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Abstract
Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmo-
nella Typhimurium, which has recently been recognized as an emerging cause of infection

worldwide. This bacterium has also ranked among the four most frequent serovars causing

human salmonellosis in China. However, there are no reports on its contamination in Chi-

nese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and

multilocus sequence typing (MLST) assays were used to investigate the prevalence of this

serological variant in food products in China, and to determine phenotypic and genotypic dif-

ference of monophasic isolates and Salmonella Typhimurium isolated over the same period.

Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork,

chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to

ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which
was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- iso-
lates in our study were different from Salmonella Typhimurium isolates by the absence of

three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All

Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions

within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:-
isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified

in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and

two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain,

America, and Italy, which provided some new evidence on the independent evolution of the

multiple successful monophasic clones from Salmonella Typhimurium ancestors. This

study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are

more comprehensive and representative, providing valuable information for epidemiological

studies, risk management, and public health strategies.
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Introduction
Salmonella are often acquired from contaminated food, and are important causes of gastroen-
teritis and bacteremia, posing a worldwide threat to public health [1]. There are estimated to be
94 million cases of gastroenteritis globally per year, with 155,000 deaths attributed to Salmo-
nella [2,3].

Since 2009, Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- has ranked among the
four most frequent serovars causing human salmonellosis in China [2]. It is also one of the
most common serovars isolated from humans and foods in several other countries [4,5]. This
atypical serovar, lacking the phase 2 flagellar antigen [6,7], has become increasingly important
since the mid-1990s worldwide. Currently, it is designated as a monophasic variant of Salmo-
nella Typhimurium, with antigenic and genotypic similarities [6,8–10].

The mechanisms for the evolution of Salmonella 1,4,[5],12:i:- remain unknown. Several
genes, including fljB, fljA, and hin, located within the fljBA operon, are involved in expression
of phase 2 flagellar antigen. fljB encodes the phase 2 flagellar antigen, while fljA (encoding a
negative regulator of fliC, coding for the phase 1 flagellar antigen) and hin (encoding a DNA
invertase) are responsible for flagellar phase variation, a regulatory mechanism involving
switching between the production of FliC or FljB [5]. Thus, mutations, deletions, or insertions
of fljB itself, along with disorder in the regulatory mechanism of phase variation, could result
in failure to express the phase 2 flagellar antigen [7,10–11]. Interestingly, various fljB deletion
profiles, as well as deletions within other genes of the fljBA operon and surrounding genes
(iroB and STM2757), have been detected [10,12–14].

Moreover, the public health impact of Salmonella 1,4,[5],12:i:- infection is increased by the
high rate of antimicrobial resistance associated with this serovar. In particular, an epidemic
multidrug-resistant (MDR) clonal lineage of Salmonella 1,4,[5],12:i:-, designated the European
clone, which is resistant to ampicillin, streptomycin, sulfonamides, and tetracycline (R-type
ASSuT) [15], has emerged in Europe and has been implicated in several outbreaks [16–18].
Some Salmonella 1,4,[5],12:i:- isolates from Spain, America, and Canada with additional resis-
tance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (R-type
ACSSuT) [6,19,20] have also been detected.

Several previous studies have examined Salmonella 1,4,[5],12:i:- from human cases of food
poisoning in China [2,21]; however, systematic data for the prevalence of Salmonella 1,4,[5],12:
i:- in the food chain is lacking. Therefore, the objective of this study was to characterize Salmo-
nella 1,4,[5],12:i:- isolates collected from food samples across China from 2011–2014, and com-
pare these isolates with Salmonella Typhimurium isolated in the same period to better
understand the prevalence, phenotypic and genetic diversity, and susceptibility to antimicrobi-
als of this serovar in China. Such data will provide a scientific basis for the development of
food safety regulations.

Materials and Methods

Bacterial strains
From July 2011 to May 2014, 2800 food samples were collected from retail markets; these
included meat and meat products (639), aquatic products (554), quick-frozen food (316), edi-
ble mushrooms (270), vegetables (272), dairy products (186), fruit (10), and ready-to-eat food
(553). The sampling sites were distributed throughout the 24 provincial capitals of China (S1
Fig). In total, 524 Salmonella isolates were obtained and identified to serovar level according to
the Kauffmann-White scheme [22]. For monophasic Salmonella serovar 1,4,[5],12:i:-, the
absence of phase 2 flagellar antigen was verified using the flagellar phase reversal method as
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described by Chiou et al [23]. Strains were definitively assigned to Salmonella Typhimurium or
Salmonella 1,4,[5],12:i:- using the duplex-PCR assay developed by Tennant et al [24] and rec-
ommended by the European Food Safety Authority (EFSA) Panel on Biological Hazards [4].
The malic acid dehydrogenase gene (mdh), which is specific to Salmonella Typhimurium and
Salmonella 1,4,[5],12:i:-, was also detected using primers previously described [8]. Ratios of Sal-
monella 1,4,[5],12:i:- occurrence were calculated against all serotyped Salmonella or Salmonella
Typhimurium isolated from the same batch of food samples in the same period [11].

Antimicrobial susceptibility testing
Antimicrobial susceptibility was evaluated using the Kirby-Bauer disk diffusion method with
20 antimicrobial agents, in accordance with the Clinical Laboratory Standards Institute guide-
lines [25]. The antimicrobials used were ampicillin, amoxicillin-clavulanic acid, cephalothin,
cefazolin, cefoxitin, ceftriaxone, cefotaxime, ceftazidime, cefoperazone, cefepime, chloram-
phenicol, tetracycline, nalidixic acid, ciprofloxacin, amikacin, gentamicin, streptomycin, kana-
mycin, trimethoprim-sulfamethoxazole, and sulfonamides (Oxoid, Basingstoke, UK).

Detection of virulence-related genes
Seven genes with reported contributions to virulence were selected. Four targets (gipA, sodC1,
sopE1, sspH1) were located on prophages, while three (spvC, pefA, rck) were located on a viru-
lence plasmid. Amplification was performed using primers and conditions described previ-
ously [26,27]. Salmonella Typhimurium ATCC14028 and Salmonella Typhimurium
CMCC50115 were used as positive controls.

Multilocus sequence typing (MLST)
Salmonella isolates were characterized by MLST using previously reported primers specific for
seven housekeeping genes: aroC, dnaN, hemD, hisD, purE, sucA, and thrA. The sequence type
(ST) of each isolate was assigned according to the MLST database (http://mlst.ucc.ie/mlst).

PCR-based characterization of gene deletion profiles of Salmonella
isolates
For all Salmonella Typhimurium and Salmonella 1,4,[5],12:i:- isolates, the presence of fljA, fljB,
and hin, as well as iroB, which flanks the fljBA operon, and the closely located STM2757 and
STM2758 genes, were analyzed using gene-specific primers and PCR conditions as previously
described by Soyer et al [10] and García et al [12]. fljA, fljB, hin, and iroB are located at the 30

end of cluster V, while STM2757 and STM2758 flank the 50 end. This region spans 16 genes
(from STM2758 to iroB) that were previously reported to be present in Salmonella Typhimur-
ium LT2, but absent in a selection of Spanish Salmonella 1,4,[5],12:i:- isolates [28].

Results
As shown in S1 Table and S2 Fig, serotyping, including flagellar phase reversal, identified 13
Salmonella isolates lacking phase 2 flagellar antigen. These Salmonella 1,4,[5],12:i:- isolates
originated from beef (n = 6), pork (n = 5), chicken (n = 1), and pigeon (n = 1). All isolates pro-
duced a single 1,000-bp amplicon corresponding to a fragment of the IS200 element, typical of
Salmonella 1,4,[5],12:i:-. The control group of 58 Salmonella Typhimurium isolates were also
confirmed, with 55 isolates producing two amplicons (1,000-bp and 1,389-bp), which is spe-
cific for Salmonella Typhimurium, and the remaining three being positive for the 1,389-bp
phase 2 flagellar gene but negative for the 1,000-bp IS200 fragment. Positive detection ofmdh
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confirms the presence of Salmonella Typhimurium or its monophasic variant Salmonella 1,4,
[5],12:i:-. In the current study,mdh was detected in all Salmonella 1,4,[5],12:i:- and Salmonella
Typhimurium isolates. The overall Salmonella 1,4,[5],12:i:- occurrence ratio reached 2.5% (13/
524), whereas Salmonella 1,4,[5],12:i:-/Salmonella Typhimurium ratio was 22.4% (13/58) in
the period of 2011 to 2014.

All 71 of the Salmonella isolates examined in this study showed some level of antibiotic
resistance. In total, 76.9% of Salmonella 1,4,[5],12:i:- and 58.6% of Salmonella Typhimurium
isolates were resistant to three or more antimicrobials (Table 1). Among these antibiotics, high
rates of resistance were observed for tetracycline, sulfonamides, ampicillin, nalidixic acid,
streptomycin, kanamycin, trimethoprim-sulfamethoxazole, and chloramphenicol in both Sal-
monella 1,4,[5],12:i:- and Salmonella Typhimurium isolates (S2 and S3 Tables). The main anti-
microbial resistance patterns of the 13 Salmonella 1,4,[5],12:i:- and 58 Salmonella
Typhimurium isolates are shown in Table 1.

The 13 Salmonella 1,4,[5],12:i:- isolates showed highly similar virulence gene profiles. All
isolates contained gipA (encoding a Peyer’s patch-specific virulence factor) and sodC1 (putative
Cu/Zn superoxide dismutase), carried by the Gifsy-1 and Gifsy-2 lambdoid prophages, respec-
tively, while sspH1 (encoding a Salmonella type III effector protein), located in Gifsy-3, and
three genes associated with the Salmonella virulence plasmid (spvC, pefA, and rck) were absent.
However, three Salmonella 1,4,[5],12:i:- isolates shared a different virulence gene profile, and
were positive for sopE1 (Salmonella type III effector protein). Overall, the prevalence of each of
the virulence genes was similar between the Salmonella 1,4,[5],12:i:- and Salmonella Typhimur-
ium isolates, except for the absence of the three plasmid genes and presence of gipA in all of the
Salmonella 1,4,[5],12:i:- isolates (Tables 2 and 3).

Among the 13 Salmonella 1,4,[5],12:i:- and 58 Salmonella Typhimurium isolates, five dis-
tinct STs were identified based on a seven-gene MLST scheme (Table 4). The number of alleles
for the seven housekeeping genes ranged from 2–554. hisD554 and ST1922 were identified as a
novel allele type and a novel MLST pattern, respectively. Two STs (ST19 and ST34) were pre-
dominant, and together accounted for 94.4% of isolates tested. ST19 was the most common
Salmonella Typhimurium ST, accounting for 44 of 58 isolates. All the Salmonella 1,4,[5],12:i:-
isolates were assigned to ST34, a single-locus variant of ST19 (with dnaN19 instead of dnaN7);
10 Salmonella Typhimurium isolates were also designated ST34. One Salmonella Typhimur-
ium isolate was identified as ST36, with two further isolates assigned to ST1544. These three
isolates also differed from other Salmonella Typhimurium isolates based on duplex-PCR
results (positive for the 1,389-bp phase 2 flagellar gene, but negative for the 1,000-bp IS200
fragment).

Table 1. Antimicrobial resistance patterns of Salmonella 1,4,[5],12:i:- and Salmonella Typhimurium isolates.

R-types Salmonella 1,4,[5],12:i:-,n (%) Salmonella Typhimurium,n (%)

ASSuTa ±other 7 (53.8%) 13 (22.4%)

ACSSuTb ±other 3 (23.1%) 7 (12.1%)

Pansusceptible 0 (0.0%) 0 (0.0%)

�1 Antimicrobial 13 (100.0%) 56 (96.6%)

�3 Antimicrobial 10 (76.9%) 34 (58.6%)

Total 13 (100.0%) 58 (100.0%)

aASSuT resistance phenotype (ampicillin-streptomycin-sulfonamides-tetracycline);
bACSSuT resistance phenotype (ampicillin-chloramphenicol-streptomycin-sulfonamides-tetracycline).

doi:10.1371/journal.pone.0137967.t001
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Genomic deletions within the fljBA operon were only found in Salmonella 1,4,[5],12:i:- iso-
lates. The 13 Salmonella 1,4,[5],12:i:- isolates showed three different deletion profiles for cluster
V, namely ΔfljAB-I, ΔfljAB-II, and ΔfljAB-III. ΔfljAB-I and ΔfljAB-II were the most common
deletion profiles. fljB was absent and hin was present in all Salmonella 1,4,[5],12:i:- isolates.
However, fljA was present in only one isolate (deletion profile ΔfljAB-III). The deletion profiles
ΔfljAB-I and ΔfljAB-II were marked by the presence and absence of STM2757 and STM2758,
respectively (Table 5 and S3 Fig).

Discussion
This study confirmed the presence of Salmonella 1,4,[5],12:i:- in food products in China. The
Salmonella isolates examined in this study were collected from a nationwide food investigation
covering most provincial capitals of China. Thus, the results were fairly comprehensive and
representative of China as a whole. The occurrence of Salmonella 1,4,[5],12:i:- was higher in
our study compared with other countries [11,29].

Previous studies have suggested that the vast majority of these monophasic Salmonella
strains are from pigs and pork products [30,31], followed by isolates obtained from poultry and
cattle. Isolation from other sources was believed to be rare [9,32]. In our study, although Salmo-
nella 1,4,[5],12:i:- isolates were obtained from various sources, beef and pork products pro-
vided 84.6% of all tested isolates, proving to be the most important reservoirs in China.

The prevalence of MDR isolates observed in our surveillance of Salmonella Typhimurium
(58.6%) and Salmonella 1,4,[5],12:i:- (76.9%) is similar to results from previous studies con-
ducted in humans in China [2,21], and to rates of resistance reported in other countries
[11,33]. The current study confirmed the prevalence of R-type ASSuT Salmonella Typhimur-
ium isolates, with an even higher prevalence of this phenotype amongst Salmonella 1,4,[5],12:

Table 2. Virulotyping: most commonly detected haplotypes.

Serotypes Haplotypes Number of strains

Salmonella 1,4,[5],12:i:-

gipA; sodC1a n = 10 (ST34)

gipA; sodC1; sopE1 n = 3 (ST34)

Salmonella
Typhimurium

gipA; sodC1; spvC; pefA;
rck

n = 33 (ST19); n = 2 (ST1544); n = 1
(ST1922)

gipA; sodC1a n = 10 (ST34); n = 2 (ST19)

sodC1 n = 7 (ST19)

sodC1; spvC; pefA; rck n = 2 (ST19)

sodC1; sopE1 n = 1 (ST36)

aIdentical haplotypes.

doi:10.1371/journal.pone.0137967.t002

Table 3. Prevalence (%) of the virulence genes by serotype.

Serotypes Gene targets

gipA sodC1 sopE1 sspH1 spvC pefA rck

Salmonella 1,4,[5],12:i:- 100.0% 100.0% 23.1% 0.0% 0.0% 0.0% 0.0%

Salmonella Typhimurium 82.8% 100.0% 1.7% 0.0% 65.5% 65.5% 65.5%

doi:10.1371/journal.pone.0137967.t003

Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China

PLOS ONE | DOI:10.1371/journal.pone.0137967 September 11, 2015 5 / 10



i:- isolates. In addition, several isolates displayed an R-type ACSSuT phenotype (Table 1). R-
type ASSuT was also the most common profile among Salmonella 1,4,[5],12:i:- strains isolated
in Germany from pigs, pork products, and humans [30], as well as among strains isolated from
humans and foodstuffs in England, France, Germany, Italy, Spain, Switzerland, and the Neth-
erlands [1,34]. The emergence and spread of the R-type ASSuT Salmonella 1,4,[5],12:i:- clonal
lineage deserves further attention as it has been responsible for several foodborne Salmonella
outbreaks, such as in Luxembourg in 2006 [18] and in Italy in 2010 [16], which can be associ-
ated with severe diseases, even deaths.

Most of the virulence genes with reported contributions to pathogenicity are located in Sal-
monella pathogenicity islands (SPIs), fimbrial clusters, plasmids and prophages. SPIs and fim-
brial clusters are highly conserved regions, while prophages and plasmids are variable within
the Salmonella genome. Some differences were observed in the genes located on prophages
(gipA, sodC1, sopE1, sspH1) and plasmids (spvC, pefA, rck) when comparing virulence gene
profiles from Salmonella Typhimurium and Salmonella 1,4,[5],12:i:- in previous studies
[12,26]. In our study, three plasmid-borne virulence genes (spvC, pefA, and rck) were highly
prevalent amongst Salmonella Typhimurium isolates, while none of the Salmonella 1,4,[5],12:
i:- isolates contained these genes. This is consistent with the findings of Capuano et al [26]. The
absence of these plasmid-borne virulence genes has been reported previously in R-type ASSuT

Table 4. Allelic profiles and MLST types of the 71 Salmonella isolates.

Serotypes (no. of isolates) Allelic types MLST patterns

aroC dnaN hemD hisD purE sucA thrA

Salmonella Typhimurium (44) 10 7 12 9 5 9 2 ST19

Salmonella Typhimurium (10); Salmonella 1,4,[5],12:i:- (13) 10 19 12 9 5 9 2 ST34

Salmonella Typhimurium (1) 10 7 12 554* 5 9 2 ST1922*a

Salmonella Typhimurium (2) 10 7 12 230 5 9 2 ST1544

Salmonella Typhimurium (1) 18 14 12 9 5 18 21 ST36

aAsterisks denote novel alleles and novel MLST patterns.

doi:10.1371/journal.pone.0137967.t004

Table 5. Gene deletion profiles and types for the 13 Salmonella 1,4,[5],12:i:- isolates.

Isolates Target genes Detection types

hin fljB fljA iroB STM2758 STM2757

2011–33 + - - + + + ΔfljAB-I

2011–34 + - - + + + ΔfljAB-I

2012–35 + - - + - - ΔfljAB-II

2012–36 + - - + + + ΔfljAB-I

2012–37 + - - + + + ΔfljAB-I

2013–45 + - - + - - ΔfljAB-II

2013–50 + - - + + + ΔfljAB-I

2013–51 + - + + + + ΔfljAB-III

2013–52 + - - + + + ΔfljAB-I

2014–54 + - - + - - ΔfljAB-II

2013–57 + - - + - - ΔfljAB-II

2013–58 + - - + - - ΔfljAB-II

2013–62 + - - + - - ΔfljAB-II

doi:10.1371/journal.pone.0137967.t005
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Salmonella 1,4,[5],12:i:- strains of the European clone. In contrast, these genes have been iden-
tified in some Spanish clone Salmonella 1,4,[5],12:i:- strains, which are characterized by plas-
mid-mediated resistance to up to seven antimicrobial drugs, including ampicillin,
chloramphenicol, gentamicin, streptomycin, sulfonamides, tetracyclines, and trimethoprim
(R-type ACGSSuTTp) [12]. In addition, Capuano et al [26] also detected gipA in all Salmonella
1,4,[5],12:i:- isolates of food origin, but in only 76.9% of Salmonella Typhimurium isolates.
Another aspect to consider is that the detection of the target virulence genes showed no rela-
tionship to the serotype (Salmonella Typhimurium or Salmonella 1,4,[5],12:i:-), while some
correlation with the MLST pattern was observed. All ST34 Salmonella Typhimurium isolates,
and a large number (76.9%) of the ST34 Salmonella 1,4,[5],12:i:- isolates, exhibited a virulence
gene profile of “gipA; sodC1”.

All Salmonella 1,4,[5],12:i:- isolates in the present study were assigned to ST34, sharing
identical STs with Salmonella Typhimurium isolates, which further confirmed that Salmonella
1,4,[5],12:i:- and Salmonella Typhimurium were genetically closely related. Furthermore, these
data suggested that Salmonella Typhimurium strains of ST34 might be ancestral candidates for
serotype 1,4,[5],12:i:- from China. ST34 has previously been associated with R-type ASSuT Sal-
monella 1,4,[5],12:i:- strains belonging to the European clone [15,35]. In contrast, R-type
ACGSSuTTp Salmonella 1,4,[5],12:i:- strains of the Spanish clone have been assigned to ST19
[12,35]. In the current study, Salmonella 1,4,[5],12:i:- isolates represented only one ST, while
Salmonella Typhimurium isolates belonged to five different STs. This indicated considerably
lower sequence diversity amongst Salmonella 1,4,[5],12:i:- than Salmonella Typhimurium. This
observation has also been reported by Guerra et al [36] and Soyer et al [10].

All Salmonella 1,4,[5],12:i:- isolates examined in the current study exhibited deletions in the
fliBA operon and flanking genes, although variations were identified. In previous studies, vari-
ous deletion profiles affecting the fljBA operon and surrounding genes have been observed in
Salmonella 1,4,[5],12:i:- strains. Most Salmonella 1,4,[5],12:i:- isolates from Spain appear to be
characterized by deletions of fljA, fljB, hin, and iroB and conservation of STM2757 [12,13,28],
whereas some of the American Salmonella 1,4,[5],12:i:- isolates seem to contain deletions that
eliminate fljA, fljB, and STM2757 but maintain hin and iroB [7,10]. The deletion profile of Sal-
monella 1,4,[5],12:i:- strains from Italy is characterized by the absence of the fljA, fljB, and hin
genes and the presence of STM2757, as in Spanish strains, but a conserved iroB, as with the
American strains [14]. Among the isolates described in this work, hin and iroB were always
conserved. The ΔfljAB-II deletion profile was identical to the American Salmonella 1,4,[5],12:
i:- strains, whereas the ΔfljAB-I and ΔfljAB-III profiles were newly described for Salmonella
1,4,[5],12:i:- strains. This observed variation supported the independent evolution of multiple
successful monophasic clones from Salmonella Typhimurium ancestors [5]. Sequencing of the
entire fljBA operon and flanking genes in future studies could give better insight into the
genetic background of such variants.

Conclusions
This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The main
sources of Salmonella 1,4,[5],12:i:- in China appear to be pork and beef. The examined Salmo-
nella 1,4,[5],12:i:- strains were mainly ST34, confirming the domination of the tetra-resistant
ASSuT clone. The observed genomic deletion of the fljBA operon and its flanking genes in Sal-
monella 1,4,[5],12:i:- isolates revealed that multiple clones of this serovar are circulating in
China, and several new clones were identified. Further studies are needed to assess these Salmo-
nella 1,4,[5],12:i:- clones in more detail to obtain a better picture of the genetic background and
relationship with Salmonella Typhimurium clones circulating in China.
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Supporting Information
S1 Fig. Map of China illustrating provinces and cities included in the study.
(TIF)

S2 Fig. Identification of 13 monophasic Salmonella 1,4,[5],12:i:- and 58 biphasic Salmo-
nella Typhimurium isolates by duplex-PCR. The isolates produced a single 1,000-bp ampli-
con corresponding to a fragment of the IS200 element were assigned to Salmonella 1,4,[5],12:i:-
(lanes 35–39, 46, 51–53, 55, 58, 59, 62). The isolates produced two amplicons (1,000-bp and
1,389-bp) (lanes 2–23, 26–28, 30–34, 40–45, 47, 50, 54, 56, 57, 60, 63, 64, 66–70, 73–74, 76–79)
or a single 1,389-bp amplicon (lanes 29, 61, 75) were assigned to Salmonella Typhimurium. M,
DL2,000 DNAMarker. Lanes 1, 25, 49, 65, 72, Salmonella Typhimurium ATCC14028 refer-
ence strain; lanes 24, 48, 71, 80, water-only control.
(TIF)

S3 Fig. Genomic deletion analysis of cluster V by PCR using two reference strains and 13
Salmonella 1,4,[5],12:i:- isolates.M, DL2,000 DNAMarker. C, water-only control. Lane 1,
Salmonella Typhimurium ATCC14028 reference strain; lane 2, Salmonella Typhimurium
CMCC50115 reference strain; lane 3, isolate 2011–33; lane 4, isolate 2011–34; lane 5, isolate
2012–35; lane 6, isolate 2012–36; lane 7, isolate 2012–37; lane 8, isolate 2013–45; lane 9, isolate
2013–50; lane 10, isolate 2013–51; lane 11, isolate 2013–52; lane 12, isolate 2014–54; lane 13,
isolate 2013–57; lane 14, isolate 2013–58; lane 15, isolate 2013–62. a) fljB, DNA fragments of
the expected sizes for fljB (lanes 1 and 2), no amplicon (lanes 3–15); b) hin, DNA fragments of
the expected sizes for hin (lanes 1–15); c) fljA, DNA fragments of the expected sizes for fljB
(lanes 1, 2, and 10), no amplicon (lanes 3–9, 11–15); d) iroB, DNA fragments of the expected
sizes for iroB (lanes 1–15); e) STM2757, DNA fragments of the expected sizes for STM2757
(lanes 1–4, 6, 7, 9–10), no amplicon (lanes 5, 8, 12–15); f) STM2758, DNA fragments of the
expected sizes for STM2758 (lanes 1–4, 6, 7, 9–10), no amplicon (lanes 5, 8, 12–15).
(TIF)

S1 Table. Results of serotyping, antimicrobial resistance, virulotyping and MLST analysis
of Salmonella isolates in this study. aFor antimicrobial abbreviation, ampicillin (AMP), amox-
icillin-clavulanic acid (AMC), cephalothin (KF), cefazolin (KZ), cefoxitin (FOX), ceftriaxone
(CRO), cefotaxime (CTX), ceftazidime (CAZ), cefoperazone (CFP), cefepime (FEP), chloram-
phenicol (C), tetracycline (TE), nalidixic acid (NA), ciprofloxacin (CIP), amikacin (AK), genta-
micin (CN), streptomycin (S), kanamycin (K), trimethoprim-sulfamethoxazole (SXT), and
sulfonamides (Su). Names of antimicrobials with capital letters means resistance; Names of
antimicrobials with lowercase letters mean intermediate resistance; [tetra], a tetra-resistant pat-
tern including resistance to ampicillin, streptomycin, sulfonamide, and tetracycline (ASSuT R-
type); [penta], a penta-resistant pattern including resistance to ampicillin, chloramphenicol,
streptomycin, sulfonamide, and tetracycline (ACSSuT R-type). bVP1, virulence gene profile:
gipA; sodC1; spvC; pefA; rck.
(DOC)

S2 Table. Antimicrobial resistance profiles of Salmonella 1,4,[5],12:i:- isolates examined in
this study.
(DOC)

S3 Table. Antimicrobial resistance profiles of Salmonella Typhimurium isolates examined
in this study.
(DOC)
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