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Dynamics of a vibration‑driven 
single disk
Liyang Guan 1,6, Li Tian1,2,6, Meiying Hou3,4* & Yilong Han1,5*

Granular particles exhibit rich collective behaviors on vibration beds, but the motion of an isolated 
particle is not well understood even for uniform particles with a simple shape such as disks or spheres. 
Here we measured the motion of a single disk confined to a quasi‑two‑dimensional horizontal box on a 
vertically vibrating stage. The translational displacements obey compressed exponential distributions 
whose exponent β increases with the frequency, while the rotational displacements exhibit unimodal 
distributions at low frequencies and bimodal distributions at high frequencies. During short time 
intervals, the translational displacements are subdiffusive and negatively correlated, while the 
rotational displacements are superdiffusive and positively correlated. After prolonged periods, the 
rotational displacements become diffusive and their correlations decay to zero. Both the rotational 
and the translational displacements exhibit white noise at low frequencies, and blue noise for 
translational motions and Brownian noise for rotational motions at high frequencies. The translational 
kinetic energy obeys Boltzmann distribution while the rotational kinetic energy deviates from it. 
Most energy is distributed in translational motions at low frequencies and in rotational motions at 
high frequencies, which violates the equipartition theorem. Translational and rotational motions are 
not correlated. These experimental results show that the random diffusion of such driven particles 
is distinct from thermal motion in both the translational and rotational degrees of freedom, which 
poses new challenges to theory. The results cast new light on the motion of individual particles and the 
collective motion of driven granular particles.

Driven granular matter has a broad range of applications. For example, granular particles driven on a vibration 
or air-blowing bed have been used for ore and powder separation and pattern  formation1 and non-equilib-
rium physics  studies2. Dense granular particles exhibit subdiffusion under  shaking3 and  rotation4,5, and levy 
flights when drained from a  silo6. Particle motions in dilute granular gases have been studied by experiments in 
 microgravity7–9, on a vibration bed, air-blowing bed or in a magnetic  field8,10–15, and simulations about driven 2D 
and 3D  systems16–18. In particular, translational motions in driven granular gases have been well studied, which 
usually exhibit non-Gaussian distributions of translational  displacements7,9–12 and occasionally exhibit Gaussian 
distributions in 2D vibrating granular gas in  microgravity8. However, the rotational motions are mainly studied 
in  simulations17–19 and experimental measurements are  limited7,8,10,15.

The motion of a single particle is important for understanding the collective motion of many granular particles 
but remains poorly understood. Single granular particle can exhibit interesting motions without external driving 
forces, such as the Euler disk with a faceted  edge20 or a  ring21 rolling on a table. A bouncing droplet on its self-
activated surface wave shows nonlinear and even quantum-like  behaviors22,23. For a single particle driven on a 
vertically vibrating stage, the motion in the xy plane is dominated by friction and collisions and thus difficult to 
model and predict in theory or simulation. Hence it is mainly studied experimentally including the motions of 
a  dimer24,25,  trimer26, uniform  rod27,28, asymmetric  rod29–31 and polar disk with a non-uniform mass  density32. 
When their shape or mass distribution is asymmetric, the translational motion can become self-propulsive26,30–32. 
The rotational motion has been measured for non-self-propelled single  rod28, asymmetric particles with a com-
plex  shape33,34, and numerically studied for chiral granular  motors35,36.

For a single isotropic particle such as disk or sphere driven on a vibration stage, only the vertical motion of 
a single sphere has been  studied37. The motion along the vertical (z) direction mainly depends on its collision 
with the substrate and thus is easier to predict theoretically than the motion in the horizontal (xy) plane which is 
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dominated by friction and collisions. The collision frequency along the z direction is described by the bouncing 
ball model, which was proposed by Enrico Fermi for describing cosmic rays accelerating and bouncing between 
moving clouds of hydrogen gases in interstellar  space38. The model also has important applications in nonlinear 
physics and  engineering39. By analyzing the collision sound, the bouncing-ball experiment showed that the 
motion of a sphere is chaotic in the z direction along gravity, while the motion in the xy plane was suppressed by 
using a slightly concave  substrate40. Although the translational motion of a single sphere has not been studied 
on a vibration stage, it has been measured on an air-blowing bed which exhibits a range of thermal equilibrium 
 behaviors2. Here we found that a single disk driven by a vibration bed exhibits strong non-equilibrium behaviors.

A diffusion is characterized by the static probability distribution function (PDF) of spatial displacements and 
the dynamic mean-square displacement (MSD) as a function of time. Particles in thermal equilibrium systems 
usually exhibit normal diffusive motion, i.e. Gaussian PDF and Fickian diffusion whose MSD is proportional 
to time. In a complex environment, however, it is often non-Gaussian for short time  steps41,42. In a non-equilib-
rium system, a particle can exhibit a non-Gaussian distribution of displacements even at long time  scales43 and 
non-Fickian diffusion. Anomalous non-Fickian diffusion and non-Gaussian PDF exist widely in physical and 
biological  systems44, such as flows through disordered  media45, near-ballistic motion of chromosomal  loci46, 
subdiffusion in membrane permeation of small  molecules47, levy  flights48 in chaotic  flows49 , human  transports50, 
and stretched or compressed exponential distributions in granular  gas7,16–18.

Experimental system
Here we measure the in-plane diffusion of a single disk on a vibration stage. The plastic disk is made with the 
cartridge plastic material DurusWhite by the 3D printing system (Connex350), and has a diameter d = 10 mm, 
thickness h = 3.5 mm, and mass M = 2.0 g. It was placed in a circular translucent acrylic container with a 
diameter D = 280 mm and inner height H = 4.5 mm, see Fig. 1a–c. The disk collides with the two horizontal 
inner walls and the friction causes random in-plane translational motion and rotational motion. The quasi-2D 
confinement prevents the disk from flipping. The kinetic energy is much greater than the gravitational potential 
energy change of the disk, therefore the lid and substrate have similar effects on the disk. The electromagnetic 
vibration table (Zhengyi VS-1000VH-51) vibrates the object attached to it via a linear bearing to ensure the 
vibration is strictly vertical, and the error of control parameters < ±5% according to the manufacture’s calibra-
tion report. The container was firmly fixed to the vibration table via an aluminum alloy head expander by four 
screws, and the illumination LEDs are firmly fixed to the expander below the container (Fig. 1a). The container 
was leveled horizontally to an accuracy of 0.1◦ . 0.125 mm thick thin films of polyethylene terephthalate coated 
with conductive indium tin oxide cover both inner surfaces of the container to prevent the buildup of static 
electric charges from the friction between the disk and the container. The container lid is made of a fluorine-
doped tin oxide conductive glass for the same reason. The stage vibrates vertically as A sin (2π ft) , where A is 
the amplitude, f is the vibration frequency of the stage and t is the time. The vibration strength is described by 
the dimensionless acceleration

where a is the maximum acceleration of the stage, g is the free fall acceleration. Two out of the three parameters 
A, f and a are independent. In contrast to a single vibrating  rod27 whose diffusion is dictated by Ŵ , we find the 
diffusion of the disk exhibits different behaviors under a fixed Ŵ . In our experiments, f = 50 Hz, 60 Hz, 80 Hz, 
100 Hz at a fixed A = 0.6 mm, which correspond to a = 6.0 g , 8.7 g, 15.5 g, and 24.0 g respectively (see Sup-
plementary Movies 1-4). Thus, a higher frequency represents a stronger driving force, in accordance with our 

(1)Ŵ ≡ a/g = A(2π f )2/g ,

Figure 1.  (a) A disk is confined in a translucent acrylic container with diameter D = 280 mm and inner wall 
separation H = 4.5 mm mounted on the vibration stage. (b) The disk can collide with top, bottom or both 
walls. (c) The disk has diameter d = 10 mm, thickness h = 3.5 mm and mass M = 2.0 g and is made with the 
cartridge plastic material DurusWhite using a 3D printing system (Connex350). The black line is printed inside 
the disk for tracking the rotational motion in image processing and does not affect the mass distribution. (d) A 
typical 40 s trajectory of the translational motion at Ŵ = 6.0 ( f = 50 Hz and A = 0.6 mm).
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observed stronger motions at higher f. We observe similar motions of the disk at different positions on the stage, 
indicating a uniform vibration. The LED lights between the container and vibration stage illuminate the container 
uniformly. When the acceleration exceeds the critical value of 4 g, the disk starts to move. The motion of the disk 
is recorded by a CMOS (complementary metal oxide semiconductor) camera (Lunemera lt225) placed above 
the container, at 150 frames/s for about 5-10 min before the disk hits the boundary of the container. The center 
of mass of the disk in each frame is measured by the standard particle-tracking algorithm for tracking  spheres51. 
The black line on the disk (Fig. 1b) is tracked by a rectangular mask, which gives the orientation of the disk.

The disk mainly rolls on the top and bottom plates without slipping and the restitution coefficient er associ-
ated with the occasional collisions are relatively less important than friction. Both the friction coefficient and the 
restitution coefficient between the disk and the conductive film covered on the acrylic lid and substrate have been 
measured (see Supplementary Information). The measured static friction coefficient µ = 0.157± 0.001 . As the 
restitution coefficient er depends on particle shape, collision velocity, collision direction,  etc26, we mimicked the 
motion of disk on the vibration stage and measured er using an acoustic stopwatch provided by App  Phyphox52. 
The measured er can be well fitted by er ∝ v−

4
5 , in contrast to er ∝ v−

1
5 for stainless steel  spheres53 in the similar 

speed regime. At the low speed v = 0.59 m/s, a velocity closer to our experimental condition, er = 0.93 , which 
is close to the restitution coefficient 0.934 between two acrylic spheres reported in ref. 54.

Results
Probability distribution function of displacements. Figure  2 shows the typical translational and 
angular displacements. The translational motion is isotropic along the x and y directions, thus Fig. 2a shows the 
distributions of displacements along both x and y directions. Rotations often maintain in the same direction for 
a while and such persistent time is substantially increased at higher f (Fig. 2b). The angular displacements for the 
clockwise and counterclockwise rotations have similar magnitude (Fig. 2b).

The PDFs of translational displacements are symmetric around x = 0 and each branch follows the compressed 
exponential function f (x) = Ae−Bxβ as shown in Fig. 3. The fitted β linearly increases with f (Fig. 3a inset). The 
distribution is close to exponential (i.e. β = 1 ) at 50 Hz and Gaussian (i.e. β = 2 ) at 80 Hz. β = 1, 2 are commonly 
observed in various  diffusions41–43, while β > 2 is uncommon. The compressed exponential distribution (i.e. 
β > 1 ) is common in granular gas, but has not been observed in the motion of single particle. Interestingly, the 
PDFs of rotational displacements exhibit a sharp peak at x = 0 at low frequencies, three peaks at 0,±�θ0(f ) at 
intermediate frequencies, and two peaks at ±�θ0(f ) at high frequencies (Fig. 3b). The symmetric peak position 
θ0 linearly increases with f (Fig. 3b inset).

The sharp peak of the PDF at x = 0 in Fig. 3b reflects an inactive state that the disk does not rotate much. 
At low frequencies, i.e. low driving forces, the disk lies on the substrate with a 0 ◦ tilting angle so that the fric-
tion suppresses the rotation. As f increases, i.e. Ŵ increases, more rotations are activated (left inset of Fig. 3b). 
In the active mode, the disk persistently rotates either clockwisely or counter-clockwisely, resulting two peaks 
symmetrical around �θ = 0 (Fig. 3b). These persistent rotations last about one second which can be directly 
observed by eyes (see Supplementary Movie 3). Such a persistent rotation is much longer than the vibration 
period, indicating that the disk-wall interaction during each vibration period usually does not strongly affect 
the rotation. The tilted disk may wobble as a  disk55, a Euler  disk20 or a  ring21 rolling on a table with a certain 
procession frequency � ∝

√

g/d where d is the particle diameter. In fact, � ∝
√

g/d can be derived from the 
dimensional analysis, and the complicate prefactor depends on the titling angle, particle shape, air friction, 
and slipping  condition55. The disk diameter d = 1 cm is much larger than the gap between the disk and walls 

Figure 2.  (a) Translational and (b) angular displacements per 1/150 s at the driving frequencies f = 50 Hz, 
60 Hz, 80 Hz, and 100 Hz, corresponding to Ŵ = 6.0, 8.7, 15.5 , and 24.0 respectively. A = 0.6 mm.
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( 4.5 mm− 3.5 mm = 1.0 mm), thus the opposite rims of a slightly tilted disk can be in contact with both the top 
and bottom walls. The disk is likely to roll on the two walls without collisions to maintain the persistent rotation, 
thus � ∝

√
a/d should similarly hold for our case. Indeed, we confirm � ∝

√
a in Fig. 3 right inset because the 

acceleration a ∝ f 2 as shown by Eq. (1). When the disk loses contact with walls, the subsequent collision tends 
to change the rotational direction. This explains the bimodal peaks in Fig. 3. To our knowledge, the bimodal 
distribution of rotational displacements has not been observed in other diffusion systems or granular systems. 
When the chosen time step increases, the PDFs become closer to Gaussian as shown in Fig. 3c, d, in accordance 
with the central limit theorem.

Energy distribution. An air-blowing bed can ‘thermalize’ granular  particles2. For example, the effec-
tive  temperature56 of granular particles on the air-blowing bed satisfies many relations in equilibrium statis-
tical  mechanics2. Here we find that the translational kinetic energy Et = 1

2
mv2 and rotational kinetic energy 

Er = 1
2
Iω2 in 5 experimental trials do not exhibit exponential distributions (Fig.  4a, b), i.e. disobeying the 

Boltzmann distribution. The moment of inertia I = 1
2
m( d

2
)2 . The speed v = �r/�t , and the angular speed 

ω = �θ/�t . The time step �t = 1/150 s which is shorter than the vibration periods, hence the translational 
speed can be roughly estimated. The angular speed can be more accurately measured because the disk persis-
tently rotates along one direction for a much longer period than �t . Both the translational and rotational energy 
distributions can be well fitted by compressed exponential distributions (Fig. 4a, b). The energy distribution is 

Figure 3.  PDFs of (a) translational and (b) rotational displacements per �t = 1/150 s at A = 0.6 mm and 
f = 50 Hz, 60 Hz, 80 Hz, and 100 Hz, corresponding to Ŵ = 6.0, 8.7, 15.5 , and 24.0 respectively. The angular 
displacement �θ describes the disk’s rotation in the xy plane, not the tilting angle limited by the lid as shown in 
Fig. 1b. (a) PDFs fitted by the compressed exponential functions f (x) = Ae−Bxβ (curves) with the β shown in 
the inset. (b) Each PDF is fitted by a Gaussian function peaking at θ = 0 and two Gaussian functions peaking 
at ±�θ0 (curves). As an example, the dashed curves represent the three Gaussian distributions peaking at 
�θ = 0,±0.12 for f = 80 Hz, corresponding to the inactive rotation, clockwise and counterclockwise active 
rotations, respectively. �θ0 is shown in the right inset. The fraction of active mode measured from the three 
Gaussian fits is shown in the left inset. (c) PDFs of translational displacements under 60 Hz with �t = 1/150 s, 
1/10 s, 1/5 s, 2/3 s, and 1.0 s fitted by the compressed exponential functions (curves) with the β shown in the 
inset. (d) PDFs of rotational displacements under 100 Hz with �t = 1/150 s, 1/75 s, 1/30 s, 1/15 s, and 1/10 s 
with �t = 1/10 s fitted by a Gaussian function (curves). The inverse uncertainty is used as the weight of each 
data point in all the fittings.
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close to exponential, i.e. Boltzmann, distribution only for translational motion at low f. The distribution of the 
total energy in Fig. 4c is exponential at low f and exhibits a dip at high f. By contrast, the distribution of total 
kinetic energy of a vibrating rod always has a dip at zero energy and an exponential tail at high energy under 
different  accelerations27.

The translational energy dominates at low f and the rotational energy dominates at high f (Fig. 4d), which 
deviates from the thermal equilibrium behavior of Et : Er = 2 : 1 according to the equipartition theorem. It is 
however consistent with the observation that disk-wall collisions can easily change the direction of the transla-
tional motion (Fig. 2a) but not the direction of rotational motion, especially at high f (Fig. 2b). Since the collisions 
interrupt rotations less, the rotational energy occupies a higher fraction in the total energy at high f.

Mean squared displacement. The diffusion is characterized by the mean squared displacement 
MSD ≡ ��r2(t)� = �(r(t + t0)− r(t0))

2� , where r(t) is the center position of the disk at time t. 〈〉 averages over 
all initial times t0 in each trajectory and all 5 experimental trials. We found that MSD ∼ tk with different k in dif-
ferent time regimes, i.e. non-Fickian diffusions. In Fig. 5a, the single disk in our system appears to roll around a 
center at t < 0.05 s which leads to a caging-like effect, and this center randomly diffuses in a longer time regime. 
The single disk in our system has no caging environment, indicating that the interactions can provide a similar 
caging effect. Indeed, interactions tend to change the direction of the translational velocity as shown by the nega-
tive speed correlations at short t in Fig. 6b. For the angular MSDθ ≡ ��θ2(t)� = �(θ(t + t0)− θ(t0))

2� shown in 
Fig. 5b, their slopes > 1 at short times ( t < 1 s) and becomes 1 at long times, suggesting a crossover from short-
time ballistic rotations ( k = 2 ) to long-time diffusive ( k = 1 ) rotations. The ballistic rotation ( k = 2 ) is a special 
case of superdiffusion ( k > 1 ) and is in accordance with the persistent rotation along one direction for about 1 
sec before the direction of rotation flips and the positive correlations of the angular speed in Fig. 6a. A higher 
frequency corresponds to a stronger driving force and hence faster diffusion as shown in Fig. 5. 

Figure 4.  The estimated (a) translational and (b) rotational kinetic energy distributions fitted by f (x) = Ae−Bxβ 
(curves) with β shown in the insets. (c) The total kinetic energy distributions. (d) The total kinetic energies 
labeled with the fraction of translational and rotational energies at different f. A = 0.6 mm. f = 50 Hz, 60 Hz, 
80 Hz, and 100 Hz, corresponding to Ŵ = 6.0, 8.7, 15.5 , and 24.0.
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Displacement correlations. For Brownian motion, displacements are white noise without memories, i.e. 
the time auto-correlations are zero. Here we find interesting displacement correlations for the driven disk that 
are distinct from those of Brownian motion. The time autocorrelation functions C�x = ��x(t0) ·�x(t0 + t)� 
for translational displacements oscillate between positive and negative values at short time and rapidly decay 
to zero in less than 0.1  s (Fig.  6b), indicating that the displacement tends to change direction by collisions 
and lost memory at 0.1  s, in accordance with the crossover from subdiffusive motion to diffusive motion at 
about 0.1  s in the MSDs of Fig. 5a. The interaction between the edge of the disk and the substrate tends to 
reverse the center-of-mass speed, which effectively randomizes the translational motion. The interaction points 
towards the center of the disk which should not strongly affect the rotation. The time autocorrelation func-
tions C�θ = ��θ(t0) ·�θ(t0 + t)� for rotational displacements are positive and decay to zero over 0.1 s to 10 s 
(Fig. 6a). Such memory time of the rotation is in accordance with the crossover from superdiffusive motion to 
diffusive motion at about 0.1 to 10 s shown in the MSDs of Fig. 5b. The memory time of rotation increases with 
f, which is consistent with the longer persistent time at high f in Fig. 2b. The correlation between translational 
and rotational motions of a single driven particle has been studied for a rod on a vibrating stage; its translational 
kinetic energy in the z direction and kinetic energy of rotation are weakly correlated at short  time28; its transla-
tional and rotational energies in the vertical plane are strongly  correlated27.

The coupling between the translational motion and the rotational motion can be quantified by a dimension-
less cross-correlation function C�x�θ = (��x�y sin θ�)/(�x2 +�y2) , where �x is the displacement during 
[t0, t0 + t] and θ is the orientation at t0 + t/257. The measured C�x�θ in Fig. 6c are close to zero, indicating no 
coupling between the translational and rotational motions. By contrast, C�x�θ is non-zero for the diffusion of 
an ellipsoid in both passive  liquid57 and active  liquid58, indicating that the translational-rotational coupling is 
sensitive to the particle shape, but not to driving forces. Besides, the interparticle collisions will produce non-zero 

Figure 5.  (a) Translational MSDs and (b) Rotational MSDs ∝ tk under A = 0.6 mm and f = 50 Hz, 60 Hz, 
80 Hz, and 100 Hz, corresponding to Ŵ = 6.0, 8.7, 15.5 , and 24.0.

Figure 6.  Time autocorrelation functions C(t) of the (a) translational displacements �x and (b) angular 
displacements �θ under various f. (c) The cross-correlations of the translational motion and rotational motion. 
A = 0.6 mm. f = 50 Hz, 60 Hz, 80 Hz, and 100 Hz, corresponding to Ŵ = 6.0, 8.7, 15.5 , and 24.0. �t = 1/150 s.
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translation-rotation correlations in granular  gases59, in contrast to the zero correlations for a single particle in 
this study.

Power spectrum. The power spectrum, or the power spectral density, Sx(f ) =
∣

∣

∣

∫ ttot
0

e−2π iftx(t) dt
∣

∣

∣

2

/(2π ttot) 
provides another angle from which to characterize a time series x(t) in the frequency domain. v2x ∝ Et and 
ω2 ∝ Er , hence S�x and S�θ in Fig.  7 reflect the kinetic energy distributions in the frequency domain. In 
S(f ) ∼ f −α , the exponent α characterizes the color of the noise. �x exhibits white noise ( α = 0 ) at low frequen-
cies and blue noise ( α = −1 ) at high frequencies (Fig. 7a), while �θ are white noise at low frequencies and 
Brownian noise ( α = 2 ) at high frequencies (Fig. 7b). Although the α = −1 regime only spans 1 order of mag-
nitude, it is robust for different trials of experiments which lends confidence to the blue noise. Interestingly, S�θ 
is similar to the power spectrum of the angular velocity of a probing blade embedded in a shaking granular 
 medium60, suggesting that the rotation power spectra are insensitive to granular density.

Discussion and conclusion
We measure the motion of a single uniform-density disk driven on a vibration bed for the first time. The trans-
lational displacements are isotropic in the xy plane and exhibit compressed exponential distributions whose β 
increases with frequency. The compressed exponential distribution is uncommon in diffusion problems, and 
has been reported in granular  gases7,16–18. The rotational displacements exhibit unimodal, trimodal and bimodal 
distributions and each peak can be fitted by a Gaussian function. The sharp peak at �θ = 0 and two broad peaks 
at ±�θ0 correspond to inactive mode, clockwise and counterclockwise active modes respectively. The persistent 
rotation along one direction in the active mode reflects disk rolling on both walls without collisions. Such pro-
cessional angular speed � ∝

√
a/d which is partly confirmed by our measured � ∝

√
a ∝ f  . The MSDs show 

that the translational motion is subdiffusive at short times and superdiffusive at long times, while the rotational 
motion is superdiffusive at short times and diffusive at long times. Their crossover time scales correspond to the 
memory times shown in the auto-correlations of displacements. The translational and rotational motions have 
no correlation, indicating that the previous observed translation-rotation correlations in granular  gases59 arise 
from inter-particle collisions. The rotational displacements are positively correlated over a long period time 
(about 1 s) especially at high frequencies, while the translational displacements are negatively correlated at short 
times. These indicate that the disk slightly tilt and roll on the two walls most of the time. Such rolling does not 
change the rotational direction, but tends to change the direction of translational motion every half period and 
produce negative correlations for translational displacements at short times.

We find that most of the input energy is in the translational motion at low frequencies and in the rotational 
motion at high frequencies. This violation of the equipartition theorem is a critical feature of non-equilibrated 
systems. By contrast, particles driven by an air-blowing bed follow thermal equilibrium behaviors including 
those described by the equipartition  theorem2. Therefore, the vibration bed is quite different from the air bed. 
Our observation that the stronger rotational motion than the translational motion for a single particle at high 
f could deepen the understanding of multiple-particle systems. For example, the stronger translational motion 
in denser granular systems on a vibration  stage11 could be explained as more inter-particle collisions at a higher 
density transferring more energy from rotation motion to translational  motion11. If we only consider the trans-
lational motion, as we may in the absence of rotational information, the motion of particles in ref. 11 could 
appear abnormal.

Figure 7.  Power spectral densities of (a) �x and (b) �θ at various f from 60 Hz to 100 Hz at A = 0.6 mm, 
corresponding to Ŵ varying from 8.7 to 24.0. �t = 1/150 s.
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