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In many natural environments, microorganisms decompose microscale resource patches
made of complex organic matter. The growth and collapse of populations on these
resource patches unfold within spatial ranges of a few hundred micrometers or less,
making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the
potential importance of patch-level dynamics for the large-scale functioning of hetero-
trophic microbial communities, we have not yet been able to delineate the ecological
processes that control natural populations at the microscale. Here, we address this chal-
lenge by characterizing the natural marine communities that assembled on over 1,000
individual microscale particles of chitin, the most abundant marine polysaccharide.
Using low-template shotgun metagenomics and imaging, we find significant variation
in microscale community composition despite the similarity in initial species pools
across replicates. Chitin-degrading taxa that were rare in seawater established large pop-
ulations on a subset of particles, resulting in a wide range of predicted chitinolytic abili-
ties and biomass at the level of individual particles. We show, through a mathematical
model, that this variability can be attributed to stochastic colonization and historical
contingencies affecting the tempo of growth on particles. We find evidence that one
biological process leading to such noisy growth across particles is differential predation
by temperate bacteriophages of chitin-degrading strains, the keystone members of the
community. Thus, initial stochasticity in assembly states on individual particles, ampli-
fied through ecological interactions, may have significant consequences for the diversity
and functionality of systems of microscale patches.
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A central challenge in microbial ecology is to connect the microscale world experienced
by microbial cells to observations of large-scale community functions (1, 2). In many
environments—ranging from soils (3) and sediments (4) to bioreactors (5) and hosts
(6)—microbes live not in homogeneous, well-mixed cultures but rather in diverse, spa-
tially structured assemblages, attached to surfaces and other cells in nutrient-dense
patches on the order of 100 μm in size. Patches often exist in otherwise nutrient-limiting
environments, creating hotspots of ecological interactions and nutrient fluxes (7, 8).
A well-known example of a system of micrometer-scale ecological hotspots is marine

particulate organic matter (POM). Individual organic particles (Fig. 1A) serve as both
nutrients and scaffolds around which complex communities of bacteria, archaea, viruses,
and eukaryotes assemble (9), with global biogeochemical consequences (10). These inter-
acting community members can be broadly classified as primary degraders (that produce
extracellular enzymes to hydrolyze particle biopolymers), exploiters and scavengers (that
are facilitated by primary degraders) (11–14), and predators [such as bacteriophages (15)
and grazers (16)]. Although these assemblages are often ephemeral, cells can undergo
multiple generations of growth while residing on a single patch of nutrient-rich POM,
implying that the ecological functions of POM-associated microbes are heavily influ-
enced by their dynamics and interactions on microscale particles. However, little is
known about the processes governing community assembly at these scales.
A major obstacle to understanding the factors that control populations at the patch

level is the difficulty of characterizing natural microscale communities with high repli-
cation. Microbial communities are usually sampled at spatial scales orders of magnitude
larger than those relevant for microbial life (2), which homogenizes their inherent
patchiness and results in inconsistent inferences about ecological interactions (1, 17).
Recent technological advances now permit the sequencing of only thousands of cells
(18, 19), presenting an opportunity to systematically characterize microbial populations
in units more closely approximating in scale the ecological contexts experienced by
microbes.
Here, we leveraged high-replicate sequencing of individual microscale communities

to evaluate the outcomes of assembly processes without the homogenizing effects of
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standard bulk sampling procedures. We employed a hybrid
natural-laboratory approach that paired the complexity of envi-
ronmental microbial species pools with the controllability of
synthetic microparticles as discrete resource patches (11, 12). In
order to have sufficient statistical power to assess the variability
in microscale assembly outcomes, we immersed 1,222 individ-
ual model resource particles (85.0 ± 24.0 μm in diameter) in
samples of seawater containing microbes in their native states.
The hydrogel particles were made of chitin, a highly abundant
biopolymer in marine POM (9), enabling the enrichment of
chitin-degrading communities on the particle surface. By incubat-
ing single particles separately under identical abiotic conditions,
each one became a microenvironment harboring a replicate com-
munity assembled from initially similar species pools. We per-
formed a comparative analysis across these microscale ecosystems
to investigate the natural variability in community composition
and function among particles and to identify biological processes
that contribute to particle-level variability.

Results

Bacterial Community Composition Varies Significantly across
Individual Particles. To quantify the variation in community
states across replicate microscale ecosystems, we separately incu-
bated single chitin particles in coastal seawater sampled from a
common reservoir (Fig. 1B and Materials and Methods).
Assembly outcomes were assessed by removing particles from

the seawater at 13 time points over the course of 167 h, a dura-
tion that aligns with previous measurements (12, 20) of particle
lifetimes in bulk incubations (Materials and Methods). Of the
1,222 chitin particle microcosms harvested for metabolomics,
shotgun metagenomes of 495 particle-attached communities
from throughout the incubation period were used to construct a
set of metagenome-assembled genomes (MAGs). These MAGs
were annotated to infer strains’ potential ecological roles in a
chitin-degrading community as primary degraders, chitooligosac-
charide exploiters (21), or metabolic byproduct scavengers
(Dataset S1 and Materials and Methods), and they served as the
references for characterizing the taxonomic and functional com-
position of each particle (Fig. 1B, Dataset S1, and Materials
and Methods).

We found a remarkable degree of compositional variability
across individual particle communities at the end of the time
course (n = 149, after 154 h to 167 h of incubation). The dis-
tributions of taxon (MAG) relative abundances across these
endpoint particles spanned more than three orders of magni-
tude (Fig. 2 and SI Appendix, Fig. S1A) and were approxi-
mately lognormal, with a skew toward high abundances (SI
Appendix, Fig. S2). As a result, the community compositions
observed at the single-particle level diverged so significantly
that the rank abundances of taxa on individual particles were
poorly predicted by their average, global abundances (SI Appendix,
Fig. S1B and Materials and Methods). To assess whether noneco-
logical factors, such as sampling bias in initial species pools,
could have contributed to this compositional divergence, we
compared the variability in communities across endpoint par-
ticles to that across unincubated aliquots of the seawater used
as the inoculum (SI Appendix, Extended Methods). Intersample
variation was significantly higher across particles than across
seawater samples (Mann–Whitney U test on Aitchison distan-
ces: P = 1.3 × 10�13; SI Appendix, Fig. S3), indicating that the
observed variability stemmed more from the community assem-
bly process than from differences across inocula. Because other
technical sources of noise (Materials and Methods) also did not
significantly impact the measured particle compositions (SI
Appendix, Fig. S4) and all particles were chemically identical,
we concluded that the variation in taxon relative abundances
across particles was due to biological and ecological factors that
amplified stochasticity in the initial assembly states of these
communities.

Rare Chitin Degraders Dominate Individual Particles, Striking
the “Jackpot.” The skew toward high frequencies in the relative
abundance distributions implied that taxa that were rare on aver-
age became dominant on a small number of particles (Fig. 2, red
highlights). As a result, those particles harbored low-complexity
communities (SI Appendix, Fig. S5 A and B) that diverged highly
from the average particle taxonomic composition (SI Appendix,
Fig. S5C). We termed the species that displayed this phenome-
non “jackpot taxa” for their simultaneous local success and
global rarity (Materials and Methods). The strains in this phyloge-
netically broad group of organisms included members of the
Enterobacterales, Cytophagales, Pseudomonadales, Flavobacter-
iales, Rhodobacterales, Fibrobacterales, and Chitinophagales
orders and were mostly (87.9%) classified as chitin degraders (SI
Appendix, Fig. S1 and Dataset S1). Jackpot taxa were more prev-
alent across endpoint particles than other taxa that were equally
rare in the initial seawater inocula (Mann–Whitney U test:
P = 7.1 × 10�3; SI Appendix, Fig. S5D), indicating that the
probability of their success on particles, while influenced by their
scarcity in seawater, was also determined by ecological factors
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Fig. 1. Modeling POM degradation with a laboratory system of enriching
of marine microbes on chitin particles. (A) Microscale marine particles are
discrete, spatially separated nutrient-rich habitats dynamically populated
and degraded by complex communities of heterotrophic bacteria. The
interparticle distance range is estimated from data reported in Simon et al.
(16). (B) Schematic depicting experimental design and analysis. Microscale
chitin particles were individually incubated in seawater, and the DNA con-
tent of particle-attached communities was quantified and submitted for
shotgun metagenomic sequencing. Communities were characterized using
MAGs, which were classified into three predicted ecological roles for this
ecosystem: chitin degraders, chitooligosaccharide exploiters, and metabolic
byproduct scavengers.
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during community assembly. Notably, while taxon-specific inter-
actions did not explain the abundance patterns observed across
particles (SI Appendix, Fig. S6 and Materials and Methods), the
most variable strains were likely to be degraders enriched in genes
encoding chitinases (Fig. 2 and SI Appendix, Fig. S7; coefficient
of variation vs. chitinase copy number, Spearman’s ρ = 0.44,
P = 8.5 × 10�7). These observations indicated that the condi-
tional success of specialized degraders from a diverse initial species
pool contributed to the differentiation of the many rare commu-
nity states found at the single-particle level.

Taxonomic Variability Translates to Divergent Community-
Level Productivity. We found that the communities that formed
on particles in our individual microscale ecosystems were highly
functionally divergent (Fig. 3A and SI Appendix, Fig. S8). By the
end of the time course, most particles (63.8%)—and especially
particles dominated by jackpot taxa—harbored majority-degrader
communities (Fig. 3A), highlighting the importance of degraders
for establishing and maintaining chitin-associated communities.
However, the percentage of putative degraders on each endpoint
particle was as low as 13.1% and as high as 97.3%, indicating
that chitin-degrading communities did not self-assemble to
“optimized” or conserved ratios of ecological roles after a fixed
incubation period. Read mapping to chitinase protein sequences
rather than MAGs supported our interpretation that variability in
the estimated proportion of degraders was not due to the use of
MAGs as reference genomes (SI Appendix, Fig. S9 and Materials
and Methods). We hypothesized that this extensive variability in

community composition, primed by stochasticity in assembly
processes, could have had significant consequences for overall
community function.

Consistent with this hypothesis, individual particles sus-
tained highly variable particle-attached biomass levels that were
correlated with their community compositions. The number of
bacterial cells in each endpoint community, estimated using
qPCR of the 16S ribosomal RNA (rRNA) region (Materials
and Methods), ranged from ∼1,000 to nearly 200,000 cells
(Fig. 3B) and was strongly correlated with the overall frequency
of degraders (Spearman’s ρ = 0.45, P = 1.6 × 10�8; SI
Appendix, Fig. S10). Accordingly, particles that displayed the
jackpot phenomenon had significantly higher cell counts (Fig.
3B; Mann–Whitney U test: P = 2.3 × 10�7), revealing that
jackpot taxa were dominant in terms of not only relative abun-
dances but also absolute abundances. The distribution of cells
per particle was approximately lognormal, with a skew toward
low cell numbers, indicating that some particles were highly
productive while others harbored small populations even by the
end of the incubation. These measurements were supported by
direct observations of particle-attached cells using a DNA stain
(Fig. 3C and Materials and Methods), which revealed a similar
distribution in bacterial density per particle.

Importantly, the initial colonization of single particles incu-
bated together in the same volume of seawater, rather than
individually, resulted in particle-associated cell biomass that
also spanned several orders of magnitude (SI Appendix, Fig.
S11 and Materials and Methods). This variability in initial
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particle colonization was observed across a range of particle
densities 15 to 140 times more concentrated than the condi-
tions of the individual particle incubations, indicating that phe-
nomena such as jackpot colonization are not specific to the
environmental regime established in our separate microscale
ecosystems. Collectively, these results suggested that variation
in taxonomic composition and total biomass were correlated at
the individual particle level, raising the question of which bio-
logical or ecological factors could explain this covariance.

Predation by Bacteriophages Contributes to Variability in
Particle-Associated Community Composition and Biomass.
Our observation that most (63.7%) of our MAGs contained
sequences homologous to those of bacteriophages led us to
examine the potential importance of lysogeny in the develop-
ment of particle-associated communities. High viral densities
have been measured on marine particles relative to ambient sea-
water (15), but it is unknown to what extent this is the conse-
quence of passive adsorption of free virions as opposed to active
proliferation due to infection. Furthermore, the prevalence and
roles of temperate phages (i.e., those that conditionally employ
both lytic and lysogenic cycles) remain open questions in marine
microbial ecology (22, 23). Therefore, we sought to identify
populations of induced prophages within our single-particle
communities to determine whether heterogeneous lysogeny–lysis
switching could explain the observed variability in community
composition and yield.
To detect actively replicating phages, we first classified con-

tigs in our MAGs as phage-derived or bacteria-derived using
tools (24, 25) that annotate phages from mixed metagenomes
(Materials and Methods). We reasoned that contigs classified as
phage-derived, especially those belonging to the genomes of
temperate phages, were likely to be binned into the MAGs of
their bacterial hosts. Phage k-mer signatures tend to be more
similar to those of their specific hosts than to those of random
bacteria (25, 26), and phages in a lysogenic cycle will have the
same sequencing read coverage patterns as their hosts across sam-
ples. Therefore, phages that were lysogenic in most single-particle

communities would tend to be binned with their hosts and have
similar coverage levels, reflected in an inferred virus-to-microbial
cell ratio (VMR) close to one (Fig. 4 A, Top Left). In contrast,
phages in a productive cycle (lytic or chronic) would have higher
coverage than their hosts because of the multiple virion copies
produced per bacterial cell (27, 28) (Fig. 4 A, Top Right). There-
fore, we considered a phage-derived contig to be productive in a
sample if it was one of the most highly covered elements of its
MAG (Materials and Methods). Because our approach relied on
comparisons between co-binned phages and MAGs, phages that
exclusively employ a lytic cycle were unlikely to be detected. The
VMRs of three representative examples of lysogenic and pro-
ductive phage contigs are shown for each particle in Fig. 4B
(Dataset S2). Comparing the coverage patterns of phage- and
bacteria-derived contigs provided evidence that variable phage
coverage was not due to sequencing noise, lending confidence
to our estimates of VMRs for specific phages (SI Appendix, Fig.
S12 and Materials and Methods). Using the VMRs of individual
productive phages, we calculated the total productive VMR
per particle as a measure of overall phage replication in each
community (Materials and Methods).

We analyzed earlier time points in our experiment to assess
the dynamics of replicating phages. The mean productive
VMR was lowest for the initial seawater inocula and rose
sharply until the middle of the incubation period (59 h), sug-
gesting that phages became induced as their particle-associated
hosts began to grow (Fig. 4C). Concomitant with this increase
in productive VMRs, we observed the accumulation of diverse
metabolites in the seawater surrounding each particle until 59 h
of incubation, followed by a decrease in metabolite concentra-
tions (Fig. 4D, SI Appendix, Fig. S13, Dataset S3, and Materials
and Methods). These observations could be explained by metab-
olite release upon the initiation of bacterial growth (29) or lysis
by phages (30) and by subsequent metabolite consumption by
the remaining viable bacteria (31). The coinciding timescales of
metabolite liberation and rising VMRs are consistent with our
hypothesis that a particle-associated lifestyle among bacteria
promotes phage proliferation; therefore, we sought to assess the
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Fig. 3. Endpoint particles diverge in community-level functional potential and biomass. (A) Ternary plot of the relative abundances of organisms occupying
the three ecological roles (degrader, exploiter, scavenger) on each endpoint particle (n = 149), calculated by summing the relative abundances of MAGs clas-
sified into each role. Red dots represent jackpot particles, and black ones represent nonjackpot particles. Jackpot particles harbored significantly higher
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counts on endpoint particles through qPCR of the 16S rRNA gene in DNA extracted from particle-attached communities. Jackpot particles (red dots)
harbored significantly higher numbers of cells (Mann–Whitney U test: P = 2.3 × 10�7) than nonjackpot particles (black dots). (C) Representative images of
endpoint particles that were harvested after 167 h of incubation in seawater and stained with the DNA-intercalating dye SYTO 9. (Scale bar, 50 μm.) Particle-
attached communities spanned a range of growth states, from sparsely to densely populated.
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with productive VMRs (Spearman’s ρ = �0.56, P = 3.3 × 10�13; red line and shading, log–log linear regression and 95% CI; R2 = 0.23, P = 1.3 × 10�9). Marginal
histograms are distributions of productive VMRs (red) and bacterial cell counts (light gray). (Inset) Bar plot of values of Spearman’s ρ between cell counts and
productive VMRs of bacterial populations by ecological role (blue, degraders; green, exploiters; yellow, scavengers; see SI Appendix, Fig. S14B for details).
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impact of variable phage induction on each community’s com-
position and consequent yield.
There was a striking negative relationship between cell

counts and productive VMRs on endpoint particles (Fig. 4E,
red data: Spearman’s ρ = �0.56, P = 3.3 × 10�13), suggesting
that phage predation impacted bacterial growth success on par-
ticles upon induction. The degrader populations contributed
the most to this signal, indicating that strains among this tro-
phic level may have been especially prone to phage activation
(Fig. 4 E, Inset, SI Appendix, Fig. S14, and Dataset S4). Impor-
tantly, jackpot degrader taxa had lower productive VMRs than
nonjackpot degraders (SI Appendix, Fig. S15A; Mann–Whitney
U test: P = 1.3 × 10�49). This translated to jackpot particles
having significantly lower productive VMRs than nonjackpot
particles (Mann–Whitney U test: P = 4.3 × 10�8), even con-
trolling for differences in cell counts between these groups
of communities (analysis of covariance: F(1,139) = 16.92,
P = 4.1 × 10�4, partial η2 = 0.09; SI Appendix, Fig. S15B).
Collectively, these data point to increased activation of prophages
in degrader taxa that exist as part of taxonomically diverse com-
munities, more so than activation in degrader taxa that dominate
particles.

A Stochastic Model Recapitulates the Observed Variability in
Taxonomic Compositions and Biomass on Particles. While cell
counts were significantly correlated with both phage abundan-
ces and community compositions, these features explained,
respectively, 23% (Fig. 4E) and 34% (SI Appendix, Fig. S10) of
the observed variation in yields, indicating that other factors
also contributed to variable growth returns. Therefore, we
sought a more general framework in which to understand the
key quantitative features of the data—namely, the lognormal-
like distributions of relative taxon abundances (with right skews
consistent with jackpot taxa) and of absolute cell abundances
(with a left skew corresponding to low-biomass communities).
We considered four mathematical models of increasing com-
plexity describing bacterial population dynamics on individual
particles, all of which assume that cells arrive on particles sto-
chastically and then grow exponentially with different mean
growth rates across taxa (SI Appendix, SI Text). Models in which
individual taxa have identical growth rates (SI Appendix, Fig.
S16) or randomly fluctuating growth rates on different particles
(SI Appendix, Figs. S17 and S18) do not recapitulate the observed
trends in taxon abundances. Importantly, the key features in our
data could be reproduced as a result of the interplay between
multiple stochastic processes (SI Appendix, Fig. S19): 1) noisy
growth rates and 2) the requirement that a degrader must first
colonize a particle by stochastic arrival before a community can
develop. Taken together with our experimental data, this model
indicates that the biological processes which contribute to the
stochasticity of particle colonization and growth rates—and
especially those processes that affect degraders—will result in
variable growth returns for strains across particles.

Discussion

Together, a synthesis of our mathematical model with our
observations of bacterial and phage abundances across individ-
ual chitin particles suggests a conceptual framework for key
processes promoting variability in microscale community com-
position and function (Fig. 5). Consistent with prior work
demonstrating small-scale heterogeneity on aquatic resource
particles (32), we found that key community features—namely,
taxonomic compositions, functional gene content, and absolute

abundances—were not conserved at the single particle scale.
We posit that 1) stochastic arrival on particles diversifies initial
assembly states; 2) phage induction and subsequent host lysis,
primarily among degraders, contribute to variable growth
returns; and 3) the timescale and magnitude of degrader coloni-
zation determine the extent to which scavengers and exploiters
are supported. Therefore, in this conceptual framework, the
high-biomass jackpot particles are those in which degraders
arrive early and resist phage induction, leading to high relative
and absolute degrader abundances (Fig. 5A). By contrast, low-
biomass particles are those in which degraders are not able to
proliferate, either because they become established on a particle
relatively late due to stochastic arrival (Fig. 5 B, Top) or because
phage induction impedes the establishment of a robust population
(Fig. 5 B, Bottom).

Our results highlight that the first step in community assem-
bly at the microscale—the arrival of cells to a particle—is an
intrinsically random process dependent on encounter probabili-
ties. Chitin degraders are taxonomically diverse and exist at low
abundance in the bacterioplankton, two factors that favor sto-
chasticity and strong priority effects (33) at the single-particle
level. Our model demonstrates that historical contingencies, in
our case created by stochastic arrival times and the growth
dependency of non-degraders on degraders, can be magnified
through variable growth rates to reproduce the wide distribu-
tions of bacterial abundances experimentally observed across
particles. Because of this high compositional variability, we
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Fig. 5. Conceptual model of key processes contributing to the diversifica-
tion of communities on microscale particles. Schematics of community
development over time and the resultant features measured on particles
are shown for different scenarios highlighting how historical contingencies
and phage induction, particularly affecting keystone degraders, can contrib-
ute to variability in microscale community assembly. Bacterial populations
are indicated by their ecological role (blue, degraders; green, exploiters;
yellow, scavengers), and phages are depicted in red. (A) Jackpot particles
are those on which degraders arrive early and proliferate, leading to com-
munities with high relative and absolute degrader abundances and low
species diversity. (B) Low-biomass particles are those on which degraders
are not able to proliferate, either because they become established on a
particle relatively late due to stochastic arrival (Top) or because phage
induction impedes the establishment of a robust population (Bottom).
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hypothesize that interspecific interactions on individual par-
ticles are based on organisms’ functional roles within a commu-
nity as degraders, exploiters, or scavengers, rather than on their
specific taxonomic identities (34).
Our study suggests the interesting possibility that the differ-

ential induction of prophages may be one factor contributing
to the variable growth rate of degraders on particles. We
hypothesize that the relatively low levels of biomass observed
on particles with elevated VMRs at the end of our experiment
are partially the consequence of phage-mediated lysis and com-
munity impairment. Furthermore, our observation that phages
became increasingly activated as communities developed may
indicate that particles are hotspots for lysogeny–lysis transitions
in temperate phages. We speculate that heterotrophs navigating
a patchy nutrient landscape may be especially prone to pro-
phage induction in particle-associated contexts, where a combi-
nation of host metabolic activity, abundant cellular resources,
and proximity to potentially susceptible cells and other bacterial
competitors may favor phage proliferation (35–39). However,
the mechanisms underlying the regulation of lysogeny–lysis
switches are complex, diverse, and largely unexplored in the
contexts of complex communities. Open questions remain
around which environmental and ecological conditions pro-
mote prophage induction (23), with host density and activity
either promoting (40) or inhibiting (41, 42) prophage induc-
tion in different biological systems. Future studies leveraging
model marine particles present an opportunity to learn more
about the ecological triggers of phage activation.
Our results reveal an interesting connection between the

diversity of a community and the magnitude of phage preda-
tion of chitin degraders, precisely because this functional class
of organisms initiates the trophic cascade that governs commu-
nity assembly around chitin particles (11, 43). Because some
degraders display density-dependent growth on chitin (44), the
collapse of a degrader population may be influenced by phage
predation yet not contingent on induction in all degrader cells.
Instead, even partial induction of a lysogenic degrader popula-
tion could decrease cell densities below a critical threshold
required to maintain a robust particle-associated community,
amplifying the apparent effects of phage induction on degrader
colonization. Phage induction of degraders may not only
impair degrader proliferation but also may liberate internal
metabolites for utilization by scavenging strains, leading to the
observed association between lower biomass particles and more-
diverse communities with higher proportions of non-degraders.
In contrast, because phage induction was significantly less asso-
ciated with degraders that displayed the jackpot phenomenon,
we hypothesize that jackpot degraders are locally successful on a
minority of particles in part because they experience less preda-
tion, resulting in communities characterized by high biomass
and low species diversity. Alternatively, jackpot colonization
may represent an earlier community state than particles that
support more-complex communities. Indeed, an exciting future
avenue of investigation will be to tease apart the link between
degrader growth dynamics, prophage induction, and commu-
nity assembly, using particle-derived isolates representative of
the different ecological “strategies” present on chitin particles.
While we did capture a fraction of the natural viral and bacte-

rial diversity involved in POM degradation, several experimental
simplifications may have impacted the assembly outcomes we
observed. For example, our initial filtration and concentration of
the seawater, intended to decrease the variability across inocula,
may have resulted in the partial removal of aggregate-attached
protozoa (16). Protozoan predation of bacteria has significant

impacts on the structure of particle-attached communities, both
through selective killing of certain taxa and through the facilita-
tion of others through the release of nutrients (45); therefore,
these interactions were likely perturbed in our experimental system
and were not assessed.

Our observations of wild marine communities, although
made in a laboratory setting, may provide insights on the
ecosystem-level consequences of microscale stochastic assembly
dynamics. First, the stochasticity in bacterial growth, amplified
across a patchy landscape of microscale marine particles, may
promote the maintenance of a diverse regional species pool at
the macroscale. This is because the variability in growth yield
can effectively offset differences in competitive fitness between
degraders (46). Second, the properties of a system of diverse
particle-attached communities—for example, its resistance to
perturbations (47)—differ from those of a system in which all
individual community compositions are identical to a bulk
measurement, underscoring the significance of microscale pro-
cesses. Third, the variability in microscale community states
could be reflected in larger-scale biogeochemical patterns since
the cumulative process of POM degradation can be approxi-
mated as the sum of degradation events on individual particles.
Although degraders were progressively enriched on particles, we
found that endpoint communities did not converge to a fixed
proportion of chitin degraders or to a fixed amount of biomass
per particle within the timescale of our experiment. Both of
these measures are positively correlated with the rate of particle
degradation (12), suggesting that historical contingencies in
community assembly promote functional divergence (33, 48).
These results contrast with those of previous studies on the rep-
licability of microbial community assembly at the functional
level (49, 50), likely because of the homogenizing effect of mac-
roscale sampling. Nevertheless, our study suggests that the
diversity measured in microscale community states at any given
time may be represented among a system of particles. Indeed,
the lognormal-like distribution of biomass on individual par-
ticles intriguingly aligns with observations and predictions of
lognormally-distributed global marine organic matter export
and remineralization rates; these distributions may repeatedly
emerge as a reflection of the multiplicative effects of stochastic
variables in ecological settings (51–53). Although our experi-
mental system significantly simplified the process of POM deg-
radation in the ocean, our approach provides a quantitative link
between the microscale and larger-scale processes, highlighting
the importance of considering local variability when investigat-
ing the mechanisms behind microbial community development
in a spatially structured environment.

Materials and Methods

Abridged methods are provided below; details and additional information are
provided in SI Appendix, Extended Methods.

Seawater Collection and Individual Chitin Particle Incubation. Nearshore
coastal seawater was collected from Nahant, MA; filtered (63 μm) to remove
large particulate matter; gently concentrated via centrifugation at 4,000 × g for
5 min; and aliquoted for incubations and sequencing. Hydrogel chitin particles
(New England Biolabs, #E8036L) were washed in sterile artificial seawater
(Sigma-Aldrich, #S9883) and individually selected beneath a dissecting micro-
scope in a laminar flow hood. Single chitin particles (85.0 ± 24.0 μm in diame-
ter) were transferred to sterile 96-well plates (Thermo Fisher, #AB0600L), with
one chitin particle per well. Plates were inoculated consecutively with 175 μL of
filtered, centrifuged seawater per well; sealed (VWR, #89092-056); and rotated
end over end (7.5 rpm) at room temperature. The particles in an entire plate
were harvested at each time point (after 12, 22.75, 34.5, 46, 59, 69, 82, 92,
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103, 116.75, 113, 153.5, and 166.5 h of incubation) by inspection and pipet-
ting under a dissecting microscope in a laminar flow hood. Each particle was
transferred into sterile 96-well plates (Thermo Fisher, #AB0600L) containing
Tris-EDTA buffer and stored at�20 °C. The seawater surrounding each harvested
particle was also saved in 96-well plates and stored at�20 °C.

Mock Communities and Negative Controls. To quantify the technical error
associated with creating metagenomic libraries from low DNA inputs, mock com-
munities were simulated by combining the DNA of two strains previously
isolated from a chitin particle enrichment (11). Libraries from three technical rep-
licates of mock communities totaling 50 pg or 5 pg of DNA (SI Appendix,
Extended Methods), as well as from six negative controls (containing only
nuclease-free water), were prepared and analyzed with the same protocols used
for individual chitin particle-attached communities.

DNA Extraction and Metagenomic Sequencing. DNA extractions were per-
formed for twelve 175-μL-volume aliquots of the initial, unincubated seawater
and for particles harvested after 34.5, 59, 103, 116.75, 113, 153.5, and 166.5 h of
incubation (see Dataset S5 for sample metadata; in total, metagenomes from
495 particle-attached communities were analyzed in this study). DNA was
extracted from all samples with the Agencourt DNAdvance Genomic DNA Isola-
tion Kit (Beckman Coulter; modifications noted in SI Appendix, Extended
Methods). Metagenomic libraries were prepared with the Nextera XT DNA Library
Prep Kit and index primers (Illumina) using the protocol developed by Rinke
et al. (18) for low DNA inputs (SI Appendix, Extended Methods). Libraries were
quantified on an Agilent 4200 TapeStation system with High Sensitivity D5000
ScreenTapes (Agilent Technologies) and pooled by time point in equimolar
amounts. Sequencing was performed on an Illumina HiSeq 2500 machine
(250-bp paired-end reads) at the Whitehead Institute for Biomedical Research.

MAG Generation, Taxonomic Assignment, and Role Classification. Raw
sequencing reads were quality trimmed with Trimmomatic v0.36 (54). Reads
mapping to the PhiX and human genomes were filtered out using BBDuk
v38.16 (55) and BBMap v38.16, respectively (SI Appendix, Extended Methods).
Trimmed, filtered reads that were error corrected using BayesHammer (56) were
pooled within each time point and coassembled using MEGAHIT v1.2.9 (57).
Bins were generated with MaxBin v2.2.7 (58) and CONCOCT v1.1.0 (59), consoli-
dated and filtered using DAS Tool v1.1.1 (60), and evaluated for completeness
and contamination using CheckM v1.1.2 (61). The resulting 251 bins were used
as reference metagenome-assembled genomes, i.e. MAGs (≥50% complete,
≤10% contaminated; median completeness 93.7%, median contamination
3.9%; Dataset S1). Highly similar MAGs obtained from separate coassemblies
were grouped into 132 clusters (SI Appendix, Extended Methods). MAG taxo-
nomic classifications were made using GTDB-Tk v1.1.1 (62). MAGs were function-
ally annotated using a custom database of profile hidden Markov models of
proteins involved in growth on chitin (SI Appendix, Extended Methods and
Dataset S6). Ecological roles for MAGs (as degraders, chitooligosaccharide
exploiters, or metabolic byproduct scavengers) were defined based on the gene
content patterns observed for sequenced and phenotyped (14) strains previously
isolated (11, 13) from particle enrichments (SI Appendix, Extended Methods).

Read Mapping to MAGs for Relative Abundance Estimation. Trimmed,
filtered reads were mapped competitively against the MAGs generated from
sequencing particle-attached communities, initial seawater samples, and nega-
tive controls. Read mapping was performed using the approach described in Lev-
enthal et al. (63) (SI Appendix, Extended Methods). Reads that best mapped to
predicted contaminant MAGs (SI Appendix, Extended Methods) were removed
from consideration. MAG relative abundances were calculated for each sample
by 1) tallying the hits to all MAGs in each MAG cluster, 2) normalizing the tally
by the average genome length of all MAGs in each MAG cluster, and 3) dividing
the normalized tallies for each MAG cluster by their sum for each sample. There-
fore, for MAGs clustered together based on similarity, their relative abundances
are represented in that of the entire MAG cluster to which they belong; this cal-
culation circumvents the artificial underestimation of MAG relative abundances
that would otherwise be obtained with a nondereplicated reference set. The rela-
tive abundances of organisms occupying the three ecological roles (degrader,
exploiter, scavenger) on each particle were calculated by summing the relative
abundances of MAGs classified into each role.

Definitions of Jackpot MAGs and Jackpot Particles. A jackpot score was cal-
culated for each MAG cluster to quantitatively reflect the properties of rarity across
most particles and dominance on a few particles (SI Appendix, Extended Methods)
such that MAGs with high scores strongly displayed the jackpot phenomenon.
Each particle’s jackpot score was calculated as the weighted average of MAG jack-
pot scores (i.e., the sum of the relative abundance of each MAG cluster multiplied
by its jackpot score). Particles with high jackpot scores and low Pielou’s evenness
were categorized as “jackpot particles” (SI Appendix, Extended Methods).

Bacteriophage Analyses. Binned contigs were classified as phage-derived or
bacteria-derived using VirSorter v1.0.3 with its RefSeqABVir database (24) and
VirFinder v1.1 (25), two tools designed to detect phage sequences among mixed
metagenomes (SI Appendix, Extended Methods). We used a read coverage-
based approach to categorize phage-derived contigs as productive or lysogenic
in particle-attached communities (Dataset S2; see SI Appendix, Extended
Methods for analysis controls). Based on read mapping to MAGs, per-base cover-
age values for all binned contigs were computed with BEDTools v2.27.0 (64) and
were used to calculate contig-wide average coverage values. For each MAG and for
each sample, a phage-derived contig was considered to be productive if its cover-
age was greater than the coverage of the 95th percentile bacteria-derived contig in
the same MAG; otherwise, it was considered to be lysogenic in that sample. The
virus-to-microbial cell ratio (VMR) of an individual phage contig in one sample is
defined as the phage contig coverage divided by average coverage of the MAG
with which it is binned (which was calculated using only the bacteria-derived con-
tigs). Total VMRs—that is, the total number of phage copies relative to the total
number of bacterial MAG copies in an entire sample—were calculated separately
for productive and lysogenic phage contigs. The total productive VMR for a sample
was defined as

∑
n

i

average coverage of productive phage contigs in MAGi
average MAGi coverage

� ��

× MAGi relative abundanceð Þ
�

¼ total phage copies ðdue to productive infectionsÞ
total bacterial genome copies

,

where n is the number of MAGs found in a sample. This calculation is equiva-
lent to

∑n
i ðaverage coverage of productive phage contigs in MAGiÞ

∑n
i ðaverage MAGi coverageÞ

,

where n is the number of MAGs found in a sample. Total lysogenic VMRs were
calculated using the same formula while considering only lysogenic-annotated
contigs. VMRs for each ecological role (i.e., for the subpopulation in a commu-
nity that belongs to one of the three roles of degrader, exploiter, or scavenger)
were calculated using the same formula considering only the MAGs of each role
and their associated phages.

Cell Count Estimation. Bacterial DNA extracted from individual particle-
attached communities was quantified through qPCR of the 16S rRNA gene using
the Femto Bacterial DNA Quantification Kit (Zymo Research), which has a lower
limit of detection of 20 fg. Two sets of standards and negative controls were
included in each qPCR run. The number of bacterial cells for each particle was
estimated from the absolute DNA amounts based on measurements indicating a
mean of 2.5 fg DNA per bacterial cell in seawater samples (65).

Imaging of Chitin Particle Colonization. Subsets of chitin particles incu-
bated individually in seawater were stained at time points by adding the DNA
stain SYTO9 (Invitrogen, #S34854) at a final concentration of 500 nM directly to
the particle incubations. Particles were incubated in the dark at room tempera-
ture for 15 min before being mounted separately on microscope slides and
imaged with a Zeiss epifluorescence microscope at 100× magnification.

Metabolomics. We performed untargeted metabolomics of the seawater that
surrounded 1,222 harvested chitin particles and of the initial, unincubated sea-
water (SI Appendix, Extended Methods). We used a binary LC pump (Agilent
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Technologies) and an MPS2 Autosampler (Gerstel) coupled to an Agilent 6520
time-of-flight mass spectrometer (Agilent Technologies) operated in negative
mode, at 2 GHz, extended dynamic range, with an m/z (mass/charge) range of
50 to 1,000. Ions (Dataset S3) were annotated against a curated library of metab-
olites present in marine microbes, based on the BioCyc database (66). For
metabolites that exceeded the limit of detection (SI Appendix, Extended
Methods), the intensities of each ion were normalized between zero (the limit of
detection) and one (the highest measured intensity of a given ion). Weighted
ion intensities for each time point were calculated by taking the sum of all
normalized intensities of ions in all samples for each time point.

Data Availability. Supplementary Datasets include: (i) metadata for MAGs
(Dataset S1); (ii) metadata for phage-annotated sequences (Dataset S2); (iii)
metadata for detected metabolites (Dataset S3); (iv) summary statistics for phage-
annotated sequences (Dataset S4); (v) metadata for metagenomic samples
(Dataset S5); (vi) information on hidden Markov models used in this study
(Dataset S6); and (vii) MAG relative abundances in each metagenome (Dataset
S7). Metagenomic reads from individual particle-attached communities and from
initial seawater samples are accessible through NCBI BioProject (accession num-
ber PRJNA847179) (67) and BioSample (accession numbers SAMN29046748
through SAMN29047344) (68, 69). Data available through the repository at doi:
10.17632/7t5mscdtwb.1 (70) include: (i) MAGs generated and used in this
study; (ii) images of microbial communities attached to individually-incubated
chitin particles; (iii) images of microbial communities attached to bulk-incubated
chitin particles; and (iv) code for the mathematical models described in the text.
Code for analyzing particle image data is accessible at https://github.com/
jaschwartzman/seawater_colonize (71). All mass spectra files from the metabolo-
mics are accessible through MassIVE (ftp://MSV000087936@massive.ucsd.edu).
All custom scripts for processing the data listed above are available from the
authors upon request.
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