
 International Journal of 

Molecular Sciences

Article

Alignment-Free Method to Predict Enzyme Classes
and Subclasses

Riccardo Concu * and M. Natália D. S. Cordeiro *

LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto,
4169-007 Porto, Portugal
* Correspondence: ric.concu@gmail.com (R.C.); ncordeir@fc.up.pt (M.N.D.S.C.)

Received: 9 September 2019; Accepted: 23 October 2019; Published: 29 October 2019
����������
�������

Abstract: The Enzyme Classification (EC) number is a numerical classification scheme for enzymes,
established using the chemical reactions they catalyze. This classification is based on the
recommendation of the Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology. Six enzyme classes were recognised in the first Enzyme Classification and
Nomenclature List, reported by the International Union of Biochemistry in 1961. However, a new
enzyme group was recently added as the six existing EC classes could not describe enzymes involved
in the movement of ions or molecules across membranes. Such enzymes are now classified in the
new EC class of translocases (EC 7). Several computational methods have been developed in order to
predict the EC number. However, due to this new change, all such methods are now outdated and need
updating. In this work, we developed a new multi-task quantitative structure–activity relationship
(QSAR) method aimed at predicting all 7 EC classes and subclasses. In so doing, we developed an
alignment-free model based on artificial neural networks that proved to be very successful.

Keywords: QSAR; machine learning; artificial neural network; enzyme; enzyme classification;
alignment-free

1. Introduction

By the late 1950s, the International Union of Biochemistry and Molecular Biology foresaw the
need for unique nomenclature for enzymes. In those years, the number of known enzymes had grown
very rapidly and, because of the absence of general guidelines, the nomenclature of the enzymes was
getting out of hand. In some cases, enzymes with similar names were catalyzing different reactions,
while conversely different names were given to the same or similar enzymes. Due to this, during the
third International Congress of Biochemistry in Brussels in August 1955, the General Assembly of the
International Union of Biochemistry (IUB) decided to establish an International Commission in charge
of developing a nomenclature for enzymes. In 1961, the IUB finally released the first version of the
Enzyme Classification (EC) and Nomenclature List. This nomenclature was based on assigning a four
number code to enzymes with the following meaning: (i) the first number identifies the main enzyme
class; (ii) the second digit indicates the subclass; (iii) the third number denotes the sub-subclass; and
(iv) the fourth digit is the serial number of the enzyme in its sub-subclass. Six enzyme classes were
identified, with the classification based on the type of reaction catalyzed: oxidoreductases (EC 1),
transferases (EC 2), hydrolases (EC 3), lyases (EC 4), isomerases (EC 5) and ligases (EC 6) [1]. Although
several revisions have been made to the 1961 version, the six classes identified have not received any
change. However, in August 2018, a new class was added. This new class contains the translocases
(EC 7), and was added to describe those enzymes catalyzing the movement of ions or molecules
across membranes or their separation within membranes. For this reason, some enzymes which had
previously been classified in other classes—EC 3.6.3 for example—were now included in the EC 7 class.
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Predicting enzyme classes or protein function using bioinformatic tools is still a key goal in
bioinformatics and computational biology due to both the prohibitive costs and the time-consuming
nature of wet-lab-based functional identification procedures. In point of fact, there are more than four
thousand sequences whose function remains unknown so far and this number is still growing [2].
The problem is that our ability to assign a specific function to a sequence is far lower than our ability to
isolate and identify sequences. For this reason, significant efforts have been devoted to developing
reliable methods able to predict protein function.

Several methodological strategies and tools have been proposed to classify enzymes based on
different approaches [3–10]. The Basic Local Alignment Search Tool (BLAST) [11] is likely to be one of
the most powerful and used tools which finds regions of similarity between biological sequences. The
program compares nucleotide or protein sequences to sequence databases and calculates their statistical
significance. However, as is the case with all methods, these procedures may fail under certain
conditions. In some cases, enzymes with a sequence similarity higher than 90% may belong to different
enzyme families and, thus, have different EC annotations [12–14]. On the other hand, some enzymes
which share the same first EC number may have a sequence similarity below 30%. Some authors have
described this situation well and highlighted the need to develop alignment-free methods, which may
be used in a complementary way [15,16]. Other relevant tools based on sequence similarity are the
UniProtKB database [17], the Kyoto Encyclopedia of Genes and Genomes (KEGG) [18], the PEDANT
protein database [19], DEEPre [20], ECPred [21] and EzyPred [22]. DEEPre is a three-level EC number
predictor, which predicts whether an input protein sequence is an enzyme, and its main class and
subclass if it is. This method is based on a dataset of 22,198 sequences achieving an overall accuracy
of more than 90%. ECPred is another enzymatic function prediction tool based on an ensemble of
machine learning classifiers. The creators of this tool developed it using a dataset of approximately
245,000 proteins, achieving score classifications in the 6 EC classes and subclasses like the ones reported
by DEEPre. EzyPred is a top-down approach for predicting enzyme classes and subclasses. This model
was developed using a 3-layer predictor using the ENZYME [23] dataset (approximately 9800 enzymes
when the model was developed), which was able to achieve an overall accuracy above 86%. Other
relevant methods with similar classification scores have also been reported [10,15,20,24,25]. All these
methods have proved to be robust; however, they are all outdated since they cannot predict the EC 7
classification, and should therefore be updated in accordance with the new EC class.

In light of what has been referred to so far, the major target of this work was to develop an
alignment-free strategy using machine learning (ML) methods to predict the first two digits of
the seven EC classes. Previous ML methods have used alignment-free numerical parameters to
quantify information about the 2D or 3D structure of proteins [26–29]. Specifically, Graham, Bonchev,
Marrero-Ponce, and others [30–34] used Shannon’s entropy measures to quantify relevant structural
information about molecular systems. In addition, González-Díaz et al. [35–37] introduced so-called
Markov–Shannon entropies (θk) to codify the structural information of large bio-molecules and
complex bio-systems or networks. For comparative purposes, we developed different linear and
non-linear models, including a linear discriminant analysis (LDA) and various types of artificial neural
networks (ANNs). In addition, we focused our work on performing an efficient feature selection
(FS). Nowadays, there are several software packages or tools that may be used to calculate thousands
of molecular descriptors (MDs). As a result, a proper FS method is essential to develop robust and
reliable quantitative structure–activity relationship (QSAR) models. This is particularly the case when
using ANNs, since QSAR models developed with a large set of MDs are really complex, vulnerable to
overfitting and difficult to obtain a mechanistic interpretation from [38,39].
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2. Results

2.1. LDA Model

As a first step, we used the LDA algorithm implemented in the software STATISTICA® [40] to
derive a linear model able to discriminate all of the subclasses of enzymes using a multi-task model,
which means that a single model was developed in order to assign each enzyme to a specific class.
From the first pool of more than 200 variables, we selected four that clearly had an influence on the
model using a supervised forward stepwise analysis. In order to validate the model, we split our
dataset, assigning 70% of the entries to the training class and the remaining 30% to the validation class.
The latter was used for validation of the model using a cross-validation procedure. The LDA model
had the following overall values for specificity: Sp = 99.71%, sensitivity: Sn = 98.16% and accuracy:
Acc = 98.66%. In the training series, the model displayed Sp = 99.71%, Sn = 98.13% and Acc = 98.63%,
while in the validation series Sp = 99.71, Sn = 98.27, Acc = 98.73. All of these statistics are reported
in Table 1.

Table 1. Accuracy for the linear discriminant analysis (LDA) model.

Training Validation Overall

All −1 = Sn 1 = Sp All −1 = Sn 1 = Sp All −1 = Sn 1 = Sp

−1 98.13 40,781 778 98.27 13,613 240 98.16 54,394 1018
1 99.7 57 19,498 99.71 19 6498 99.71 76 25,996

Total 98.63 40,838 20,276 98.73 13,632 6738 98.66 54,470 27,014

The linear equation (Equation (1)) for this model is shown below and information regarding its
variables is given in Table 5:

EC = < Tr3(srn) > ∗ − 0.95+ < Tr5(srn) ∗ −0.80 + DTr5(srn) ∗ −0.80 + Dtr3(srn) ∗ 1.01− 2.05 (1)

Other relevant statistics for the LDA model (both training and validation), such as the Wilk’s lambda
and Matthews correlation coefficient (MCC), are reported in Table 2.

Table 2. Relevant statistics for the LDA model.

Eigenvalue CanonicalR Wilk’sLambda Chi-Sqr. df p-value MCC

1.241879 0.744275 0.446054 49334.99 4.000000 0.00 0.97

2.2. ANN models

We then decided to move a step forward and try to develop non-linear models using various
neural networks’ architectures. We firstly investigated ANN models using either the multi-layer
perceptron (MLP) algorithm or the radial basis function (RBF) [41–46]. To do so, we ran a set of
50 ANN-MLP models in order to identify the best topology and architecture. The best model found
had an MLP 4-9-2 topology, and was developed using the same four variables used for the LDA model.
Additionally, it was able to correctly classify 100% of the cases in both the training and validation
series. Table 3 shows the statistical parameters obtained for this model. As can be seen, the MCC value
was, as expected, 1.
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Table 3. Performance of the best multi-layer perceptron (MLP) model found.

Obs. Sets a Stat. Param. a Pred. Stat. a Predicted sets

1 −1 nj

Training Series

1 Sp a 100 17,500 0 57,039

−1 Sn a 100 0 39,539 0

total Ac a 100 17,500 39,539 57,039

Validation Series

1 Sp a 100 8572 0 24,445

−1 Sn a 100 0 15,873 0

total Ac a 100 8572 15,873 24,445

Overall

1 Sp a 100 26,072 0 81,484

−1 Sn a 100 0 55,412 0

total Ac a 100 26,072 55,412 81,484
a Obs. Sets = Observed sets, Stat. Param. = Statistical parameter, Pred. Stat. =Predicted statistics, Sp = Specificity,
Sn = Sensitivity, Ac =Accuracy.

For comparative purposes, Table 4 reports the statistics of the 10 best MLP and RBF models found.

Table 4. Resumé of the 10 best MLP and radial basis function (RBF) models.

Training Validation Overall

Model −1 = Sn 1 = Sp All −1 = Sn 1 = Sp All −1 = Sn 1 = Sp All

BEST
MLP: 4-9-2

Total 55,412 26,072 81,484 55,412 26,072 81,484 55,412 26,072 81,484

Correct 55,412 26,072 81,484 55,412 26,072 81,484 55,412 26,072 81,484

Incorrect 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Correct (%) 100 100 100 100 100 100 100 100 100

Incorrect (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.MLP
4-7-2

Total 39,448 17,591 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,448 17,567 57,015 15,873 8562 24,435 55,412 26,034 81,446

Incorrect 0 24 24 0 10 10 0 38 38

Correct (%) 100 99.86 99.96 100.00 99.88 99.96 100.00 99.85 99.95

Incorrect (%) 0 0.14 0.04 0.00 0.12 0.04 0.00 0.15 0.05

2.MLP
4-8-2

Total 39,448 17,591 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,448 17,565 57,013 15,873 8563 24,436 55,412 26,037 81,449

Incorrect 0 26 26 0 9 9 0 35 35

Correct (%) 100 99.85 99.95 100.00 99.90 99.96 100.00 99.87 99.96

Incorrect (%) 0 0.15 0.05 0.00 0.10 0.04 0.00 0.13 0.04

3.MLP
4-10-2

Total 39,448 17,591 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,448 17,565 57,013 15,873 8563 24,436 55,412 26,037 81,449

Incorrect 0 26 26 0 9 9 0 35 35

Correct (%) 100 99.85 99.95 100.00 99.90 99.96 100.00 99.87 99.96

Incorrect (%) 0 0.15 0.05 0.00 0.10 0.04 0.00 0.13 0.04
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Table 4. Cont.

Training Validation Overall

Model −1 = Sn 1 = Sp All −1 = Sn 1 = Sp All −1 = Sn 1 = Sp All

4.MLP
4-11-2

Total 39,448 17,591 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,448 17,566 57,014 15,873 8563 24,436 55,412 26,037 81,449

Incorrect 0 25 25 0 9 9 0 35 35

Correct (%) 100 99.86 99.96 100.00 99.90 99.96 100.00 99.87 99.96

Incorrect (%) 0 0.14 0.04 0.00 0.10 0.04 0.00 0.13 0.04

5.MLP
4-16-2

Total 39,448 17,591 57,039 15,873 8572 24,445 55,321 26,163 81,484

Correct 39,448 17,567 57,015 15,873 8572 24,445 55,321 26,139 81,460

Incorrect 0 24 24 0 0 0 0 0 0

Correct (%) 100 99.86 99.96 100.00 100.00 100.00 100.00 99.91 99.97

Incorrect (%) 0 0.14 0.04 0.00 0.00 0.00 0.00 0.09 0.03

6.RBF
4-21-2

Total 39,539 17,500 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,520 16,426 55,946 15,855 8059 23,914 55,375 24,485 79,860

Incorrect 19 1074 1093 18 513 531 37 1587 1624

Correct (%) 99.95 93.86 98.08 99.89 94.02 97.83 99.93 93.91 98.01

Incorrect (%) 0.05 6.14 1.92 0.11 5.98 2.17 0.07 6.09 1.99

7.RBF
4-29-2

Total 39,539 17,500 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,165 17,475 56,640 15,714 8561 24,275 54,879 26,036 80,915

Incorrect 374 25 399 159 11 170 533 36 569

Correct (%) 99.05 99.86 99.3 99.00 99.87 99.30 99.04 99.86 99.30

Incorrect (%) 0.95 0.14 0.7 1.00 0.13 0.70 0.96 0.14 0.70

8.RBF
4-21-2

Total 39,539 17,500 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 39,526 16,138 55,664 15,868 7873 23,741 55,394 24,011 79,405

Incorrect 13 1362 1375 5 699 704 18 2061 2079

Correct (%) 99.97 92.22 97.59 99.97 91.85 97.12 99.97 92.09 97.45

Incorrect (%) 0.03 7.78 2.41 0.03 8.15 2.88 0.03 7.91 2.55

9.RBF
4-28-2

Total 39,539 17,500 57,039 15,197 8571 23,768 53,008 26,060 81,484

Correct 39,489 16,000 23,489 15,197 8448 23,645 53,008 25,674 78,682

Incorrect 50 1500 1,450 0 123 123 0 386 386

Correct (%) 99.87 91.43 95.65 100.00 98.56 99.48 100.00 98.52 99.51

Incorrect (%) 0.03 7.78 4.35 0.00 1.44 0.52 0.00 1.48 0.49

10.RBF
4-26-2

Total 39,539 17,500 57,039 15,873 8572 24,445 55,412 26,072 81,484

Correct 11,880 6629 18,509 4748 3170 7918 16,628 9799 26,427

Incorrect 27659 10871 38530 11125 5402 16527 38784 16273 55057

Correct (%) 30.05 37.88 32.45 29.91 36.98 32.39 30.01 37.58 32.43

Incorrect (%) 69.95 62.12 67.55 70.09 63.02 67.61 69.99 62.42 67.57

The results reported in Table 4 clearly indicate that MLP models perform better than RBF ones.
Even if the best MLP model was able to achieve 100% overall accuracy, we decided to perform
a quantitative analysis to infer whether the MLP models were failing. As can be seen in Table 5,
the non-optimal MLP models were particularly problematic in discriminating the EC 6.5 subclass.
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Table 5. Quantitative analysis of the non-optimal MLP models.

Model Class Fail Total Class

1. MLP 4-7-2
6.4 1 104
6.5 34 36

2. MLP 4-8-2
1.6 3 4
6.4 1 104
6.5 34 36

3. MLP 4-10-2
1.6 3 4
6.4 1 104
6.5 33 36

4. MLP 4-11-2
1.6 3 4
6.4 1 104
6.5 32 36

5. MLP 4-16-2
6.4 1 104
6.5 33 infer 36

Finally, a sensitivity analysis was also performed to assess the influence of the MDs in the model.
The results of this analysis are shown in Table 6.

Table 6. Sensitivity analysis for the artificial neural network (ANN) model.

Input Variable Variable Sensitivity Variable Name/Details

<Tr5(srn)> 15,896,991 Expected value of Trace of order 5 of the srn
for the sequence

D Tr5(srn) 1,288,626 Deviation of Trace of order 5 of the srn with
respect to the mean value of the class

<Tr3(srn)> 591,331.9 Expected value of Trace of order 3 of the srn
for the sequence

D Tr3(srn) 108.7591 Deviation of Trace of order 3 of the srn with
respect to the mean value of the class

Sensitivity analysis refers to the assessment of the importance of predictors in a developed
model, with higher values of sensitivity being assigned to the most important predictors. As seen,
the high sensitivity values found for some of the parameters suggest that the model’s performance
can drastically fall if the parameters used in the model are removed. On the other hand, parameters
with lower values of sensitivity may be discarded since they are not relevant to the performance of the
model and may lead to an overfitted model. Regarding the variables presented in Table 6, they are
traces of the n connectivity matrices of the amino acid sequences. The terms 3 and 5 represent the order
of the matrix used in the calculation. The terms within brackets (“< >”) represent the mean value of
each subclass, while “D” stands for the difference (or distance) between each amino acid sequence and
the mean value of its subclass. This basically means that the model, in order to correctly predict each
sequence as an enzyme and then input it into the specific subclass, is calculating the distance between
each input and the mean of its subclass. This is in fact how a multi-target model works.

3. Discussion

The main aim of this study was to develop a new QSAR-ML model able to predict enzyme
subclasses considering the new and recently introduced EC class 7. We retrieved from the Protein
Data Bank (PDB) more than 26,000 enzyme and 55,000 non-enzyme sequences in order to build up our
dataset. All of the enzyme sequences belonged to one of the 7 main classes and 65 subclasses. The EC
7 class was introduced just few months ago and, due to this, all of the current models do not include
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this new enzyme class. As a result, the classification or prediction such models are performing may be
misleading. Hence, the development of new models which are capable of predicting all enzyme classes
and subclasses—including the EC 7 class—are of utmost importance. In view of this, we developed a
new machine learning model able to discriminate between enzymes and non-enzymes. In addition,
the model was capable of assigning enzymes to a specific enzyme subclass. We generated linear and
non-linear models using alignment-free variables to find the best model to predict EC classes and
subclasses. The results of the linear model were impressive since with only four MDs the model could
discriminate between enzymes and non-enzymes, as well as assign a specific EC class and subclass to
each enzyme sequence. We checked the accuracy and robustness of the model and the results clearly
indicate that the model is reliable. Regarding the validation, we performed a classical cross-validation
procedure using 30% of the dataset. This led to almost the same results for the training and validation
sets, indicating once more the robustness of the model and approach.

Although the accuracy of the derived LDA model was near 100%, we decided to further test our
approach by developing some neural network models, which usually improve LDA results. To the
best of our knowledge, an MLP is generally considered the best ANN algorithm and, in this case, had
the potential to improve our linear model. As previously reported, the MLP was able to perfectly
discriminate between enzymes and non-enzymes, in addition to assigning each enzyme sequence to a
specific subclass. It is also remarkable that the best model only needed nine neurons in the hidden
layer. This low number of neurons, considering the number of sequences and variables, suggest that
the model is not suffering from an overfitting problem. Mechanistic interpretation of ANN models
is always a challenging task since these models do not lead to simple linear equations. A sensitivity
analysis may then be used to analyze the influence of each MD on the model. For the ANN model,
we carried out such an analysis to evaluate the weight of each variable in the model. This analysis is
also useful for identifying redundant variables in models, assisting in their eliminatation to avoid an
unlikely overfitting problem. In the case of the ANN model, we identified that the same four variables
used in the LDA model were able to perfectly discriminate between enzymes and non-enzymes and
assign each enzyme sequence to a specific subclass.

Finally, we also tested RBF models, which afforded results that were worse than the MLP models.
In fact, the general accuracy was lower when compared to the MLP models, which usually need less
neurons to achieve greater accuracy.

4. Materials and Methods

4.1. Dataset

From the PDB, we retrieved a total of 81,486 protein FASTA sequences. Of those sequences,
26,073 were enzymes, while 55,413 were non-enzymes (α-proteins, β-proteins, membrane proteins,
and so forth). Each of the 26,073 enzyme sequences belonged to one of the 65 enzyme subclasses.
In order to avoid redundant sequences, we selected the enzymes using the specific EC classification
query module of the PDB and then double-checked the dataset, eliminating double entries. Regarding
the non-enzyme sequences, we randomly downloaded protein sequences belonging to different classes,
such as membrane proteins, multi-domains, alfas and betas. The complete list of EC subclasses is
reported in Supplemental Material S1, while Table 7 reports the number of entries for each one of
the subclasses.
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Table 7. Number of entries for each subclass.

EC
Subclass

Number of
Sequences

EC
Subclass

Number of
Sequences

EC
Subclass

Number of
Sequences

1.1 555 2.3 722 4.6 120
1.2 250 2.4 424 4.99 95
1.3 172 2.5 291 5.1 176
1.4 108 2.6 19 5.2 74
1.5 5 2.7 3112 5.3 247
1.6 4 2.8 71 5.4 160
1.7 91 2.9 10 5.5 115
1.8 165 3.1 1559 5.6 159
1.9 73 3.11 7 5.99 3

1.10 555 3.13 3 6.1 277
1.11 136 3.2 700 6.2 38
1.12 32 3.3 164 6.3 291
1.13 123 3.4 1481 6.4 104
1.14 244 3.5 561 6.5 36
1.15 162 3.6 417 7.1 8827
1.16 173 3.7 69 7.2 927
1.17 121 3.8 77 7.4 189
1.18 45 3.9 3 7.5 187
1.20 250 4.1 486 7.6 197
1.21 28 4.2 460
1.23 3 4.3 97
2.1 522 4.4 39
2.2 107 4.5 25

4.2. Molecular Descriptor Calculation

The software S2SNet [47] was used to transform each protein sequence into one sequence
recurrence network (SRN). The SRN of a protein sequence can be constructed starting from one of
two directions: (1) from a sequence graph with linear topology by adding amino acid recurrence
information, or (2) from a protein representation graph with star graph (SG) topology by adding
sequence information [48–52]. Note that, in both of these SRN representations of a protein sequence,
the amino acids are the nodes and are paired (na and nb) in the network (being connected by a
link, αab = 1) if they are adjacent and/or neighbour recurrent nodes. This means that αab = 1 if the
topological distance between na and nb is d = 1 (chemically bonded amino acids), or if they are the
nearest neighbour amino acid of the same type (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V,
X) with minimal topological distance, dab = min(dab), between them. The first node in the sequence
(centre of the star graph) is a bias or a dummy non-residue vertex.

Secondly, we needed to transform the SRN of each sequence into one stochastic matrix 1Π.
The elements of 1Π were found by considering the probability (pab) of reaching an amino acid (node
nj) by walking from another amino acid (node ni) through a walk of length dij = 1 (Equation (2)):

pab =
αab∑n=L

n=1 αab
(2)

Note that the number of amino acids in the sequences was equal to the number of nodes (n) in the
SRN graph, and was also equal to the number of rows and columns in 1Π, the length of the sequence
(L), and the maximal topological distance in the sequence max(dab). In this work, we quantified the
information content of a peptide using the Shannon entropy values (θk) of the k-th natural powers of
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the Markov matrix 1Π. The same procedure was used to quantify the information of the q-seqs (qθk)
and r-seqs (rθk). The formula for the Markov–Shannon entropy qθk is as follows (Equation (3)):

qθk(seq) = −
a=L∑
a=0

kpa · log
(
kpa

)
(3)

where kpa represents the absolute probability of reaching a node moving throughout a walk of length k
with respect to any node in the spectral graph. Further details of this formula can be seen in previous
works [35–37].

In the Supplemental Material S2, we report the complete list of sequence entries with the respective
value of the MD used to develop the models.

4.3. Multi-Target Linear model

The LDA model was developed using the General Discriminant tool implemented in the software
STATISTICA [40]. The model is based on a multi-task approach, meaning it is able to predict if a
sequence belongs to one out of the seven EC classes. It starts by identifying the presence of enzyme
activity εq(ci) = 1 of subclass ci (or the absence of this activity εq(ci) = 0) for a query protein with a
known amino acid sequence. The linear model is based on a linear equation, which directly correlates
the dependent variable (enzyme or not) with the independent variable (MD). The multi-target LDA
model was developed as follows. Once the MD were calculated, we computed the mean value of each
subclass and then the difference between each sequence and the mean value of its subclass. Due to the
model’s incorporation of the mean value of each subclass and the difference between each sequence,
as well as the mean value of its subclass, the model is able to achieve a multi-target prediction. For
further information regarding this statistical technique, please refer to the bibliography [53–55]. This
same procedure was used also for the development of the multi-target ANN model. The validation
of the model was performed using the cross-validation module implemented in the software. This
procedure is aimed at assessing the predictive accuracy of a model. The test split the dataset into a
training set and a validation set, ensuring that if an entry was included in the test set it could not
be used in the validation test. In so doing, the model was developed using the cases in the training
or learning sample, which, in our study, was 70% of the dataset. The predictive accuracy was then
assessed using the remaining 30% of the dataset [56,57]. Standard statistics, such as the specificity
(Sp), sensitivity (Sn), probability of error (p), cross-validation, and the Matthews correlation coefficient
(MCC) [58], were used to assess the discriminatory power of the model.

4.4. Non-Linear Models

The non-linear models were developed using the neural network tool implemented in the software
STATISTICA. In order to identify the best topology and architecture, we ran a large set of 50 models with
various topologies. This step is crucial to avoid an (albeit unlikely) overfitting problem. We examined
RBF and MLP networks since these usually perform better than other algorithms. The discriminatory
power of the models was assessed using the cross-validation method. The models were validated
using the cross-validation tool implemented in the ANN module of the STATISTICA software. In this
validation procedure, the software automatically assigns 70% of the dataset to training the model.
Once the model is trained, the remaining 30% of the inputs are used for validation. It is important to
note that if an entry is used in the training set it cannot be used for the validation series.
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5. Conclusions

Developing new, reliable, and robust methods for predicting protein function and enzyme
class and subclasses is a key goal for theoreticians, especially in light of the recently introduced EC
7 class. In this work, we developed linear and non-linear models using an alignment-free approach
to discriminate between enzymes and non-enzymes, as well as assign each enzyme sequence to a
specific EC class. The best LDA model showed an overall accuracy of 98.63%, which is considered a
remarkable result. However, we decided to explore further and develop some non-linear models using
two different algorithms: MLP and RBF. While the latter was unable to improve the results of the LDA
model, the MLP model was able to achieve an overall accuracy of 100%. This means that it was able to
perfectly discriminate between enzymes and non-enzymes and identify the EC class of each enzyme.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/21/
5389/s1.
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