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Abstract

Many bacteria are able to efficiently bind and take up double-stranded DNA fragments, and the resulting natural
transformation shapes bacterial genomes, transmits antibiotic resistance, and allows escape from immune surveillance. The
genomes of many competent pathogens show evidence of extensive historical recombination between lineages, but the
actual recombination events have not been well characterized. We used DNA from a clinical isolate of Haemophilus
influenzae to transform competent cells of a laboratory strain. To identify which of the ,40,000 polymorphic differences had
recombined into the genomes of four transformed clones, their genomes and their donor and recipient parents were deep
sequenced to high coverage. Each clone was found to contain ,1000 donor polymorphisms in 3–6 contiguous runs
(8.164.5 kb in length) that collectively comprised ,1–3% of each transformed chromosome. Seven donor-specific
insertions and deletions were also acquired as parts of larger donor segments, but the presence of other structural variation
flanking 12 of 32 recombination breakpoints suggested that these often disrupt the progress of recombination events. This
is the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, connecting
experimental studies of transformation with the high levels of natural genetic variation found in isolates of the same
species.
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Introduction

For many bacteria, natural transformation is the dominant mode

of genetic transfer between close relatives. These naturally competent

bacterial species can actively take up DNA fragments from their

surroundings and incorporate it into their chromosomes by

homologous recombination [1–3]. Like sexual reproduction in

eukaryotes, natural transformation moves alleles and loci between

related bacterial lineages, allowing pathogens to share antibiotic

resistances, antigenic determinants, and other virulence factors [4–

10]. Population genetic studies have found evidence of pervasive

recombination between lineages of human pathogenic bacteria,

especially in taxa known to be naturally competent [11–12]. However

such estimates of recombination are confounded by the other

evolutionary forces of mutation and selection, and by the poorly

understood demographic histories of the sampled isolates [13–15].

Naturally competent bacterial cells bind double-stranded DNA

fragments at the cell surface but transport only single strands into the

cytoplasm (Figure 1) [1–2]. Although several details of DNA uptake

differ between Gram-positive and Gram-negative bacteria, in all

bacteria the ensuing recombination between donor molecule and

recipient chromosome is mediated by RecA homologs and other

cytoplasmic proteins that limit DNA degradation and/or facilitate

RecA-mediated strand exchange [1,16–17]. In the laboratory

competent cells can take up multiple long DNA fragments, although

typically only a fraction of cells in a culture becomes competent

[18]. As a consequence selection for transformation at one marker

increases the fraction of cells found to be transformed by markers on

independent DNA fragments.

During natural transformation, the extent to which incoming

donor DNAs replace segments of recipient chromosomes is limited

by the extent and type of sequence differences between the two, as

is the case with other pathways that depend on homologous

recombination [19–20]. Higher sequence identity between donor

DNA and recipient chromosome increases transformation effi-

ciency, while transformation by insertions and deletions is less

efficient and requires flanking sequence homology [21–23]. The

heteroduplex DNA created by strand exchange may be subse-

quently corrected by mismatch repair (to either a donor or

recipient allele), or the uncorrected strands may segregate into

daughter cells after DNA replication (Figure 1) [24–26].

The genomes of independent isolates of many bacterial species

differ in two ways [27–30]. First, the 80–95% of two isolates’

genome sequences that can be readily aligned differ at about 1–5%

of bases. Second, the remaining 5–20% of unalignable DNA

consists of structural variation resulting from past insertions,

deletions, and more complex events. The finding that species show

such high variation in gene content has led to a ‘supragenome

hypothesis’, under which non-essential loci are frequently

exchanged between lineages by transformation, potentially

enabling rapid adaptation to varying conditions [29–31].

Natural genetic variation between bacterial strains has previ-

ously been used to characterize transformation at specific selected

loci [18,32–34], but no transformant has been genotyped across
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the entire chromosome. To investigate the factors that either

promote or constrain the movement of genetic variation between

otherwise clonal lineages of bacterial pathogens, we are using the

well-characterized natural transformation system of Haemophilus

influenzae, combining inexpensive sequencing technology with the

availability of complete genome sequences of divergent strains.

Here we report a high coverage sequence analysis of four H.

influenzae genomes derived by natural transformation of a recipient

strain with donor DNA of another strain differing at ,40,000

genetic markers (,2.5% of aligned positions and ,300 indels and

other rearrangements).

Results

Preliminary genetic analysis
Competent cultures of H. influenzae are reported to contain

many non-competent cells [18]. To avoid wastefully sequencing

clones derived from non-competent cells, we chose for sequencing

clones that had acquired a phenotypic marker in a standard

transformation experiment. Before doing this, we confirmed that

selection for transformation at one locus does not compromise

transformation at distant loci, using donor DNA purified from the

multiply marked Rd strain MAP7 [35] to transform our standard

laboratory Rd strain Rd-RR (strains used are listed in Table 1).

Figures 2A and B show that the relative transformation

frequencies at five loci were not altered by selection for a distant

marker, and Figure 2C shows that the transformation frequency of

a nalidixic acid resistance marker (NalR) did not vary when any of

4 distant markers is used for selection of transformed clones.

Accurate mapping of recombination events depends on the

density and distribution of sequence differences between the donor

and recipient genomes. We chose the clinical isolate 86-028NP as

the source of donor DNA because, like Rd, it has been completely

sequenced and annotated, and because its genome differs from Rd

at about 2.4% of their alignable bases, typical for a pair of H.

influenzae isolates [30,36]. To provide phenotypic markers in 86-

028NP for transformant selection, we introduced NovR (novobi-

ocin resistance) and NalR alleles from MAP7 by transformation

with short PCR fragments.

We used this doubly marked strain (NP-NN) to investigate how

strongly the sequence divergence between NP-NN and Rd-RR

limits transformation. Figure 2D shows that the sequence

divergence of the NP-NN donor DNA at or near the NovR and

NalR alleles reduced transformation efficiency into recipient

chromosomes by ,3-fold, compared to Rd-derived MAP7 donor

DNA.

Genomic DNA sequencing of transformed clones and
controls

To identify recombination events in clones transformed with

chromosomal DNA from a divergent strain, we selected four Rd-

RR clones that had been transformed with NP-NN chromosomal

DNA to either a NovR (transformants Nov1 and Nov2) or a NalR

(transformants Nal1 and Nal2) phenotype. Acquisition and

processing of sequence data for these clones is described in detail

in the Materials and Methods. Briefly, the Illumina GA2

sequencer [37] was used to obtain a high yield of short paired-

end sequence reads from genomic DNA of these four transfor-

mants (two individually and all four as a pool), and also to

individually resequence the genomes of the Rd-RR recipient and

NP-NN donor strains as controls (Table 1 and Table S1). Each set

of paired-end reads was separately aligned to each of the two

reference genomes (Rd and 86-028NP [38-39]) using the

alignment software BWA [40], and pileups and consensus base

calls at each reference position were generated using the SamTools

software package [41]. Since these genomes are ,2 Mb, genome

coverage per set of reads was high, with median read depths of

Figure 1. Model of natural transformation.
doi:10.1371/journal.ppat.1002151.g001

Author Summary

The ability of bacteria to acquire genetic information from
their relatives—called natural competence—poses a major
health risk, since recombination between pathogenic
bacterial lineages can help bacteria develop resistance to
antibiotics and adapt to host defenses. In this study we
transformed competent cells of the human pathogen
Haemophilus influenzae with genomic DNA from a
divergent clinical isolate and used deep sequencing to
identify the recombination events in four transformed
chromosomes. The results show that transformation of
single competent cells is more extensive than expected,
and suggests that transformation can be used as a tool to
map traits that vary between clinical isolates.

Table 1. Strains used.

Stock # Name Resistance Markers Reference

RR722 Rd-RR none [38]

RR666 MAP7 Nov Nal Str Kan Spc Vio [35]

RR1350 86-028NP none [39]

RR3131 NP-NN Nov Nal This work

RR3135 Nov1 Nov This work

RR3136 Nov2 Nov This work

RR3137 Nal1 Nal This work

RR3138 Nal2 Nal This work

doi:10.1371/journal.ppat.1002151.t001

Transformational Recombination in H. Influenzae
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Figure 2. Natural transformation of H. influenzae. The inset chromosome maps show the positions of the antibiotic resistance markers in the
two donor strains. (A) Transformants per viable cell at five markers using MAP7 donor DNA. (B) Double-selected transformants per single-selected
transformant using MAP7 donor DNA. For KanR, SpcR, NovR, and StrR, the selection was for the distant NalR marker. For NalR, the distant selection was
at each of the other 4 markers. (C) NalR transformants per selected transformant using MAP7 donor. (D) Transformation of MAP7 vs. NP-NN donor
DNA markers into Rd-RR per competent cell.
doi:10.1371/journal.ppat.1002151.g002

Table 2. Summary of read mapping to Rd (KW20).

Rd-RR NP-NN Nov1 Nal1 Pool

% Matched a 99.7% 89.2% 99.7% 99.7% 95.9%

Variant b 277 39,049 1,441 1,530 262

Ambiguous c 4,459 10,353 4,411 3,675 74,374

Unmapped d 112 148,510 111 867 38

aPercent of bases that unambiguously matched their mapped reference base.
The Rd (KW20) reference is 1,830,138 bp.

bNumber of bases that unambiguously differed from their mapped reference
base.

cNumber of bases whose identity at mapped positions was ambiguous, defined
where either the SamTools consensus caller identified a non-ACGT base, or
because the frequency of non-reference variants at that position was between
0.05 and 0.95.

dNumber of reference genome positions that were not mapped by the
indicated set of sequence reads.

doi:10.1371/journal.ppat.1002151.t002

Table 3. Summary of read mapping to 86-028NP.

Rd-RR NP-NN Nov1 Nal1 Pool

% Matched a 84.8% 99.8% 85.1% 85.0% 82.4%

Variant b 38,770 48 37,633 37,710 34,436

Ambiguous c 10,786 2,858 10,475 9,989 69,206

Unmapped d 241,237 22 236,977 239,666 234,173

aPercent of bases that unambiguously matched their mapped reference base.
The 86-028NP references is 1,914,490 bp, respectively.

bNumber of bases that unambiguously differed from their mapped reference
base.

cNumber of bases whose identity at mapped positions was ambiguous.
dNumber of reference genome positions that were not mapped by the
indicated set of sequence reads.

doi:10.1371/journal.ppat.1002151.t003

Transformational Recombination in H. Influenzae
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,400 per mapped reference position (Table S2 and S3 and Figure

S1).

For each set of reads, the base corresponding to each position in

each of the two reference genomes was classified as: (a) the same as

the reference, (b) different from the reference, (c) ambiguous, or (d)

unmapped (summarized in Tables 2 and 3). Ambiguous positions

were those where the specific base at a position could not be

confidently identified, likely due to sequencing or read-mapping

artifacts (see Materials and Methods). Positions were classed as

unmapped if none of the reads aligned, either because the

positions were absent from that DNA or unmapped for other

reasons.

Control analyses of donor and recipient re-sequencing
data

Before transformant data sets were analyzed to identify

recombination events, the control sequence reads were used to (1)

identify differences between the published reference genome

sequences and the genomes of the donor and recipient strains we

used; (2) confirm the reliability of single-nucleotide variants (SNVs)

for distinguishing between donor and recipient sequences; and (3)

identify positions that were systematically error-prone, ambiguous,

or unmapped in the alignment of reads to references. The three

steps (A, B and C) of these control analyses are illustrated in Figure 3.

Step A. Self-alignment of donor and recipient reads to

their own references. Aligning the sequence reads from the

recipient and donor strains to their corresponding reference

genomes provided two controls. First, it showed that our

sequencing approach was comprehensive and accurate: at .98%

of the positions the aligned reads agreed with the reference with

,1% error (Tables 2 and 3, and Tables S4 and S5). Although the

Rd-RR reads disagreed with the Rd reference at several hundred

positions, many of these appear to be errors in the 1995 reference

sequence. Second, these self-alignments allowed other potential

artifacts to be accounted for by identifying (i) sequence differences

between the strain and their respective references (Table 4), (ii)

several thousand positions where sequencing results were

ambiguous (Figure S2), and (iii) a small number of unmapped

positions at apparent deletions (Tables 2 and 3).

Step B. Reciprocal alignment of donor and recipient

reads. We next evaluated the alignment of donor and recipient

reads to the alternative reference genomes (Rd-RR aligned to 86-

028NP, and NP-NN aligned to Rd; Tables 2 and 3). These

alignments served to identify variant, ambiguous and unmapped

positions arising when reads are aligned to a reference with

substantial sequence divergence. The ,40,000 SNVs detected by

the two reciprocal alignments were roughly consistent with the

whole-genome alignment of the Rd and 86-028NP reference

sequences described below (Tables 2 and 3, and Tables S6–S8).

Many of the positions identified as ambiguous in the self-

alignments were also ambiguous in the reciprocal-alignments (44%

and 58% overlap), suggesting that these positions suffer from

systematic and persistent sequencing or mapping artifacts

(example in Figure S3A). However, more than twice as many

positions were classified as ambiguous in reciprocal alignments

than in self-alignments (Tables 2 and 3, and Figure S2). Many of

these were due to sequence reads that consistently misaligned at

regions of high divergence between donor and recipient (example

in Figure S3B), causing lower read depths and higher variant

frequencies at these positions than in self-alignments (Figure S4).

Because of the substantial number of indels and other

rearrangements between donor and recipient (Table S8), many

reference positions were not mapped by reciprocal alignment

(Tables 2 and 3, and Figure S5). 12.6% of 86-028NP positions had

no recipient reads mapped, and 8.1% of Rd positions had no

donor reads mapped. Because of the high sequence coverage of

these genomes, these unmapped positions served as markers to

identify structural variation between the two (see below).

Step C. Cross-validation of SNVs between donor and

recipient. Most of the mapped SNVs found by reciprocal

alignment were expected to identify genuine polymorphisms, but

others were mistakes generated by read mapping artifacts. To

independently validate SNVs, we aligned the two reference

genomes using the Mauve whole-genome alignment software

[42] (Tables S6–S8). After correcting for the variation detected

Figure 3. Control alignments. Step A. Self-alignments: Identifies
intra-strain variants and ambiguous positions. Step B. Reciprocal
alignments: Identifies putative SNVs and indels between donor and
recipient. Step C. Reference alignments: Whole-genome alignment of
the 86-028NP and Rd reference sequences identifies a set of SNVs for
cross-validation with the self- and reciprocal-alignments.
doi:10.1371/journal.ppat.1002151.g003

Table 4. Correction for variants detected by self-alignment
(Steps A and C).

Reference SNVs a 42156

Rd alleles in NP-NN b 242

Rd-exclusive alleles c 2237

Solved ambiguous Rd d 292

NP-NN-specific e +3

MAP7-specific in NP-NN f +3

Rd-RR specific g +40

Adjusted validation set h 41821

aSNVs detected by Mauve whole-genome alignment of the reference Rd and
86-028NP genomes.

bAlleles shared between Rd-RR and NP-NN, due to introduction of MAP7
antibiotic resistance alleles.

cAlleles shared between Rd-RR and NP-NN that are variant only in the Rd
reference.

dAlleles shared that were originally non-ACGT bases in the Rd reference.
eAlleles found only in NP-NN.
fAlleles in NP-NN that are MAP7-specific.
gAlleles found only in Rd-RR.
hFinal set of SNVs used for cross-validation (Table 5).
doi:10.1371/journal.ppat.1002151.t004

Transformational Recombination in H. Influenzae
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between the strains and their references (Step A, Table 4), we used

this set of SNVs to cross-validate the sequence variants identified

by the reciprocal alignments (Step B). This gave a final set of

37,201 positions for which the same distinct variants were detected

in both the alignments of control reads to their reciprocal

references (Step B), and the alignments of the two references to

each other (Step C). The positions of these cross-validated SNVs

were used to identify the donor- and recipient-specific alleles in

transformed clones (see below); they captured 88.9% of the total

SNVs identified by whole-genome alignment, with a mean spacing

of 52 bp (median 15 bp). Exclusion of SNVs that failed this cross-

validation test modestly reduced the number of markers available

for recombination analysis, but it eliminated artifacts that would

otherwise have been interpreted as novel alleles (new mutations)

and as interruptions of recombination tracts (Table 5).

Recombination tracts in two individually sequenced
transformed chromosomes

To determine the locations of donor alleles in transformant

clones Nov1 and Nal1, sequence reads were aligned to both

reference genomes and each cross-validated SNV position was

classified as donor-specific, recipient-specific, or ambiguous. The

two clones contained 1,133 and 1,213 donor-specific SNVs, while

nearly all of the remaining cross-validated positions contained

recipient-specific SNVs (Figure 4A and Table 6). As expected for

the products of homologous recombination, donor-specific alleles

in the transformed clones were found in contiguous runs, which we

term donor segments (Figure 4A, Figure 5, and Figure S7).

The lengths of the 10 donor segments in the Nov1 and Nal1

transformants ranged from 1.2 kb to 16.6 kb (Figure S5 and

Figure S6). As expected, transformant Nov1 had a donor segment

spanning the NovR allele at gyrB (Segment F), and transformant

Nal1 had a donor segment spanning the NalR allele at gyrA

(Segment L). Nov1 contained five additional donor segments, two

separated by only 4.5 kb and the other three adjacent to the

selected Segment F. Nal1 contained three other widely spaced

segments in addition to the selected Segment L; one of these

overlapped one of those in the Nov1 transformant by 10.9 kb

(Segments A and G, shown expanded in Figure 4C and Figure 5).

Additional analysis of these segments is presented below.

Recombination tracts in a pool of four transformed
chromosomes

The ,400-fold coverage obtained per sequencing lane was

much higher than needed, so we tested whether sequencing a pool

of genomic DNA from four transformants could accurately

identify donor segments without compromising the resolution of

recombination breakpoints. Equal amounts of four genomic DNAs

were pooled and sequenced (two transformant clones, Nov2 and

Nal2, and as internal controls, the individually sequenced clones

Nov1 and Nal1). The reads from this pool were aligned to the

donor and recipient references, and the allele frequencies at each

position for each reference were calculated (Tables 2 and 3). In this

analysis donor alleles acquired by transformation of one clone will

be given ‘ambiguous’ base assignments, with donor alleles at 25%.

These are seen in the allele-frequency histogram in Figure 4D as

the large peak centered on 25%; the smaller peak centered on

50% reflects the donor alleles present in two clones.

When plotted against chromosome coordinate, the recombina-

tion breakpoints of the donor segments in the pool are evident as

abrupt transitions of donor-allele frequency (Figure 4 and Figure

S7). For this pool of 4 genomes, donor segments are seen as

intervals of contiguous ,25% or 50% donor allele frequency. As

expected, overlapping segments were seen at the selected NovR

and NalR alleles, with the NovR allele in the Nov1 and Nov2

transformants and the NalR allele in the Nal1 and Nal2

transformants (purple diamonds in Figures 4 and Figure S7).

The previously identified overlapping segments A and G were also

detected (in Nov1 and Nal1, respectively). The pool contained

three more unselected donor segments specific to either Nov2 or

Nal2. Allele-specific PCR was performed to determine which of

the two clones these three donor segments were found; Segment M

was in Nov2, while Segments N and O were in Nal2.

While the pooling approach was successful at precisely

identifying recombination breakpoints and overlaps between

donor segments in the four different clones, the assignment of

endpoints to overlapping donor segments and to particular

recombinant clones required additional information. The increas-

ing availability and decreasing cost of multiplexed sequencing

methods will partially circumvent this problem in the future.

Properties of donor segments
In total, we identified 16 donor segments across the four

transformants, spanning a total of ,130 kb and containing 3,183

donor-specific SNVs (Table 6 and Tables S9 and S10). This is

7.1% of the Rd genome, or 6.0% if overlaps are only counted

once. The 16 donor segments had a mean length of 8.164.5 kb,

suggesting that transformation of very short DNA fragments is rare

(at least with the high molecular weight donor DNA prep we used).

The average amount of sequence introduced into each trans-

formed clone (,1.8%) was consistent with the transformation

frequencies of individual selectable markers shown in Figure 2.

Although transformation might be expected to preferentially

occur at regions with low sequence divergence, the regions

participating in recombination had divergences typical of the whole

genome (2.460.9% vs 2.3%). A more detailed analysis of sequence

divergence in these regions is shown in Figure 6 Notably, the extent

of sequence divergence is locally highly variable, ranging from less

than 1% to more than 15% within only a few kilobases. However

this variation did not appear to affect recombination, since all donor

Table 5. Cross-validation of SNVs detected by reciprocal
alignment (Steps B and C).

Rd-RR to NP NP-NN to Rd

Adjusted validation set a 41,821

Detected variants b 38,770 39,049

Validated variants c 37,915 38,048

False negatives d 3,634 3,711

Ambiguous e (1537) (1538)

Unmapped f (2097) (2173)

False positives g 809 955

Cross-validated h 37,201 (88.9%)

aSNVs found by whole-genome alignment after correcting for Step A (Table 4).
bUnambiguous SNVs detected by reciprocal alignment.
cSNV detected by reciprocal alignment, and also found by whole-genome
alignment.

dSNV not detected by reciprocal alignment, but found by whole-genome
alignment.

eFalse negative due to SNV having an ambiguous base assignment.
fFalse negative due to SNV missing from the reciprocal alignment.
gSNV detected by reciprocal alignment, but not found by whole-genome

alignment.
hSNV detected by both reciprocal alignments and also whole-genome
alignment (total % cross-validation in parentheses).

doi:10.1371/journal.ppat.1002151.t005

Transformational Recombination in H. Influenzae
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Figure 4. Identifying transformation events genome-wide. (A) Donor allele frequency at cross-validated SNVs in the Nov1 and Nal1
transformants plotted against recipient genome position. Donor SNVs are blue and recipient SNVs are red. Roman numerals indicate intervals where
transformation was detected in either A or B. The selected NovR and NalR alleles in intervals II and V are purple. (B) Donor allele frequency at cross-
validated SNV positions in the pool of four transformants (Nov1, Nov2, Nal1, and Nal2) plotted against recipient genome position. Coloring as in A,
with turquoise used for intermediate donor allele frequencies. (C) Expanded view of interval I, as in A and B. All five intervals are shown in Figure S7.
(D) Histogram of the donor allele frequency at cross-validated SNV positions in the pool of four transformants mapped to the Rd reference.
doi:10.1371/journal.ppat.1002151.g004

Table 6. Summary of transforming donor DNA in 4 recombinants.

Donor segment size Donor-specific SNVs

Clone # a length b % total c % selected d # e % total f % selected g

Nov1 6 (2) 46,199 2.52 51.6 1,133 3.01 47.9

Nal1 4 (4) 46,690 2.55 10.7 1,218 3.27 8.9

Nov2 3 (2) 12,712 0.70 59.0 208 0.56 63.0

Nal2 3 (2) 24,686 1.35 31.4 624 1.68 23.7

aTotal number of donor segments. Number in parentheses indicates the total number of recombination tracts, or clusters of donor segments separated by ,10 kb.
bCombined length of donor segments, measured as the sum of distances between the outermost donor-specific SNVs.
cPercent of recipient genome length replaced by donor segments (out of 1,830,138 bp).
dPercent of donor segment lengths found clustered at the selected NovR or NalR alleles.
eTotal number of cross-validated donor-specific SNVs.
fPercent of total cross-validated SNVs (out of 37,201 cross-validated SNPs).
gPercent of donor-specific SNVs in segments clustered at the selected sites.
doi:10.1371/journal.ppat.1002151.t006

Transformational Recombination in H. Influenzae
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Figure 5. Recombination events detected in four transformants. (A) Summary of donor segments in each transformant are illustrated as blue
bars. (B) Detailed illustrations of recombination tracts in each interval showing gene annotations. Donor segments are shown in blue, and recipient
sequences are shown in red. Pale shading indicates genes on the plus strand and dark shading indicates genes on the minus strand. Dark blue lines joining
donor and recipient segments indicate recombination breakpoints. The key in the lower right shows additional annotation of the selected antibiotic
resistance alleles and the locations of structural variation between the genomes. Exact donor segment breakpoints and additional data on each segment
are provided in Table S9 and Table S10 for the Rd and 86-028NP genome coordinates, respectively. Scale bars are shown for both (A) and (B).
doi:10.1371/journal.ppat.1002151.g005

Transformational Recombination in H. Influenzae
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segments contained regions of both high and low divergence, and

there were no obvious correlations between recombination break-

points and extremes of divergence. Notably, recombination was not

interrupted even when divergence was as high as 20% (light green

line, 250 bp sliding windows).

The adjacent locations of many donor segments (Figure 5) likely

resulted from disruption of longer transforming DNA fragments

rather than independent events. For example the 6 donor

segments in Nov1 were found in 2 clusters of 22 and 24 kb.

Across all four clones, there were 6 instances of apparent

disruptions within longer ‘‘recombination tracts’’, where adjacent

donor segments were separated by relatively short intervals

(,10 kb) of recipient-specific alleles. The longest is the 5.3 kb

interval separating segments A and B in transformant Nov1, and

the shortest is the single recipient SNV dividing Segments N and

O in transformant Nal2 (Tables S9 and S10). When the 16 donor

segments were treated as 10 clusters, the mean recombination

tract length was 14.268.8 kb.

Figure 6. Sliding window analysis of % nucleotide divergence across the five intervals containing recombination tracts, I to V. Donor
segments are shown as horizontal blue bars. Dark and light green lines indicate 1 kb and 250 bp window sizes, respectively (both with a step size of
100 bp). The solid purple line shows the median genome-wide divergence, and the dotted purple lines shows the 25% and 75% quartiles. Red bars
below the axis indicate positions of large recipient-specific sequences (deletions in the donor), where the % divergence is artificially reduced to 0%.
The spacing between Segments D/E, K/L, and N/O are not to scale, so that the position of putative restoration repair are clearly visible.
doi:10.1371/journal.ppat.1002151.g006
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Recombination not only brought thousands of donor-specific

SNVs into the transformant genomes but introduced several

donor-specific insertions and deletions (Table S11) resulting in

some donor segments being different lengths than the recipient

segments they replaced (Figure 5, Tables S9 and S10). In

particular, strain Nov1 received two large donor-specific insertions

(1.2 and 2.7 kb) as parts of Segments C and E (Figure 5 asterisks

and Figure 7A). These were confirmed by read depth analysis

along the two reference sequences (Figure S8).

On the other hand, indels and other structural variants between

the donor and recipient chromosomes appear to have blocked

progression of strand exchange in several instances (Figure 5 and

Table S12). Of the 32 donor segment breakpoints, 12 are within

5 kb of indel or other structural variation; 6 of these are within 3 of

the 6 apparent disruptions described above and thus are likely sites

of restoration repair. Indeed, one structural variant gave different

outcomes in different recombinants: the 2.7 kb donor insertion

allele that was acquired by strain Nov1 was not inserted into strain

Nov2, but instead a short segment of recipient sequence interrupts

donor segments K and L. Figure 7B illustrates another example of

putative restoration repair at an insertional deletion difference

between the donor and recipient, as indicated by the interruption

between Segments D and E by the recipient insertion allele along

with 26 flanking recipient SNVs (Figure S8).

Discussion

The plummeting cost of deep sequencing allowed us to

characterize the genome-wide consequences of natural transfor-

mation, but the ability of this analysis to account for artefacts

depended on our high-coverage control sequencing of the donor

and recipient genomes. Aligning these control reads to the two

reference genome sequences revealed many positions prone to

ambiguity or false-positive SNV calls. In the absence of these

controls, such artifacts would have mistakenly been interpreted as

recombination-induced mutations, since mapping reads to diver-

gent references generated these erroneous variants, while mapping

reads to highly similar references did not. The frequency of these

artifacts depends not only on nucleotide divergence, but also on

the spectrum of structural variation and the complexity of the

genome. Analysis of such high-coverage control datasets will be

essential for reference-guided assembly approaches that use data

with lower coverage, such as that obtained using inexpensive

multiplexing methods.

H. influenzae’s normal environment is the mucosal layer of the

human respiratory tract, which contains abundant DNA, much of

it high molecular weight like that we used [43]. The broad

spectrum of sequence differences between donor and recipient

used in these experiments is typical of the natural genetic variation

between H. influenzae strains and present in the human host [44-

45]. However most of the DNA in respiratory mucosa is from

human cells and, although bacterial DNA is known to be

abundant in biofilms, its fragment sizes and composition in mucus

are not known. The short DNA fragments also present in mucus

may be taken up more efficiently than long fragments, since H.

influenzae cells take up more fragments when fragments are short

(40 fragments of 120 bp) [46–47], but the implications for

transformation are not clear. Competent cells incubated with

short donor DNAs might acquire more donor segments, but short

fragments will also be more severely affected by the exonucleolytic

degradation that accompanies translocation into the cytoplasm. H.

influenzae’s preference for DNA containing uptake sequences (see

below) will also affect both the sources and sizes of the fragments

cells take up.

Analysis of recombination tracts showed that the four

transformants had replaced ,1–3% of their genomes with 3–6

segments of donor DNA ranging in length from 1.2 to 16.6 kb.

The number of donor segments per transformant agrees well with

the ,3.3 fragments found to be taken up per cell in laboratory

experiments using long 14.4 kb fragments [47]. The lengths of the

donor segments we found in H. influenzae are similar to those

reported from analysis of naturally occurring recombination tracts

observed in Neisseria meningitidis at specific loci[48], but contrast

with the shorter tracts seen for Helicobacter pylori (,0.5–3.5 kb) in

experiments using DNAs of similar divergence to ours [33–34,49].

The difference suggests that population genetic models for

measuring recombination in nature will require incorporating

species-specific estimates of the distribution of recombination tract

lengths [15].

The lengths of donor segment found in recombinant chromo-

somes may underestimate the original lengths of DNA fragments

participating in uptake and recombination, because clustering of

donor segments suggests that longer incoming DNA fragments are

often disrupted before transformation is complete. Similar

clustering of donor segments was seen when recombination at a

single locus was examined in Helicobacter pylori [33–34]. The

clustering of H. influenzae donor segments is unlikely to be due to

chance, because of the small number of donor segments in each

transformant. More probable explanations are that (1) cytosolic or

translocation endonucleases degrade incoming DNAs prior to

strand exchange, or (2) sequence heterology blocks progression of

strand exchange, with the heterologous sequences trimmed away

by nucleases.

Intracellular cleavage of incoming DNA by restriction enzymes

has been proposed for competent Helicobacter pylori [49], but this is

problematic because, in both H. pylori and H. influenzae, only single

DNA strands are thought to enter the cytoplasm [50–51]. Although

McKane and Milkman have shown that restriction can create

clustered recombination tracts in E. coli transduction experiments

[52], the single strands brought into the cytoplasm by transforma-

tion are not normally substrates for restriction enzymes, and donor

strands recombined into the chromosome will be protected from

restriction by the methylation of the base-paired recipient strands.

The effect of restriction in H. pylori may instead be due to the

accumulation of extracellular restriction enzymes during the long

transformation protocol [34]. Similar accumulation might be a

Figure 7. Transformation at structural variation. The top
drawings illustrate the inferred joint molecule intermediates that
yielded the recombination products illustrated in the bottom drawings.
In (A) the 1.2 kb insertion in Segment C is shown, and in (B) the
putative restoration repair at an insertional deletion disrupting
Segments D and E is shown. Thin dark lines show aligned sequence
(blue and red for donor and recipient sequences, respectively). Thick
pale lines show unaligned indel differences between the genomes. For
B, black arrows show putative cut sites by a mismatch correction
endonuclease.
doi:10.1371/journal.ppat.1002151.g007
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transformation-limiting factor for many species that normally live in

mixed-species biofilms, whenever environmental DNA encounters

restriction enzymes derived from other strains or species.

We found no evidence that recombination preferentially

occurred in regions of lower nucleotide divergence than the

genome-wide average. Instead, sequence divergence varied on a

scale much shorter than the donor segments, with most segments

spanning local regions of both high and low divergence (Figure 6).

Although strand exchange of short fragments is known to be

dramatically inhibited by sequence divergence of .10% [19–20],

most donor segments contained one or more regions with .15%

divergence. This suggests that, although strand exchange may

initiate between regions of high sequence identity, it readily

extends into and through regions with many mismatches.

Measuring the effect of divergence on recombination break points

and interruptions will require sequencing many more recombi-

nants.

Effects of structural variation on recombination were evident

even with this small sample size, as heterologous sequences were

much more common at donor-segment breakpoints than expected

from their abundance in the recombining genomes, e.g. between

the clustered segments C and D, D and E, and K and L (Figure 5

and 6B). This is consistent with previous genetic experiments

showing that insertions and deletions transform at much lower

rates than do substitutions [22] and may be due to inhibition of

strand exchange or to subsequent excision of heteroduplex from

recombination intermediates by a mismatch correction mecha-

nism. However, at other sites the donor versions of structural

variation were acquired as parts of longer donor segments,

showing that such accessory loci can indeed readily move by

natural transformation.

Other factors could have influenced the transformation events

we observed: (1) H. influenzae’s strong preference for DNA

fragments containing uptake signal sequences (USS) biases

transformation to USS-containing fragments [53–54]. However

USSs are unlikely to have been a factor in these experiments, since

they occur at a high density in the genome (,1/kb) and the donor

DNA fragments used typically contained dozens of USSs. (2)

Segregation of uncorrected heteroduplex at the first post-

transformation cell division could cause the extent of strand

replacement in individual competent cells to be underestimated by

up to 2-fold (Figure 1). We do not know the extent of heteroduplex

correction at these or other independently transforming sites, nor

how recombination tracts are distributed between the two strands

of the originally transformed chromosome. Although the relatively

short putative restoration repair events observed in this study

might suggest that heteroduplex correction only act on parts of

larger heteroduplex recombination products, other repair events

might have completely removed shorter segments of donor DNA.

Because clones chosen for sequencing had acquired one of two

antibiotic resistance alleles from the donor, we were able to

examine overlapping recombination events at each of these loci,

detecting striking differences at the NovR locus. The selection for

NovR and NalR also showed that unselected events are common,

as 58% of donor alleles were found in segments distant from the

selected loci. On the other hand, the 11 kb overlap between the

unselected donor segments A and G was unexpected given the

transformation frequencies of single markers (Figures 4C and 5),

and a sufficiently large dataset might identify a transformation

hotspot, as has recently been found in Neisseria meningitidis [55]. The

overlapping sequences do not have any obvious distinguishing

features: divergence between donor and recipient is typical, no

virulence genes have been annotated, and density of USSs is

slightly lower than the genome average.

In addition to the selected antibiotic resistance alleles, the

recombination events characterized here had the potential to

significantly change the cell’s biology, both by introducing new

genes and by creating new genetic combinations by homologous

recombination both between and within genes alleles. In

particular, the Segment E insertion contains four donor-specific

ORFs, one encoding a predicted transposase, and the Segment C

insertion contains the LPS biosynthesis gene lic2C (between infA

and ksgA). Each recombinant clone also acquired donor-specific

versions of 20–50 shared genes, and these may have altered

phenotype both directly and because of new interactions with

recipient alleles at unrecombined loci. Recombination breakpoints

that were not at structural variation usually fell within genes

(Figure 5) and, because of the high level of sequence variation,

these are likely to have created novel recombinant alleles

potentially with substantial changes to function.

The results presented above considered only four recombinant

clones, but continuing advances in DNA sequencing technology

and bioinformatics methods will allow characterization of many

more recombinants under a variety of experimental conditions

and using different donor DNAs. This will help bridge

experimental studies of transformation with the population

genomic approaches used to detect recombination between

bacterial lineages in nature. The comprehensive identification of

donor segments in a large set of experimentally transformed clones

will also provide a novel resource for the genetic mapping of

phenotypes that differ between the donor and recipient strains,

such as their dramatic natural variation in transformability [56], as

well as natural variation in pathogenesis-related traits like serum-

resistance [57–58].

Materials and Methods

Culture conditions, competent cell preparations, and
DNA purification

Standard protocols were used for growth and manipulation of

H. influenzae, preparation and storage of competent cultures, and

purification of high molecular weight chromosomal DNA from

overnight cultures [35,59]. Briefly, cells were grown in the rich

medium sBHI and made competent by transfer of log-phase

cultures to the starvation medium M-IV for 100 minutes before

transformation experiments or storage in 15% glycerol at 280uC.

Strains (Table 1)
The H. influenzae recipient strain Rd-RR (RR722) was obtained

from H. O. Smith in 1988, and is separated by ,10 passages

(,500 generations) from the KW20 Rd strain sequenced in 1995

[38] (NCBI Taxonomy ID: 71421). The donor strain NP-NN

(RR3131; resistant to novobiocin and nalidixic acid (NovR and

NalR)) was derived from the clinical isolate 86-028NP [39]

(RR1350, gift of Richard Moxon in 2006, NCBI Taxonomy ID:

281310); it is separated from the sequenced 86-028NP strain by

,5 passages (,250 generations). NP-NN was constructed by

PCR-mediated transformation of 86-028NP with NovR and NalR

amplicons of gyrB and gyrA, respectively, (both caused by point

mutations). For the NovR allele of gyrB, a 2.6 kb fragment (Rd

coordinates 585,533 to 588,096 bp) was amplified from MAP7

(RR666) chromosomal DNA. For the NalR allele of gyrA, a 2.8 kb

fragment (Rd coordinates 1,341,635 to 1,344,397) was amplified.

Transformation experiments
Transformation experiments used 2 mg of chromosomal DNA

per 1 ml of M-IV competent culture (,109 cells) for a final DNA

concentration of ,1 genome equivalent per cell. Cells were
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incubated with DNA at 37uC for 20 min, diluted 1:5 into sBHI,

and incubated at 37uC for 80 min to allow expression of donor

resistance alleles before dilution and plating to sBHI agar 6

antibiotics [35]. Experiments were performed in triplicate from

frozen aliquots of competent cultures prepared on three separate

occasions. No DNA controls were performed in parallel, and

antibiotic resistant colonies were not observed (limit of detection

typically ,1029 resistant colonies/CFU). Cells from defrosted

aliquots were pelleted and resuspended in fresh MIV before

transformation. Two NovR and two NalR transformant colonies

(Nov1, Nov2, Nal1, and Nal2; Table 1) were randomly selected for

sequencing from a single experiment that used Rd-RR competent

cells and NP-NN chromosomal DNA fragments (size range ,20–

100 kb).

Whole-genome alignment of the reference sequences
The reference sequences for Rd and 86-028NP were compared

using the Mauve whole-genome alignment software [42]. The

complete genome sequences were aligned twice, once with Rd as

the query and once with 86-028NP as the query. SNVs were then

extracted using Mauve’s ‘‘Export SNPs…’’ function. The few

identified SNVs that were inconsistent between the two indepen-

dent whole-genome alignments were excluded. The two resulting

files provided positions of each SNV in each genome, ordered

against one or the other reference.

Illumina GA2 sequencing and initial data processing
pipeline

Chromosomal DNA was sheared by nebulization, and convert-

ed into paired-end sequencing libraries with an insert size of

,100–300 bp, as previously described [37]. About 10 million

paired-end sequences of 42 bases were obtained from each library

on individual lanes of an Illumina GA2 flow cell (Table S1). Raw

data was processed using Illumina Pipeline Version 1.4, and all

paired-end reads that passed standard Illumina quality control

filters were used for analysis (i.e. those in the ‘‘.sequence.txt’’ file).

The raw sequence reads for each DNA sample (Table S1) were

deposited at the NCBI short-read archive under project accession

SRP003474.

Aligning sequence reads to the reference
The Rd (KW20) and 86-028NP complete genome sequences

(NCBI genome accessions NC_000907 and NC_007416) were

each used as references for read alignment, with the BWA

algorithm (version 0.5.5) [40] set to highly sensitive alignment

parameters (bwa aln -n 8 -o 3 -e 3 -l 20 -R 100000; bwa sampe -a

400 -o 1000000). While this generates some spurious mapping

artifacts, it ensures that reads will map to both references when

possible, even where there is high divergence.

Processing the read alignments
A combination of two criteria was used to identify differences

between sequence reads and their references and to flag positions

with ambiguous base identity. The first method used the

SamTools (version 1.12a)[41] consensus caller, which either

assigns positions a standard A, C, G or T base or tags them as

ambiguous. Reference positions missing from the SamTools

consensus were treated as unmapped positions presumably within

or near deletions. The second method used direct calculation of

the frequency of each base at each reference position. This used a

Perl script obtained from Galaxy [60] (pileup_parser.pl, parameter

settings: 3 9 10 8 40 20 ‘‘No’’ ‘‘No’’ 2) to parse the pileup output

from SamTools, and provided the count of each non-reference

base call at each position. Parsed pileup files were subsequently

analyzed using custom scripts written in the R statistical

programming language [61]. Plots including gene maps were

made with the assistance of the ‘genoPlotR’ package [62].

i) Control self-alignments. Sequence differences between

the Rd-RR and NP-NN strains and their respective reference

sequences were identified using the following two criteria: (1) a

difference was found by the SamTools consensus caller, and

(2) the frequency of the same non-reference variant at that

position was greater than 95%. Positions prone to sequencing

and read mapping artifacts were flagged as ambiguous when

the SamTools tagged a base as ambiguous, the variant

frequency was between 5% and 95%, or both.

ii) Control reciprocal alignments. Differences between our

donor and recipient strains were identified from the reciprocal

alignments of Rd-RR reads to the 86-028NP reference

genome and of NP-NN reads to the Rd reference genome.

SNV positions were considered cross-validated, if both

reciprocal alignments and whole-genome alignment identified

the same SNV. Ambiguous positions prone to read mapping

artifacts in reciprocal-alignments were also flagged using the

same criteria as above.

Identifying donor segments in individually sequenced
transformed clones

Transformant sequence reads were analyzed as above. Recom-

bination events were identified in the transformed clones by

classifying the positions of cross-validated SNVs as donor, recipient,

or ambiguous. Donor segments were defined as contiguous runs of

donor-specific SNVs, uninterrupted by recipient-specific SNVs

(ambiguous cross-validated SNV positions were ignored). Individual

donor segments breakpoints were defined by the positions of their

outermost donor-specific alleles. Donor segments were then

manually inspected using the Integrated Genomics Viewer [63] to

validate the donor segment breakpoint locations.

Identifying donor segments in a pool of transformed
clones

For the pooled sample of four transformed clones (RR3135-

RR3138), donor-specific allele frequencies were determined at each

cross-validated SNV position. Non-overlapping donor segments

were unambiguously identified as contiguous runs of SNV positions

with ,25% donor-specific alleles. Overlapping donor segments

(contiguous SNV positions with ,50% donor-specific alleles) were

disambiguated by comparison with the segments identified in

RR3135 and RR3137. Segments unique to either RR3137 or

RR3138 were disambiguated using allele-specific PCR; two primer

pairs were designed that contained several SNVs that distinguished

Rd and NP alleles (Table S13).

Analysis of structural variation in and around donor
segments

Positions that were unmapped by reads in the reciprocal

alignments (but mapped in self-alignments) were used as markers

of indel differences and other structural variation between donor

and recipient, and the donor segment intervals were examined for

read coverage at positions unmapped by either reciprocal

alignment. Indel differences flanking the observed donor segments

were also tabulated. Manual inspection of read alignments to both

references used the Integrative Genome Viewer, and the ‘‘.rdiff’’

and ‘‘.qdiff’’ output from the dnadiff utility of Mummer [64] was
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used to cross-validate. GenomeMatcher [65] was used to view

annotated sequence alignments at transforming and flanking

structural variation to identify affected loci.

Supporting Information

Figure S1 Read depth varies consistently across the
genome. (A) shows a histogram of read depth per mapped Rd

genome position. Red indicates Rd-RR, and blue indicates NP-

NN. (B) shows a sliding window analysis (1 kb and 100 bp steps) of

mean read depth of Rd-RR reads mapped to Rd (red) and %GC

(grey) along an interval of the Rd genome. The genome-wide

adjusted R2 of log(read depth) and %GC on these windows was

0.26 (using the lm function in R). (C) plots mean read depths on

the same sliding windows as in B, but showing Rd-RR read depths

on the x-axis and NP-NN read depths on the y-axis. The red line

shows y = x. Unmapped positions were included as read depth =

0, and mean read depths were adjusted by adding a single pseudo-

count, so that read depths of 0 were plotted at 1 on a log-scale. (D)

shows variation in read depth for Rd-RR reads mapped to the Rd

reference genome along a representative interval. (E) shows the

ratio of Nov1 to Rd-RR read depth along the same interval as (D).

Read depths were first normalized to the median read depth to

account for differences in sequence yields. The genome-wide

correlation between read depths for these two samples was 0.98.

(TIF)

Figure S2 Ambiguous positions. Plot of the non-reference

variant frequency at positions classified as ambiguous for the

indicated set of sequence reads aligned to the two references: (A)

Rd, and (B) 86-028NP. Data are tabulated in Table 2 and Table 3.

The arrow indicates the 250 bp interval expanded in Figure S3.

Note the high variant frequency of ambiguous positions at

intervals in the two transformed clones at intervals containing

donor segments when using the Rd reference genome (labeled

with roman numerals as in Figure 2).

(TIF)

Figure S3 Examples of two kinds of artifacts. The

250 bps shown are indicated by the arrow in Figure S2B. (A)

shows a systematic sequencing error-prone site, when either NP-

NN or Rd-RR reads are mapped to the 86-028NP reference. (B)

shows an additional problematic site, prone to systematic

misalignment when Rd-RR reads are mapped to the 86-028NP

genome, but not when NP-NN reads are mapped. The red curve

shows the limit of detection (1/read depth). Grey bars show

positions with no detected variants (i.e. variant frequency , limit

of detection). Blue lollipops show the non-reference variant

frequency at positions classified as matching the reference; when

the lollipop falls on the limit-of-detection line, a single non-

reference variant was observed. Turquoise bars show positions

classified as ambiguous (variant frequency ranged from 12% to

65%). The salmon bars for Rd-RR reads indicate positions

classified as SNVs. All were in the cross-validated set of SNVs, and

the donor-specific allele frequency at each exceeded 98%.

(TIF)

Figure S4 Density histograms of read depth per posi-
tion (A and B) and non-reference variant frequency per
position (C and D) when mapping control sequence
reads to the 86-028NP reference. A and C show the result

using NP-NN reads, while B and D show reciprocal alignment of

Rd-RR reads. Blue shows positions classified as a standard ACGT

base by the SamTools consensus caller, while pink shows the

histogram for positions classified as non-ACGT (AA and Aa,

respectively). The percentages associated with each curve indicate

the fraction of total positions in that group of positions (either

ACGT or non-ACGT). Also shown in B and D is the percent of

mapped positions where no non-reference variants were detected

and the percent of unmapped positions.

(TIF)

Figure S5 Unmapped positions in reciprocal align-
ments mark structural variation. In (A), pink hatches mark

positions along the Rd reference that were unmapped by NP-NN

donor reads (but mapped by Rd-RR). In (B), light blue hatches

mark positions along the 86-028NP reference that were unmapped

by Rd-RR recipient reads (but mapped by NP-NN). Note the scale

compresses the individual positions horizontally, so exaggerates

the total fraction of unmapped positions (Table 2 and Table 3).

(TIF)

Figure S6 False-positive positions. Plots of non-reference

variant frequency for each individually sequenced DNA sample at

positions that were classified as ‘‘false positives’’, SNVs found by

alignment of donor reads to the Rd reference, but not identified as

SNVs by whole-genome alignment (Figure 3, Step C). SNVs

detected in self-alignments were first accounted for. Note the high

variant frequency at ‘‘false positive’’ positions in the two

transformant clones at intervals containing donor segments

(labeled with roman numerals as in Figure 2).

(TIF)

Figure S7 Zooms of the five intervals (I to V) containing
donor-specific alleles in the transformants, as in
Figure 4, plotted against the Rd reference genome. The

lower schematic shows each interval as in Figure 5B.

(TIF)

Figure S8 Transformation of and near structural vari-
ation. Shows Interval II for reads from the Nov1 clone mapped to

the Rd reference (top panel) and also to the 86-028NP reference

(bottom panel). In each plot, the top two rows show donor- and

recipient-specific SNVs in blue and red, respectively. Light blue

and pink bars that span the plot show donor- and recipient-specific

structural variation, respectively. The purple diamond show the

position of the NovR allele. The green line plots the log2 of Nov1

read depth normalized to either Rd-RR or NP-NN read depths

(for the top and bottom panels, respectively). Positions where the

green line touches the x-axis were unmapped by Nov1 reads.

(TIF)

Table S1 Summary of sequencing results.

(DOC)

Table S2 Read depth in pileups on Rd (KW20).

(DOC)

Table S3 Read depth in pileups on 86-028NP.

(DOC)

Table S4 Non-reference variants in reads mapped to Rd

(KW20).

(DOC)

Table S5 Non-reference variants in reads mapped to 86-028NP.

(DOC)

Table S6 Summary of whole-genome alignment of Rd and 86-

028NP reference sequences.

(DOC)

Table S7 Singe-nucleotide variants between Rd and 86-028NP

reference sequences.

(DOC)
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Table S8 Structural variation between Rd and 86-028NP

reference sequences.

(DOC)

Table S9 Donor segments in four transformants using Rd

(KW20) reference coordinates.

(DOC)

Table S10 Donor segments in four transformants using 86-

028NP reference coordinates.

(DOC)

Table S11 Transformation of insertions and deletions within

donor segments.

(DOC)

Table S12 Indel and other rearrangements flanking donor

segments.

(DOC)

Table S13 Allele-specific primers used to assign Segments M, N,

and O to either clone Nov2 or Nal2.

(DOC)
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