
as the major apurinic/apyrimidinic endonuclease (APE), and in eukaryotic transcriptional regulation
of gene expression as a redox co-activator of several transcription factors including AP-1, HIF1-α,
and p53 [63]. APE1 plays a role in the regulation of gene expression during oxidative stress condition
by interactions via its redox-effecter factor-1 (Ref-1) domain with protein factors such as HIF1-α,
STAT3, and CBP/p300 that promote transcription [63]. Another study from Tell lab demonstrated that
APE1-dependent and BER-mediated DNA repair promotes the initiation of transcription of sirtuin 1
(SIRT1) gene upon oxidative DNA damage [64].

Although the precise mechanisms are yet unclear, recognition and binding of the oxidatively
damaged base by the repair proteins during the pre-excision step of BER facilitates the recruitment
of specific transcription factors for prompt transcriptional response [61]. Conceivably, oxidative
stress-induced gene regulation may act in concert with the repair of DNA damage to protect cells from
accumulation of oxidative damage.

6. Epigenetic Functions of Oxidative DNA Lesions

Localized formation of 8-oxoG in gene regulatory regions have been suggested to represent an
epigenetic modification serving as sensors of oxidative stress. Despite the vulnerability of guanine to
oxidation, over 70% of the promoters of human genes, including a large percentage of redox-responsive
gene promoters, contain evolutionarily conserved G-rich clusters [65]. Guanine oxidation shows strong
distributional bias in the genome with gene promoter and untranslated regions harboring greater
8-oxoG [66].
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Oxidative modification of guanine to 8-oxoG in the promoter may provide a platform for the
coordination of the initial steps of DNA repair, especially BER, and the assembly of the transcriptional
machinery to launch the prompt and preferential expression of redox-regulated genes in cells that are
responding to oxidative stress [24,57,67,68]. Indeed, the formation of 8-oxoG in the G-rich promoters
of the vascular endothelial growth factor (VEGF) [66,69], TNFα [70], and SIRT1 [64] genes can increase
transcription via the BER pathway [61,67].

Transcription of the VEGF gene is known to be regulated by a specific sequence motif in its
promoter, called the G4 motif because of its ability to form G-quadruplex (G4) DNA structure [71].
Through complementary biochemical, cellular, and genetic approaches, the Burrows lab demonstrated
that the oxidation of guanine to 8-oxoG in the G-rich promoter element of the VEGF gene facilitates
activation of transcription in a BER-dependent manner since the OGG1-null cells failed to exhibit an
increase in gene expression [67,69]. One of the suggested mechanisms is that oxidation of guanine
to 8-oxoG in the G4 motif provides a structural switch for recruitment of BER proteins such as APE1
and transcription factors such as HIF1-α to promote gene transcription [67,69]. Similar mechanisms
implicating other BER proteins and cooperating factors may operate for transcriptional activation of
other redox-regulated genes (Figure 2).

Figure 2. The influence of guanine oxidation at the promoter region on gene expression. Reactive
oxygen species (ROS) induces oxidation of guanine to 8-oxoG. Gene promoters are enriched in guanine
and sequence motifs prone to form G4 DNA structures. Formation of 8-oxoG is also shown to induce
critical topological changes in DNA structure. Binding of 8-oxoG by BER proteins may facilitate the
site-specific recruitment of specific transcription factors, chromatin remodelers and other accessory
factors (shown as ??). These factors likely work in concert to repair the oxidative base lesion (shown by
green) and activate transcription of redox-regulated genes for an adequate cellular response.

Indeed, the G4 motifs (represented by G≥3NxG≥3NxG≥3NxG≥3) are enriched in the promoter
regions of many genes [72]. Gene regulation by modulating the topological superstructures of G4
containing promoters, for example VEGF as described above and endonuclease III-like protein 1
(NTHL1) genes [67], suggest epigenetic role of 8-oxoG modification.

The regulatory and possible epigenetic roles of 8-oxoG in cells that are responding to oxidative
stress can be contrasted with a more traditional 5-methylcytosine (5mC) epigenetic modification
contributing to the regulation of gene activity during development and differentiation [73–75]. Cytosine
methylation is generally associated with repressed chromatin and inhibition of gene expression [76,77].
The methyl moiety of 5mC can be eliminated passively during DNA replication, or actively through
enzymatic DNA demethylation [78]. Base excision repair is implicated in active demethylation of
5mC in oxidation independent and dependent manner [78]. During active DNA demethylation,
for activation of genes silenced by cytosine methylation, the ten-eleven translocation (TET) proteins
oxidize 5mC in a stepwise fashion to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),
and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognized and excised from DNA by
thymine-DNA glycosylase (TDG) followed by subsequent filling in of unmodified cytosine by



Int. J. Mol. Sci. 2019, 20, 364 7 of 12

the BER pathway [79]. Moreover, passive elimination of 5mC is also enhanced by active DNA
demethylation [80].

Oxidative conversion of 5mC to 5hmC under oxidative stress changes the DNA methylation
pattern resulting in epigenetic alterations [73]. Enrichment of 5hmC within the gene bodies, promoters,
and transcription factor-binding regions suggest it may regulate gene expression by modulating
chromatin accessibility of the transcriptional machinery, or by inhibiting repressor binding [73]. Of note,
readers of 5hmC include several DNA glycosylases (for example, NEIL1 and NEIL3), replication factors
(RFC), helicases (for example, HELLS and RECQ1), and transcriptional repressor protein MeCP2 [76].
MeCP2 recognizes methyl-CpG and recruits co-repressor molecules to silence transcription. Oxidation
of guanine to 8-oxoG significantly inhibits MeCP2 DNA binding [81]. Proposedly, OGG1 may alleviate
the transcriptional repression by cytosine methylation [61]. By binding to 8-oxoG in the opposite
strand, OGG1 may interfere with the interaction of MeCP2 (and other proteins) with their substrates
and recruit transcriptional machinery components to activate transcription [61]. Overall this suggests
an intertwined and DNA repair-involved DNA demethylation pathway for epigenetic regulation of
gene expression.

A recent study suggested that APE1 modulates DNA methyltransferase 1 (DNMT1) expression
and consequent promoter methylation in a redox-mediated manner [82]. These observations highlight
a strong possibility that oxidative modification to DNA bases, such as in the form of 8-oxoG or oxidized
5mC serve as epigenetic mark and function in a DNA-based mechanism for gene activation.

7. Conclusions and Outlook

Cellular redox status strongly impacts genome duplication and transmission. Therefore, it is
critical to understand how ROS-induced stress affects replication dynamics and activation of DNA
damage response, and how this is coordinated with the transcriptional response for the maintenance
of genomic stability and cellular homeostasis.

The impact of oxidative stress on genetic stability through direct damage to the DNA, such
as oxidized bases or abasic sites, has been documented extensively. As the primary mechanism
counteracting oxidative stress-induced DNA lesions, the BER pathway has been well characterized.
Furthermore, activity of BER enzymes such as OGG1 is regulated in a redox-dependent manner [83,84]
as well as by posttranslational modifications [85]. The interplay between chromatin status and BER
is beginning to be unveiled [86,87], but the molecular mechanisms by which various DNA repair
proteins, chromatin remodelers, and transcription factors are targeted to specific oxidative lesions are
yet to be delineated. How chromatin remodeling influences BER of oxidative lesions and subsequent
gene expression changes remains an exciting open question.

Given the demonstrated role of G4 structures in regulation of redox-sensitive gene expression
changes [88], factors that modulate the stability of these structures are expected to play significant
roles in the process. Interestingly, binding to G4 motifs in target gene promoters and resolution
of G4 DNA structures has been suggested as a mechanism of transcriptional regulation by DNA
helicases RECQ1 [89,90], XPB, XPD [91], BLM [92], and WRN [93]. However, in vitro biochemical data
suggests that the transcriptional regulation by RECQ1 likely does not involve RECQ1 helicase-mediated
unwinding of G4 structures [94]. A potential role of RECQ1 could be to mediate, either directly or
through protein–protein interactions, repair of oxidative lesions [37,38] in the G4 motif at promoters
and elsewhere and facilitate subsequent alterations in gene expression [89,90]. An important next
step in understanding the molecular role of these helicases in the mechanisms of gene regulation is to
determine the involvement of cooperating transcriptional partners.

Collective data shows that the repair of oxidative DNA damage, a mechanism that protects
genome integrity, also serves as a proactive mechanism to ensure a prompt and adequate transcriptional
program as governed by the cellular cues such as redox status [95]. Studies with APE1 and OGG1
suggest that these DNA repair proteins can impact transcription of activator-dependent genes by
facilitating DNA repair, chromatin remodeling and assembly of transcriptional machinery at gene
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promoters, but their roles in constitutive housekeeping transcription is unclear. If 8-oxoG indeed serves
as a regulatory mark, epigenetic regulation in this case likely relies on the oxidative DNA damage,
possibly induced by the low level of endogenous ROS. If this is the case, then it will be important
to determine if the source of ROS, for example endogenous versus exogenous, by which 8-oxoG is
introduced in the genome dictates the transcriptional outcome in physiological and pathological states.

How prevalent is 8-oxoG-mediated gene regulation in the mammalian genome is unclear and
the epigenetic role of 8-oxoG is yet to be interrogated with respect to biological processes such as
differentiation, development, tumorigenesis, and metastasis. If 8-oxoG is indeed a bona fide epigenetic
mark, an additional consideration is whether oxidation of guanine to 8-oxoG is an active process.
Towards this, targeted generation of 8-oxoG in the promoter regions can be coupled with enzymatically
catalyzed oxidative demethylation of histones by the lysine demethylase (LSD1) as has been shown in
the estrogen receptor- and MYC-activated gene expression models [96,97]. It would be interesting to
determine the relationship between 5mC and 8-oxoG, and the roles of BER and other proteins.

Given the unavoidable exposure to ROS, cells seem to have evolved strategies to utilize ROS as
biological stimuli suitable for the physiological need. Oxidative base modifications, therefore, appear
to have both beneficial and deleterious functions. While higher levels of oxidative damage might
invoke the DNA repair mechanisms to remove the oxidative lesion, lower levels of oxidative damage
may serve to regulate gene expression to the degree required to maintain genomic integrity and cellular
homeostasis. The mechanism that enables cells to distinguish between “regulatory” oxidative DNA
damage from those that cause “undesirable” consequences is yet elusive. Further research is needed
to gain a more complete understanding of the molecular details of cellular and genomic context that
determine whether to lose or use these stress marks.
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