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ABSTRACT: This work is devoted to the development of quantitative
structure−property relationship (QSPR) models using various
regression analyses to predict propylene (C3H6) adsorption capacity
at various pressures in zeolites from a topologically diverse Interna-
tional Zeolite Association database. Based on univariate and multilinear
regression analysis, the accessible volume and largest cavity diameter
are the most crucial factors determining C3H6 uptake at high and low
pressures, respectively. An artificial neural network (ANN) model with
five structural descriptors is sufficient to predict C3H6 uptake at high
pressures. For combined pressures, the prediction of an ANN model
with pore size distribution is pleasing. The isosteric heat of adsorption
(Qst) has a significant impact on the improvement of the prediction of
low-pressure gas adsorption, which finely classifies zeolites into high or
low C3H6 adsorbers. The conjunction of high-throughput screening
and QSPR models contributes to being able to prescreen the database rapidly and accurately for top performers and perform further
detailed and time-consuming computational-intensive molecular simulations on these candidates for other gas adsorption
applications.

1. INTRODUCTION
Nanoporous materials are defined as materials with inter-
penetrating channels and pore sizes less than 100 nm which is
often comparable to the size of a molecule.1 Nanoporous
materials composed of countless molecular building blocks in
their synthesis, such as zeolites, porous carbons, metal−organic
frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs),
and covalent organic frameworks (COFs), exhibit superior
chemical and geometrical tunability, a diverse range of surface
areas, pore surfaces, and void fractions, which perceive them as
the next-generation technology.2 A wide range of properties
have successfully promoted diverse applications of nanoporous
materials including, but not limited to gas storage, separation,
catalysis, drug delivery, and sensing.3 In the realm of
nanoporous materials, it is always expected that an optimal
material is tailored to a specific application. In recent years, an
exponential increase in published lab-synthesized and com-
puter-generated hypothetical nanoporous materials has pro-
vided us with a library of tens of thousands of potentially
interesting new materials.4 These new materials provide an
ideal platform for understanding thoroughly how to tailor-
make an optimal material for a given application.
High-throughput computational screening techniques using

brute-force experimental and simulated methods could
generate the thermodynamic data needed to predict the

performance of these materials for specific applications.5,6 It is
impossible to synthesize and characterize materials sequentially
for identifying promising candidates by traditional extensive
trial and error experimental methods with the advent and
development of large databases due to time-consuming and
expensive characteristics. To accelerate high-throughput
screening, several outstanding theoretical computing tools
have been widely adopted for characterization of novel
materials over the last few years, for instance, first principles
(ab initio) methods, density functional theory, and molecular
simulations (Monte Carlo and molecular dynamics simu-
lations).7 In particular, grand canonical Monte Carlo (GCMC)
simulation is an excellent example for adsorption studies
among them, and its adsorption capacities are in good
agreement with experimental results for many systems, which
have been confirmed in prior work.8 So far, the GCMC
simulation methods have been extensively applied to methane
storage,9 hydrogen storage,10 carbon dioxide (CO2) capture,
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ethanol purification,12 propylene/propane (C3H6/C3H8) sep-
aration,13 and other aspects14−16 by many groups. Additionally,
preliminary structure−property relationships have been
revealed. Undoubtedly, the time, cost, and human effort
required for the characterization of material properties using
GCMC simulation are greatly reduced compared to exper-
imental methods. Although high-throughput screening studies
based on GCMC simulation have been helpful in guiding
experimental synthesis, this brute-force approach is limited to
an almost unlimited number of new structures due to the
required expensive computational costs. At present, the lack of
efficient computational tools has gradually become a bottle-
neck in the rapid development of novel materials; con-
sequently, the development of alternative screening method-
ologies is urgent.2

Machine learning methods such as decision tree, support
vector machine, and neural networks have become a powerful
tool to prescreen high-performing materials and accelerate
large-scale simulation in the material field. It saves a lot of time
to perform further detailed and time-consuming calculations
only on candidates prescreened by machine learning. Explicitly,
machine learning methods devise complex models to produce
reliable predictions about unknown data through learning from
relationships in the dataset provided, which makes the
screening of countless nanoporous materials practicable.
Quantitative structure−property relationship (QSPR) mod-
els17,18 trained by data-driven machine learning methods can
systematically correlate structural features of materials
(referred to as descriptors) to their functional properties in
quantitative terms, which would be expected to play a crucial
role in material screening. For nanoporous materials, one of
the most desirable properties to predict is the adsorption
capacity of guest molecules at the required temperature and
pressure.19 Naturally, the morphology of the pores described
by various descriptors is essential for the adsorption behavior
of guest molecules, where adsorbates are located and interact
with the material surface.20 The selection of highly predictive
descriptors for determining adsorption capacity is prominent.
Standard structural descriptors for pore morphology, such as

mass density, surface area, void fraction, largest cavity
diameter, and others, have been used to construct feature
vectors for systems under certain thermodynamic conditions
and provided satisfactory results. For instance, Dura ́ et al.21
innovatively made a reasonable fitting for CO2 adsorption
capacity in porous carbons through a simple regression
approach derived from microporous and mesoporous volumes.
Subsequently, artificial neural network (ANN) methods using
microporous and mesoporous volumes and Brunauer−
Emmett−Teller surface area were used to predict CO2
uptake,22 nitrogen (N2) uptake under ambient conditions,
and CO2/N2 selectivity

23,24 of porous carbons. Fernandez et
al.25 accurately predicted methane (CH4) uptake of MOFs at
100 bar based only on the dominant pore diameter, the
maximum pore diameter, the void fraction, the gravimetric
surface area, the volumetric surface area, and the framework
density. Furthermore, results for N2,

26 CO2 working capacities,
and the CO2/CH4 selectivity

27 of MOFs were also studied
using machine learning algorithms and standard structural
descriptors. Similarly, simple textural descriptors were regarded
as the MOF fingerprints to predict hydrogen (H2) adsorption
uptake and CO2/H2 selectivity.

28 Recently, Lin et al.29

systematically screened hypothetical pure-silica zeolites and
identified 230 pre-eminent zeolites for effective removal of

linear siloxanes and derivatives using a random forest method
based on simple structural descriptors. Analogously, high-
performing zeolites for anion removal from water were
identified.30 Guest molecules occupy almost the entire void
space of nanoporous materials at high pressures, so these
descriptors capturing global porosity characteristics are often
popular. Although the prediction of high-pressure gas
adsorption performance is encouraging, there is no clear
principle guiding the selection of appropriate descriptors,
especially for low-pressure gas adsorption with poor predictive
performance.
At low pressures, guest molecules are usually adsorbed in the

strongly binding regions of the material’s pore, which cannot
be captured well by simple structural descriptors.31 To address
this problem, some specific descriptors have been continuously
developed by researchers for obtaining a universal model for
adsorption behavior prediction at different pressures. A novel
atomic property weighted radial distribution function
descriptor accounting for the topological diversity was tailored
by Fernandez et al.26,25,32 and combined with traditional
structural descriptors for the prediction of CH4, CO2, and H2
uptakes at low pressures with pleasing results. Lee and co-
workers2,33,34 developed a new descriptor for nanoporous
materials by using topological data analysis to quantify
similarity of pore structures and successfully predicted CH4
uptake at low pressures. A vectorized persistence diagram for
topology analysis was also expected to be applied to the
screening of various materials.19,35 Although detailed pore
structure information is captured by a topological descriptor, it
is incapable of reflecting the relative proportion of pores with a
special pore size, let alone the guest−host interaction.
Accordingly, the Voronoi energy descriptor36 takes into
account both geometrical structural information and the
energetics information, to be highly predictive of xenon/
krypton (Xe/Kr) separation performance. Later, a histogram of
the guest−host energy was regarded as the feature for machine
learning, and the predicted gas adsorption capacities in MOFs
were in good agreement with GCMC simulations.8,10

Fanourgakis et al.37 proposed to treat the probabilities of a
set of different probe atoms adsorbed by materials as new
descriptors for fast screening of large databases. Recently, heat
of adsorption and Henry’s coefficient of special adsorbates
were combined with traditional structural descriptors for gas
adsorption and separation study.38,39 For nanoporous materials
with a wide variety of elements, especially MOFs, chemical
descriptors considering types and contents of chemical
elements were used to predict gas adsorption performance at
low pressures.40−42 In spite of the continuous generation of
new descriptors, the selection of appropriate descriptors for a
particular application remains an open scientific issue.
As an essential component of various household plastic

products, C3H6 is obtained by an energy-intensive cryogenic
distillation process.43 The development of alternative separa-
tion technologies with low energy consumption is of great
value. A physical adsorption process, especially pressure-swing
adsorption (PSA) technology with high gas purity, is a
promising choice.44 In the PSA process, guest molecules are
adsorbed at high pressures and desorbed at low pressures. The
selection of high-performance adsorbents is the key to
achieving an efficient separation process. Various porous
materials have been reported for the PSA process so far,
such as zeolites,45,46 MOFs,47 and ZIFs.48 Considering the
uniform system of pores, high porosity, and excellent thermal

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02779
ACS Omega 2022, 7, 33895−33907

33896

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02779?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and chemical stability, zeolites have been proven to be
promising for gas adsorption.49

In this work, we present a comprehensive QSPR analysis of
the database of 232 zeolites. Correlations between various
descriptors and C3H6 adsorption capacity (NCd3Hd6

) at pressures
of 5,065, 1,013, 303.9, 202.6, 101.3, and 50.65 kPa, at 300 K,
were determined using multilinear regression analysis,
quadratic regression analysis, and ANN models. In addition,
pore size distribution (PSD) and isosteric heat of adsorption
(Qst) were introduced to predict NCd3Hd6

at low pressures, and
the prediction performance was further evaluated by receiver-
operator-curve (ROC) analysis. These QSPR models allowed
for the accurate identification of high-performing zeolites, and
rapid material prescreening significantly reduced the number of
computational-intensive GCMC simulations. Finally, we
described the relative importance of various descriptors
determining NCd3Hd6

at different pressures, which provided
insights into the understanding of structural performance
relationships at the atomic level.

2. MODELS AND METHODS
2.1. Molecular Models. First, 232 ordered pure silicon

zeolites (Si/O = 1:2) considered in this study were obtained
from the International Zeolite Association (IZA) database.
The zeolite framework types were generated using a library of
49 composite building units. The framework atoms were
described by Lennard-Jones (LJ) and electrostatic poten-
tials.50,51

= ++

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
U r

r r

q q

r
( ) 4

4ij
ij

ij

ij

ij

i j

ij
LJ elec

12 6

0 (1)

where εij and σij are the well depth and collision diameter,
respectively, rij is the distance between atoms i and j, qi is the
charge of atom i, and ε0 = 8.8542 × 10−12 C2 N−1 m−2 is the
permittivity of vacuum. The adsorbate C3H6 was represented
by a united-atom model with CHx as a single interaction site.
The LJ potential parameters and atomic charges of zeolites and
C3H6 were adopted from the COMPASS force field, which
fairly well predicted gas adsorption in a wide variety of
zeolites.52,53 The Lorentz-Berthelot combining rules were
employed to calculate the cross LJ parameters.

2.2. Simulation Methods. Before adsorption simulation,
C3H6 molecules and zeolite frameworks were geometrically
optimized to obtain the configurations with stable structures,

and the optimized structures with minimum energy were used
in the subsequent adsorption simulation process. GCMC54

simulation in the sorption module of Materials Studio 201855

was conducted to evaluate the adsorption performance of 232
zeolites toward C3H6. GCMC is a statistical mechanical
approach, in which the adsorption process is explored
depending on random sampling and probabilistic interpreta-
tion in the adsorbent framework. The adsorption was assumed
to be conducted at 300 K and 6 different pressure levels
(5,065, 1,013, 303.9, 202.6, 101.3, and 50.65 kPa). During
simulation, the C3H6 molecule was considered as an ideal gas
with negligible interactions, whose fugacity was equal to
pressure.56 Zeolite atoms were assumed to be rigid, and their
positions remained constant. A spherical cut-off of 15.5 Å was
used to calculate the LJ interactions, whereas the electrostatic
interactions were calculated using the Ewald summation
method. The cell lengths of each zeolite were expanded to at
least 31 Å (twice the cut-off distance) along all three
dimensions, and the periodic boundary conditions were
exerted. In each zeolite, the GCMC simulation was run for
1.1 × 106 cycles with 1 × 105 for equilibration and the
remaining for ensemble average. Each cycle consisted of n trial
moves (n: the number of adsorbate molecules), including
translation, rotation, regrowth, and swap. To verify the
suitability of the COMPASS force field and the above
assumptions used in this study, Figure 1 shows the adsorption
isotherms of pure C3H6 in CHA and STT and C3H8 in MFI
and DDR, respectively. Good agreement is observed between
the simulation and open published data,46,57−60 which suggests
the reliability of the force field selected. Besides GCMC
simulation for the adsorption of pure C3H6, the Qst of C3H6 at
infinite dilution was estimated. For this case, one adsorbate
molecule (C3H6) was added into a zeolite and simulation was
conducted in a canonical ensemble.

2.3. Descriptor Selection. In this work, in addition to
C3H6 adsorption data simulated, five general 1D structural
descriptors including the largest cavity diameter (LCD), pore-
limiting diameter (PLD), accessible surface area (ASA),
accessible volume (AV), density (ρ) and a 2D structural
descriptor of PSD, and an energy descriptor of Qst were
selected in our QSPR analysis. As described in Figure S1, based
on principles of moderate correlation between each descriptor
and NCd3Hd6

and no strong correlation among descriptors, we
selected the above five general 1D structure descriptors from
the initial seven descriptors to quantitatively describe the
structure of zeolites.

Figure 1. Comparison between simulated and open published adsorption isotherms of (a) pure C3H6 and (b) pure C3H8 in zeolites.
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The LCD corresponds to the maximum of the PSD, and the
PLD refers to the largest characteristic guest molecule size for
which there is a nonzero AV. LCD and PLD determine
whether a specific guest molecule can enter the zeolite
window; furthermore, ASA and AV reflect the void space
that guest molecules can reach. All void space of a zeolite is
reflected by ρ indirectly. The PSD provides information about
the fraction of void space that is occupied by pores of a certain
size, and the Qst value reflects the energy information related to
the adsorption process. These diverse descriptors with strong
structure−performance relationships between guest molecules
and zeolites reveal the features of zeolites from various aspects,
which could be applied in accuracy prediction of machine
learning.17,27,38,61 These descriptors are relatively easy to
measure, and they can be used directly to guide the synthesis
and application of zeolites. In this work, ρ was obtained
directly through zeolite crystalline structure, and LCD, PLD,
ASA, AV, and PSD were determined by the Zeo++ program, in
which the radius of a probe (1.2 Å)29 was used for ASA and
AV, and a bin size of 0.1 Å62 was used to obtain PSD
histograms. The Qst value was calculated by the NVT-Monte
Carlo simulation.

2.4. Multilinear and Quadratic Regression Models.
Multilinear regression analysis is performed when the relation-
ship between multiple descriptors and NCd3Hd6

of 232 zeolites is
assumed to be linear. The general form of the multilinear
regression model is as follows:

= + +y xk
i

i ik k0
(2)

The quadratic regression is performed through adding
binary interaction terms to the multilinear regression model.
The general form of the quadratic regression model is as
follows:

= + + +y x x xk
i j

ij ik jk
i

i ik k
,

0
(3)

where yk and xik refer to the target value and input value of
sample k; βij and βi are binary and linear coefficients,
respectively; β0 and γk are the constant and error term,
respectively.

2.5. Neural Network Models. To clarify the role of
structural descriptors and an energy descriptor on adsorption
capacity, the above descriptors were chosen as neurons,
imported to the input layer, and passed in an orderly manner
into the hidden layers and output layer. The information
obtained from the ANN model was finally stored and
transferred via a feed-forward process to predict NCd3Hd6

of 232
zeolites. As a typical machine learning algorithm, the ANN
model was trained countless times by comparing the simulated
and calculated output values and then adjusting the weights
and thresholds to decrease the error, where the mean squared
error was used as the cost function. The optimization of the
cost function was carefully monitored to determine the optimal
number of epochs so that overfitting to the training data was
avoided. Figure 2 exhibits the architecture of the ANN model
used in this paper and the ANN model was performed on a
MATLAB R2020a platform. ANN models with different
descriptors as nodes, two hidden layers, and seven nodes for
each layer were built to predict the GCMC-simulated NCd3Hd6

of
zeolites.

2.6. Performance Criteria. During the training process,
the data sets were primary randomly divided into two parts,
80% of which was used for training, and the remaining 20%
was used to test the generalization ability of the model.
Moreover, to reduce input data set partition uncertainties and
minimize overfitting issues, a fivefold cross validation (CV)
approach was also employed for the ANN model, and the
average of the results of the five calculations was taken as the
model performance. All input and output data sets were
preprocessed by a normalization method to speed up the
training process. The quality of the training and test results was
evaluated by the determinate coefficient (R2), the root mean
square error (RMSE), and the mean absolute error (MAE) as
follows:

= =
=

=
=R

y y

y y
1

( )

( )
i
i n

i i

i
i n

i

2 1
2

1
2

(4)

= = y y

n
RMSE

( )i
n

i i1
2

(5)

=
| |= y y

n
MAE i

n
i i1

(6)

where n, yi, ŷi, and y̅ refer to the number of samples, target
value, predicted value, and average target value, respectively.

3. RESULTS AND DISCUSSION
3.1. Univariate Analysis. A comprehensive understanding

of the relationship between the structural and energy
descriptors and performances of the zeolites used for C3H6
adsorption would be conductive to the identification of
potential materials. We initially performed a simple univariate
analysis where we looked for correlations between a single
descriptor and the simulated NCd3Hd6

at 300 K, 5,065 and 50.65
kPa, in which the top 20% of the data was classified as zeolites
with high adsorption capacity, and the remaining 80% as
zeolites with low adsorption capacity. Figures 3a−d, and S2a−
d show that four structural descriptors (LCD, PLD, ASA, and
AV) are positively corrected with NCd3Hd6

. When LCD is less
than 3.75 Å, adsorption of guest molecules is impeded due to
unfavorable potential overlap with the framework, and NCd3Hd6

could be considered to be almost zero. With the gradual
increase of LCD, the large void space makes the adsorption
capacity increase overall at 5,065 and 50.65 kPa. ASA and AV

Figure 2. Architecture of an ANN model.
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are also strongly correlated with NCd3Hd6
at 5,065 and 50.65 kPa.

The relationship between NCd3Hd6
and ρ also shows a similar

linear trend in Figures 3e and S2e, but NCd3Hd6
gradually

decreases as ρ increases. There is no evident trend in the
relationship between NCd3Hd6

and Qst, which shows that Qst
cannot be a good linear explanation of NCd3Hd6

. The
interpretation of NCd3Hd6

by a single descriptor at 50.65 kPa is
all reduced compared to that of 5,065 kPa even though similar
linear trends are observed. From the perspective of univariate
analysis, the correlation of simple structure descriptors is AV >
LCD > ρ > ASA > PLD at 5,065 kPa (high pressure), which is
different from that at 50.65 kPa (low pressure) with LCD >
AV > ρ > ASA > PLD. It can also be observed that NCd3Hd6

is not
uniquely determined by a single descriptor. Overall, a single
structural or energy descriptor can only determine the
individual performance relationship and cannot explain
synergies between various descriptors that might contribute
significantly to the performance of zeolites.
A heat map of the correlation coefficient matrix for various

descriptors and NCd3Hd6
at various pressures is shown in Figure 4.

Upon observing the correlations among the set of descriptors,
a strong positive correlation is observed between LCD and AV,
with the Pearson correlation coefficient value of r equal to
0.75; moreover, a strong negative correlation exists between ρ
and ASA or AV, with an absolute value of r greater than 0.71.
However, no significant correlation is observed between Qst
and structural descriptors. For NCd3Hd6

, three structural
descriptors (AV, LCD, and ρ) are strongly related to it with
the absolute value of r greater than 0.62, and two structural
descriptors (ASA and PLD) have moderate correlation with r
greater than 0.37. Nevertheless, there is a little correlation
between the energy descriptor (Qst) and NCd3Hd6

with an
absolute value of r lower than 0.10. It can also be clearly
observed from Figure 4 that with the decrease of adsorption
pressure, the contribution of a single descriptor to NCd3Hd6

gradually decreases.
Due to the limitations of univariate analysis in identifying

synergies, five structural descriptors (LCD, PLD, ASA, AV, and
ρ) with strong linear correlation with NCd3Hd6

in univariate
analysis were used for multilinear regression and quadratic
regression analysis. The predicted results of the two models for

Figure 3. Relationships between (a) NCd3Hd6
∼ LCD, (b) NCd3Hd6

∼ PLD, (c) NCd3Hd6
∼ ASA, (d) NCd3Hd6

∼ AV, (e) NCd3Hd6
∼ ρ, and (f) NCd3Hd6

∼ Qst at 300
K and 5,065 kPa.
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NCd3Hd6
at different pressures are included in the Supporting

Information. Although the prediction accuracy of the two
prediction models is not excellent, these two models confirm
that AV plays the most critical role in NCd3Hd6

at 5,065 kPa.
Furthermore, multilinear regression analysis further confirms
that LCD is the most important descriptor for determining
NCd3Hd6

at 50.65 kPa.
3.2. ANN Models. 3.2.1. Five Structural Descriptors.

Machine learning has been widely used to predict the
adsorption performance of materials. In this section, ANN
models with five input nodes (LCD, PLD, ASA, AV, and ρ),
two hidden layers, and seven nodes for each layer were built to
predict the GCMC-simulated NCd3Hd6

of zeolites. During the
training process, both random validation and fivefold CV were
implemented, and the results of random validation are shown
in the Supporting Information. At 300 K and 5,065 kPa, the
predicted outcomes of the ANN model are in good agreement
with the GCMC-simulated NCd3Hd6

with R2 = 0.910 for fivefold
CV, as shown in Figure 5, indicating that these structural
descriptors correlate well with NCd3Hd6

at high adsorption
pressures. The explanation for this satisfactory situation is
that adsorption is mainly a molecular stacking mechanism at
high pressures, and these five descriptors describing the global
porosity characteristics of the zeolites could fully determine
NCd3Hd6

of zeolites. To examine this more closely, we select the
actual top 20% (46) zeolites in the database as determined by
simulations, which are the subset to the right of the solid red
line. Likewise, the top 20% zeolites as predicted by the ANN
model are also picked up, which are the zeolites above the
dashed red line in Figure 5. The intersection part produces top
performing zeolites that are recovered by the model. For
getting the real top 20% zeolites with excellent NCd3Hd6

, one only
needs to identify the top 31.0% zeolites predicted by the ANN
model for further research, which greatly shortens the time to

find optimal zeolites for C3H6 adsorption. A significant
acceleration of the screening process for identifying high-
performing candidates from millions of materials is also made
possible, whereas it is extremely time-consuming by means of
molecular simulations alone.
As demonstrated in Figure 6a−e, the significantly enhanced

prediction performance does not change the fact that it
deteriorates as pressure decreases in comparison with multi-
linear regressing and quadratic regression models. With the
gradual decrease of adsorption pressure, the external force is no
longer large enough for the guest molecules to fill the entire
void space of zeolites. At low pressures, guest molecules are
usually adsorbed in a portion of the void regions with strong
binding sites that are not sufficiently captured by these general
global descriptors, causing undesirable performance at 50.65
kPa in Figure 6e (R2 = 0.740). Accordingly, the search for a
specific descriptor to enhance the prediction accuracy of the
model for low-pressure gas adsorption seems to be a must.
Considering the combined pressures (see Figure 7a), the R2
(0.887) of the ANN model increases greatly compared with
the previous models (R2 = 0.722 for a multilinear regression
model, and R2 = 0.803 for a quadratic regression model),
which indicates that strong nonlinear capacity of the ANN
model makes the P descriptor affecting NCd3Hd6

work at various
pressures. Additionally, the fine predictive performance of the
ANN model is further demonstrated by the residual histogram
with a standard normal distribution shown in Figure 7b.

3.2.2. Six Descriptors with PSD. Simple structural
descriptors provide global porosity characteristics of the
zeolites, which are not enough to predict low-pressure gas
adsorption. Consequently, one tries to explore descriptors with
more implicit information, and PSD is a good choice, which
refers to the rate of change of pore volume with pore size. PSD
describes the pore morphology with upper and lower bounds
of pore diameters and their relative proportions, and it is
extremely sensitive to small changes in the pore diameter,
while it could not embody subtle changes in pore surface
texture and other features. Notably, we just need to calculate
the PSD histogram of the pore diameter range of 3∼6 Å as the
powerful attraction potential of C3H6 molecules and O atoms
in frameworks emerges in this range, as demonstrated in Figure
8, and corresponding LJ parameters are shown in Table S4.

Figure 4. Pearson correlation matrix for all the set of descriptors and
NCd3Hd6

at various pressures (the color bars represent the size of the
Pearson correlation coefficients).

Figure 5. Comparison of ANN model predictions using five structural
descriptors (LCD, PLD, ASA, AV, and ρ) with NCd3Hd6

obtained by
GCMC simulation (fivefold CV approach) at 300 K and 5,065 kPa.
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Additionally, it is also found that expansion of the pore
diameter range does not enhance the prediction of the ANN
model. The implementation of this strategy significantly
reduces the complexity of the input data while minimizing
the impact on the accuracy.
The five structural descriptors mentioned above and the

present PSD serve as inputs of ANN models to make
predictions to NCd3Hd6

at diverse pressures. As shown in Figure
S9, the addition of PSD does not improve the prediction
accuracy of the model compared with the ANN model using
five simple structural descriptors alone, which shows that the
supplement of PSD has little effect on the generalization of the
model at diverse pressures. Surprisingly, for combined
pressures, the R2 value of the ANN model with six structural
descriptors and P descriptor is 0.967 (see Figure 9a) with an
enhancement of 9.0% compared with no PSD, which is a

pleasant outcome. Moreover, the residual histogram with
normal distribution shown in Figure 9b also verifies the
excellent prediction performance. It is promising that the PSD
with many data points may be well matched with a lot of data
sets to obtain good fitting accuracy.

3.2.3. Six Descriptors with Qst. The ideal zeolite for C3H6
adsorption has a high uptake at adsorption pressure, as well as
a low uptake at desorption pressure. To date, the prediction of
high-pressure gas adsorption has been very pleasing; however,
the desired expectations have not been achieved at low
pressures. Consequently, we continued to search for the
descriptor that could explain the adsorption mechanism at low
pressures. Given the regional features of gas adsorption at low
pressures, the chemistry of pores is likely to be a dominating
factor in determining the low-pressure adsorption of C3H6 and
likely other gases, which is also Burner’s opinion.63 As an

Figure 6. Comparison of ANN model predictions using five structural descriptors (LCD, PLD, ASA, AV, and ρ) with NCd3Hd6
obtained by GCMC

simulation (fivefold CV approach) at 300 K and (a) 1,013 kPa, (b) 303.9 kPa, (c) 202.6 kPa, (d) 101.3 kPa, and (e) 50.65 kPa.
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essential parameter to characterize the heterogeneity of the
adsorption surface, Qst could disclose essential information
about chemical interactions between the adsorbate and
adsorbent, and C3H6 molecules with an excessively large Qst
value in a zeolite indicate very strong interaction with the
framework, which is a complement to PSD.
Five general structural descriptors (LCD, PLD, ASA, AV,

and ρ) together with an energy descriptor (Qst) are used as

inputs to train the ANN model. As shown in Figure S10a, the
accuracy of the model (R2 = 0.929) is improved by 2.1% with
the addition of Qst at 300 K and 5,065 kPa, which means that
the five structural descriptors alone are sufficient to predict
NCd3Hd6

if concise input data are required at high pressures. The
proportion of void space filled by guest molecules decreases
with the decline of pressure, and a gradual improvement in R2
(1.3% ∼ 5.1%) is observed, compared to the case where only
five structural descriptors are used (see Figure S10b−e). At
50.65 kPa, the model’s R2 (0.809) is enhanced by 9.3% in
Figure 10, which is quite remarkable in contrast with no energy
descriptor (Qst), and this further confirms the indispensability
of Qst for low-pressure gas adsorption prediction. The actual
top 20% and predicted top 20% zeolites are all selected to
further observe the deviation predicted for the ANN model
from Figure 10. Predicted top 41.8% zeolites are necessary to
be identified for subsequent research for the purpose of gaining
the real top 20% zeolites, which is satisfactory. Accordingly, the
Qst value does accurately capture the local porosity character-
istics of gas adsorption at low pressures. For combined
pressures, while the prediction performance (R2 = 0.902) of
the ANN model containing Qst in Figure S11a is inferior to the
ANN model with PSD (R2 = 0.967), the superiority of it is not
negligible compared with the ANN model with five general
structural descriptors (R2 = 0.887). Furthermore, the residual
histogram shown in Figure S11b is a standard normal
distribution. For clarity, R2, RMSE, and MAE values
corresponded to 232 zeolites for three different ANN models

Figure 7. (a) Comparison of ANN model predictions using five structural descriptors (LCD, PLD, ASA, AV, and ρ) and P with combined NCd3Hd6

obtained by GCMC simulation (fivefold CV approach) at six different pressures; (b) residual statistical histogram for all sets.

Figure 8. LJ potential surfaces for C3H6···O as a function of distance,
where the O atom is assumed to be a concentration of LJ potential
energy for zeolites.

Figure 9. (a) Comparison of ANN model predictions using six structural descriptors (LCD, PLD, ASA, AV, ρ, and PSD) and P with combined
NCd3Hd6

obtained by GCMC simulation (fivefold CV approach) at six different pressures; (b) residual statistical histogram for all sets.
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using the fivefold CV approach are summarized in Table 1, and
the contribution of various descriptors to the predictive
performance of ANN models is quite clear. Additionally, R2 on
the training and test sets of three ANN models using the
random validation approach at various pressures is summarized
in Table S5 in the Supporting Information.
A comparison of the predicted labels from the ANN model

and the labels from the GCMC simulation at different
pressures is depicted using an ROC plot, which illustrates
the ability of the model to correctly label zeolites. The ROC
depicts relative trade-offs between true positives (benefits) and
false positives (costs). The perfect prediction method would
yield a point in the upper left corner of the ROC plot, with a
100% sensitivity (no false negatives) and 100% specificity (no
false positives) and an area under the curve (AUC) of 1. In
order to examine the fine predicted performance of the ANN
model with the five structural descriptors and Qst on NCd3Hd6

at
low pressures closely, we initially selected a cut-off criterion of
20% in light of simulated NCd3Hd6

and then labeled zeolites as
“positive” or “negative” depending on whether the predicted
NCd3Hd6

was in the top 20% or in the remaining 80% on the 232
zeolites using random validation and fivefold CV approaches at
300 K and 50.65 kPa, as shown in Figure 11. The ANN model
displays outstanding performance, with an AUC of 0.955 for
random validation and 0.951 for fivefold CV at 300 K and
50.65 kPa. Taking into account the possible impact of the
criteria for dividing labels, AUC values for random validation

and fivefold CV at 50.65 kPa were calculated according to
several classification criteria. As illustrated in Figure 12, the
criteria do not affect the fact that the AUC values exceed 0.9
for these two validation methods. This excellent performance
certifies the superiority of the ANN model in classifying
zeolites into high or low C3H6 adsorbers at 50.65 kPa based on
five structural descriptors (LCD, PLD, ASA, AV, and ρ) and an
energy descriptor (Qst).
Subsequently, the influence of six descriptors (LCD, PLD,

ASA, AV, ρ, and Qst) on NCd3Hd6
in the ANN model at various

pressures was further explored. A common feature importance
measure, namely, permutation feature importance (PFI),64 was
calculated. To get the PFI of a descriptor such as Qst, we
randomly permute Qst and use it to predict NCd3Hd6

, while
keeping all other input features nonpermuted, resulting in
reduced prediction accuracy. The value of PFI for Qst is given
by the ratio in error measures between the original accuracy
and the accuracy resulting from having that Qst randomly
permuted.65 The above steps are repeated 5 times, and the
average value is taken as the final PFI value of Qst to avoid the
influence of the uncertainty of random permutation. All input
features have been considered for PFI with the error measure
being MAE. The PFI values of each descriptor at different
pressures are depicted in Figure 13. The PFI values of the
ANN model are of an order of AV > ASA > Qst > LCD > ρ >
PLD at 300 K and 5,065 kPa. Undoubtingly, AV is the most
crucial porosity characteristic determining NCd3Hd6

at high
pressures, and this is also revealed by the previous multilinear
regression and quadratic regression models, which confirms
the mechanism of molecular filling again for high-pressure gas
adsorption. With the decline of pressure, the importance of AV
decreases, while the significance of Qst and LCD becomes
increasingly prominent. The order of PFI values of the ANN
model is Qst > LCD > AV > PLD > ρ > ASA at 300 K and
50.65 kPa. When the pressure is not high enough to squeeze
the guest molecules into channels, LCD becomes the vital
element preventing the guest molecules from entering the
window. In this situation, guest molecules are no longer
adsorbed into the void space in a stacked state but selectively
adsorbed in the regions with strong interaction, and Qst just
reflects this local porosity characteristic. In short, AV is the
most critical feature at high pressures, while Qst and LCD
become the two most meaningful features at low pressures,
which coincides with the comments in the literature.19,38

The prediction performance of the ANN model after the
addition of Qst is indeed enhanced for low-pressure gas
adsorption, yet it is worth exploring carefully which factor is
responsible for this improvement, the change in freedom of

Figure 10. Comparison of ANN model predictions using five
structural descriptors (LCD, PLD, ASA, AV, and ρ) and an energy
descriptor (Qst) with NCd3Hd6

obtained by GCMC simulation (fivefold
CV approach) at 300 K and 50.65 kPa.

Table 1. R2, RMSE, and MAE Values Corresponded to 232 Zeolites of Three ANN Models (Fivefold CV Approach) at Various
Pressures with S Representing the General Structural Descriptor

ANN (5S) ANN (5S + PSD) ANN (5S + Qst)

pressure (kPa) R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

5,065 0.910 0.342 0.256 0.902 0.356 0.276 0.929 0.304 0.236
1,013 0.907 0.339 0.265 0.898 0.354 0.278 0.919 0.316 0.241
303.9 0.856 0.389 0.309 0.861 0.382 0.313 0.878 0.358 0.283
202.6 0.823 0.408 0.323 0.815 0.418 0.328 0.851 0.375 0.293
101.3 0.788 0.412 0.327 0.771 0.429 0.351 0.828 0.372 0.291
50.65 0.740 0.422 0.337 0.734 0.428 0.358 0.809 0.362 0.293
combined 0.887 0.644 0.265 0.967 0.348 0.132 0.902 0.601 0.246
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input data or the Qst itself. For clarifying this confusion, ASA
with a minimum PFI value was deleted while introducing Qst
to keep the freedom of inputs unchanged for ANN model
prediction at 300 K and 50.65 kPa. As illustrated in Figure 14,
in the absence of ASA, the prediction performance of the ANN
model is still pleasing (R2 = 0.795), and the prediction
performance decreases slightly by 1.7% compared with the
ANN model with six descriptors, while the performance is

enhanced by 7.4% in contrast with no energy descriptor (Qst).
Furthermore, we only need to identify the predicted top 49.6%
of zeolites for further research to get the real top 20% zeolites,
demonstrating this ANN model’s slightly strong impact on
zeolites with low NCd3Hd6

. The above analysis proves that the
enhancement of prediction performance for low-pressure gas
adsorption is due to Qst rather than the increase of freedom of
input data, and ASA is not completely ineffective. In light of
the simplicity and non-negligible contribution of ASA for low-
pressure gas adsorption, the ANN model with five structural
descriptors (LCD, PLD, ASA, AV, and ρ) and an energy
descriptor (Qst) is still considered suitable for predicting NCd3Hd6

at low pressures.

4. CONCLUSIONS
A comprehensive QSPR analysis for NCd3Hd6

in 232 ordered pure
silicon zeolites (Si/O = 1:2) at different pressures was
investigated with the aid of a variety of regression models.
Univariate analysis and multilinear regression analysis con-
sistently illustrated that AV and LCD were the most significant
factors determining NCd3Hd6

at 5,065 and 50.65 kPa, respectively.

Figure 11. Receiver-operator-curve (ROC) plots that show how well the ANN model labels zeolites as “positive” or “negative” depending on
whether the NCd3Hd6

at 300 K and 50.65 kPa is in the top 20% or in the remaining 80% for (a) random validation and (b) fivefold CV.

Figure 12. Relationships between AUC values and proportion of
“positive” samples for random validation and fivefold CV at 300 K and
50.65 kPa.

Figure 13. PFI maps of different descriptors with NCd3Hd6
at different

pressures based on ANN prediction, where PFI = MAEperm/MAEorig.

Figure 14. Comparison of ANN model predictions using four
structural descriptors (LCD, PLD, AV, and ρ) and an energy
descriptor (Qst) with NCd3Hd6

obtained by GCMC simulation (fivefold
CV approach) at 300 K and 50.65 kPa.
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Due to the involvement of complex binary interaction terms,
the prediction performance of the quadratic regression model
was significantly superior to multilinear regression, with the
enhancements of 10.1% at 5,065 kPa and 31.2% at 50.65 kPa.
For high-pressure gas adsorption with a molecular stacking

mechanism, the predicted NCd3Hd6
of the ANN model with only

five structural descriptors (LCD, PLD, ASA, AV, and ρ) was in
good agreement with the GCMC-simulated NCd3Hd6

. A pleasant
prediction (R2 = 0.967) was obtained with the introduction of
PSD for combined pressures. At low pressures, the prediction
performance of the ANN model increased by 9.3% with the
addition of Qst reflecting chemical interactions between the
adsorbate and adsorbent. ROC analysis certifies the superiority
of the ANN model with Qst in classifying zeolites into high or
low C3H6 adsorbers at 50.65 kPa. Based on the relative weight
analysis, AV is the most critical feature at high pressures, while
LCD and Qst become the two most meaningful features at low
pressures. Moreover, the enhancement of model performance
for low-pressure gas adsorption is due to the addition of Qst
rather than the increase of freedom of input data. Our
comprehensive insights into QSPR analysis in this work will
provide new ideas for understanding of structure−performance
relationships at the atomic level and the design of high-
performance zeolites for C3H6 adsorption.
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