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Abstract: Superhydrophilicity performs well in anti-fog and self-cleaning applications. In this study,
polycarbonate substrate was used as the modification object because of the low surface energy charac-
teristics of plastics. Procedures that employ plasma bombardment, such as etching and high surface
free energy coating, are applied to improve the hydrophilicity. An organic amino silane that contains
terminal amine group is introduced as the monomer to perform plasma polymerization to ensure
that hydrophilic radicals can be efficiently deposited on substrates. Different levels of hydrophilicity
can be reached by modulating the parameters of plasma bombardment and polymerization, such as
plasma current, voltage of the ion source, and bombardment time. The surface of a substrate that is
subjected to plasma bombarding at 150 V, 4 A for 5 min remained superhydrophilic for 17 days. After
40 min of Ar/O2 plasma bombardment, which resulted in a substrate surface roughness of 51.6 nm,
the plasma polymerization of organic amino silane was performed by tuning the anode voltage and
operating time of the ion source, and a water contact angle < 10◦ and durability up to 34 days can
be obtained.

Keywords: superhydrophilicity; plasma polymerization; surface modification; polycarbonate; amino silane

1. Introduction

Hydrophilic/hydrophobic materials have attracted extensive attention due to their
unique properties and practical applications in the energy and environmental fields, and
they have been successfully applied to material surface modification and film formation pro-
cesses [1], with applications ranging from adhesion [2], self-cleaning and anti-fogging [3,4],
optical components [5,6], biomedical materials, and compatibility [7,8]. Superhydrophilic-
ity is defined as a water contact angle of less than 10◦ on the surface at a triple point.
Therefore, a superhydrophilic surface helps achieve rapid drying and defogging.

Common hydrophilic materials, such as photo-induced photocatalyst [9] and com-
pounds with high surface energy functional groups, are often used for such modifications.
However, photocatalyst materials such as titanium dioxide (TiO2) require illumination, and
their intrinsic refractive index and physical thickness must be considered in some optical
applications. 3-Aminopropyltriethoxysilane (APTES), an alkoxysilane with high surface
energy terminal amines [10,11], is frequently used as a coupling agent for attaching organic
molecules to hydroxylated substrates, adhesion promotion, and biological implants [12].
Silanization allows APTES to attach to various surfaces [13]. This process only modifies
the surface of the substrate, allows APTES to attach to the surface, and provides terminal
groups with high surface energy, thereby being suitable as a precursor for improving
the hydrophilicity.

Plastic substrates have been a trend for optical components in the past few years, and
their advantages include a low cost, flexibility, and availability for large area processes.
However, as a result of their low surface free energy, plastic substrates are hydrophobic
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or unattachable to optical thin films. The aging [14] phenomenon of polymer substrates is
also susceptible to environmental conditions or plasma bombardment.

The material surface can be made superhydrophilic in various ways, such as ultrasonic
spray pyrolysis, hydrothermal treatment, the sol–gel method, electrochemical anodization,
surface etching, and spin coating [15]. However, such wet processes often produce envi-
ronmental pollutants as a result of reactions in open spaces. The plasma polymerization
process can provide highly functionalized organic surfaces. Many recent plasma polymer-
ization studies have been applied to micro and nanotechnology, such as various kinds
of surface functionalization or modification [16], biomedical science [17,18], and sensor
applications [19,20].

Considering the direct environmental hazards of polluting by-products produced
by the wet process and its complicated synthesis process, this research adopts ion source
plasma bombardment and vapor deposition plasma polymerization. Reactive gas was
introduced into a high vacuum chamber. After the substrates were etched and pretreated
with ion source, the precursor was dissociated and polymerized to modify the surface
of the polycarbonate (PC) substrate. Thus, surface uniformity, low cost, environmentally
friendly, and a completely reacted procedure can be achieved.

2. Materials and Methods

APTES monomer (purity > 99%, Alfa Aesar, Haverhill, MA, USA) was applied as
the precursor of the superhydrophilic thin film. Vaporized APTES can be pushed into the
system by passing through nitrogen (N2) as the carrier gas. Optical-grade PC was used as
the substrate. The PC sheet was first cut into a size of 30 mm × 30 mm × 2 mm, and the
substrates were ultrasonically oscillated and cleaned by a mixture of deionized water and
ethanol. Then, the residue was purged with nitrogen.

The ion source system (Vecco ion gun system with Mark II+ controller) illustrated in
Figure 1 was used to dissociate reactive gases and simultaneously activate the substrate
surface. The evacuated cavity pressure of the coating system is about 4 × 10−4 Pa. Adjusting
the ion source current, voltage, and time enables argon (Ar) and oxygen (O2) to dissociate
and chemically react with the surface of the PC substrate. Therefore, the surface of the
substrate can be etched and activated by plasma to produce a large area of transient
activation [21]. The flow rate of Ar and O2 is set as 2 sccm and 12.5 sccm, respectively, to
achieve the most stable plasma condition. The working pressure is about 3 × 10−2 Pa when
Ar/O2 is introduced into the chamber.
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The surface free energy of the plasma-treated substrates increases, but the persistence is
still poor. To promote the hydrophilicity and durability at the same time, superhydrophilic
polymer film is necessary. Gaseous APTES (80 sccm) carried by N2 (5 sccm) was pumped
into the high vacuum chamber and then deionized by the ion source to produce plasma,
which will be deposited on the treated substrate. The working pressure when N2/APTES
is introduced is about 2 × 10−1 Pa.

The following instruments were used to measure and characterize the hydrophilic
properties, surface morphology, and composition. A water contact angle measuring instru-
ment (FTA-125, First Ten Angstroms) was used to observe the hydrophilicity and evaluate
the surface free energy of the samples. The morphology and surface roughness (Rq) of the
substrates and films were characterized by using a Nanoscope atomic force microscope
from Veeco Ins. Surface element composition ratio analysis was performed using X-ray
photoelectron spectroscopy (XPS, Sigma Probe, Thermo-VG Scientific, Waltham, UK) with
a Microfocus Monochromator Al anode X-ray. The plasma component was observed at
different parameters by using an optical emission spectrometer (OES, AvaSpec-ULS2048,
Avantes BV, Apeldoorn, The Netherlands) for plasma phase diagnostics.

3. Results
3.1. The Influence of Plasma Bombarding on Substrate Surface

Table 1a shows the effect of modulating different plasma currents on the surface
roughness of the substrate with a fixed voltage of 250 V and a bombardment time of
20 min. The number of dissociated plasma particles increases as a result of the increased
plasma current so that under the same area, the substrate surface is subjected to physical
bombardment and chemical etching [22], and the substrate surface roughness increases.
Bombarding the PC substrate at higher voltage plasma with the increasing current resulted
in poor heat dissipation on the substrate surface and surface melting, thereby causing
roughness reduction. Table 1b shows the effect on the surface roughness with a fixed
voltage of 250 V and the best plasma current of 4 A in the previous section with different
etching times. As a result of the increased bombardment time, the total number of particles
per unit area subject to physical bombardment and chemical etching increased, resulting in
a more obvious structure of the etched surface and improved roughness [23].

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness.

(a) Current 2 A 3 A 4 A

Surface Morphology

Materials 2022, 15, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness. 

(a) Current 2 A 3 A 4 A 

Surface Morphology 

    

Roughness 5.13 nm 9.34 nm 13.3 nm 

(b) Time 0 min 20 min 40 min 

Surface Morphology 

   

Roughness 2.09 nm 13.34 nm 22.1 nm 

 

Figure 2. Roughness of PC substrates after different ion bombarding voltages. 

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the 

wetting behavior of liquid on rough surfaces [30]: 

𝑐𝑜𝑠 𝜃𝑤 =
𝐴𝑎𝑐𝑡
𝐴𝑝𝑟𝑜

×
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
= 𝑟 𝑐𝑜𝑠 𝜃 (1) 

where r (the roughness factor) is the ratio of the actual area (𝐴𝑎𝑐𝑡) to the projected area 

𝐴𝑝𝑟𝑜) of a surface, and it is always greater than unity [31]. From the formula, we can con-

clude that a rough surface corresponds to a flat and large surface area of the water drop-

lets. Therefore, the sample that has a larger rough surface can provide more exposed hy-

drophilic functional groups, thus resulting in the improved durability of hydrophilicity. 

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at different 

voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with the 

anode current controlled at 4 A. The longest durability can be achieved at an ion source voltage 

of 130 V. The increase in voltage can increase the number of days that the water contact angle 

Materials 2022, 15, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness. 

(a) Current 2 A 3 A 4 A 

Surface Morphology 

    

Roughness 5.13 nm 9.34 nm 13.3 nm 

(b) Time 0 min 20 min 40 min 

Surface Morphology 

   

Roughness 2.09 nm 13.34 nm 22.1 nm 

 

Figure 2. Roughness of PC substrates after different ion bombarding voltages. 

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the 

wetting behavior of liquid on rough surfaces [30]: 

𝑐𝑜𝑠 𝜃𝑤 =
𝐴𝑎𝑐𝑡
𝐴𝑝𝑟𝑜

×
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
= 𝑟 𝑐𝑜𝑠 𝜃 (1) 

where r (the roughness factor) is the ratio of the actual area (𝐴𝑎𝑐𝑡) to the projected area 

𝐴𝑝𝑟𝑜) of a surface, and it is always greater than unity [31]. From the formula, we can con-

clude that a rough surface corresponds to a flat and large surface area of the water drop-

lets. Therefore, the sample that has a larger rough surface can provide more exposed hy-

drophilic functional groups, thus resulting in the improved durability of hydrophilicity. 

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at different 

voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with the 

anode current controlled at 4 A. The longest durability can be achieved at an ion source voltage 

of 130 V. The increase in voltage can increase the number of days that the water contact angle 

Materials 2022, 15, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness. 

(a) Current 2 A 3 A 4 A 

Surface Morphology 

    

Roughness 5.13 nm 9.34 nm 13.3 nm 

(b) Time 0 min 20 min 40 min 

Surface Morphology 

   

Roughness 2.09 nm 13.34 nm 22.1 nm 

 

Figure 2. Roughness of PC substrates after different ion bombarding voltages. 

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the 

wetting behavior of liquid on rough surfaces [30]: 

𝑐𝑜𝑠 𝜃𝑤 =
𝐴𝑎𝑐𝑡
𝐴𝑝𝑟𝑜

×
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
= 𝑟 𝑐𝑜𝑠 𝜃 (1) 

where r (the roughness factor) is the ratio of the actual area (𝐴𝑎𝑐𝑡) to the projected area 

𝐴𝑝𝑟𝑜) of a surface, and it is always greater than unity [31]. From the formula, we can con-

clude that a rough surface corresponds to a flat and large surface area of the water drop-

lets. Therefore, the sample that has a larger rough surface can provide more exposed hy-

drophilic functional groups, thus resulting in the improved durability of hydrophilicity. 

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at different 

voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with the 

anode current controlled at 4 A. The longest durability can be achieved at an ion source voltage 

of 130 V. The increase in voltage can increase the number of days that the water contact angle 

Roughness 5.13 nm 9.34 nm 13.3 nm

(b) Time 0 min 20 min 40 min

Surface Morphology

Materials 2022, 15, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness. 

(a) Current 2 A 3 A 4 A 

Surface Morphology 

    

Roughness 5.13 nm 9.34 nm 13.3 nm 

(b) Time 0 min 20 min 40 min 

Surface Morphology 

   

Roughness 2.09 nm 13.34 nm 22.1 nm 

 

Figure 2. Roughness of PC substrates after different ion bombarding voltages. 

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the 

wetting behavior of liquid on rough surfaces [30]: 

𝑐𝑜𝑠 𝜃𝑤 =
𝐴𝑎𝑐𝑡
𝐴𝑝𝑟𝑜

×
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
= 𝑟 𝑐𝑜𝑠 𝜃 (1) 

where r (the roughness factor) is the ratio of the actual area (𝐴𝑎𝑐𝑡) to the projected area 

𝐴𝑝𝑟𝑜) of a surface, and it is always greater than unity [31]. From the formula, we can con-

clude that a rough surface corresponds to a flat and large surface area of the water drop-

lets. Therefore, the sample that has a larger rough surface can provide more exposed hy-

drophilic functional groups, thus resulting in the improved durability of hydrophilicity. 

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at different 

voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with the 

anode current controlled at 4 A. The longest durability can be achieved at an ion source voltage 

of 130 V. The increase in voltage can increase the number of days that the water contact angle 

Materials 2022, 15, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness. 

(a) Current 2 A 3 A 4 A 

Surface Morphology 

    

Roughness 5.13 nm 9.34 nm 13.3 nm 

(b) Time 0 min 20 min 40 min 

Surface Morphology 

   

Roughness 2.09 nm 13.34 nm 22.1 nm 

 

Figure 2. Roughness of PC substrates after different ion bombarding voltages. 

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the 

wetting behavior of liquid on rough surfaces [30]: 

𝑐𝑜𝑠 𝜃𝑤 =
𝐴𝑎𝑐𝑡
𝐴𝑝𝑟𝑜

×
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
= 𝑟 𝑐𝑜𝑠 𝜃 (1) 

where r (the roughness factor) is the ratio of the actual area (𝐴𝑎𝑐𝑡) to the projected area 

𝐴𝑝𝑟𝑜) of a surface, and it is always greater than unity [31]. From the formula, we can con-

clude that a rough surface corresponds to a flat and large surface area of the water drop-

lets. Therefore, the sample that has a larger rough surface can provide more exposed hy-

drophilic functional groups, thus resulting in the improved durability of hydrophilicity. 

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at different 

voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with the 

anode current controlled at 4 A. The longest durability can be achieved at an ion source voltage 

of 130 V. The increase in voltage can increase the number of days that the water contact angle 

Materials 2022, 15, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Effect of (a) ion source currents, (b) bombardment time on surface roughness. 

(a) Current 2 A 3 A 4 A 

Surface Morphology 

    

Roughness 5.13 nm 9.34 nm 13.3 nm 

(b) Time 0 min 20 min 40 min 

Surface Morphology 

   

Roughness 2.09 nm 13.34 nm 22.1 nm 

 

Figure 2. Roughness of PC substrates after different ion bombarding voltages. 

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the 

wetting behavior of liquid on rough surfaces [30]: 

𝑐𝑜𝑠 𝜃𝑤 =
𝐴𝑎𝑐𝑡
𝐴𝑝𝑟𝑜

×
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
= 𝑟 𝑐𝑜𝑠 𝜃 (1) 

where r (the roughness factor) is the ratio of the actual area (𝐴𝑎𝑐𝑡) to the projected area 

𝐴𝑝𝑟𝑜) of a surface, and it is always greater than unity [31]. From the formula, we can con-

clude that a rough surface corresponds to a flat and large surface area of the water drop-

lets. Therefore, the sample that has a larger rough surface can provide more exposed hy-

drophilic functional groups, thus resulting in the improved durability of hydrophilicity. 

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at different 

voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with the 

anode current controlled at 4 A. The longest durability can be achieved at an ion source voltage 

of 130 V. The increase in voltage can increase the number of days that the water contact angle 

Roughness 2.09 nm 13.34 nm 22.1 nm

The ion source voltage will affect the gas dissociation rate, which is why the extent of
cross-linking on the surface of the PC substrate after the dissociation of the monomers is



Materials 2022, 15, 4411 4 of 9

different. Figure 2 shows the relationship between the influence of different voltages on the
sample surface roughness with a fixed plasma current of 4 A and a bombardment time of
40 min. The roughness of the PC substrate gradually increases as the ion source voltage
increases to 150 V, but it begins to decrease when the voltage exceeds 150 V.
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According to Ting et al. [24], the cross-linking and chain scission of polymers occur
simultaneously during the plasma bombarding process. Ion bombardment will cause
cleavage and depolymerization of the polymer backbone and side chains [25,26]. Hydrogen
ions are generated as a result of the cleaved chemical bonds in the polymerization, enabling
the polymer to cross-link with other adjacent polymers. The degree of cross-linking depends
on the chemical bonding of the polymer, the type of gas introduced into the plasma system,
and the energy of ion bombardment. In addition, the process of ion bombardment can help
the surface improve the bonding force before grafting the nitrogen-containing functional
group. After the gases pass into the plasma system and are dissociated, the ultra-shortwave
ultraviolet light radiates to destroy the original bonding on the substrate surface, thereby
enabling free radicals to be grafted on its unoccupied chemical bonds [27–29].

In 1936, Wenzel proposed to modify the model of Young’s equation to explore the
wetting behavior of liquid on rough surfaces [30]:

cos θw =
Aact

Apro
× γSG − γSL

γLG
= r cos θ (1)

where r (the roughness factor) is the ratio of the actual area (Aact) to the projected area
Apro) of a surface, and it is always greater than unity [31]. From the formula, we can
conclude that a rough surface corresponds to a flat and large surface area of the water
droplets. Therefore, the sample that has a larger rough surface can provide more exposed
hydrophilic functional groups, thus resulting in the improved durability of hydrophilicity.

Figure 3 shows the hydrophilicity durability of plasma-treated PC substrates at differ-
ent voltages. The ratio of gas flow rate is fixed, and the process is performed in 5 min, with
the anode current controlled at 4 A. The longest durability can be achieved at an ion source
voltage of 130 V. The increase in voltage can increase the number of days that the water
contact angle persists. However, as time passes, the hydrophilic hydroxyl groups (−OH)
generated by plasma bombardment on the surface gradually lose activity because of the
aging phenomenon of the polymer substrate. Thus, the error of the water contact angle
will increase.
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3.2. Effect of Voltage on Organic Coating on Hydrophilicity and Durability

Given the poor durability of increasing surface energy after ion bombardment, the
polymer film still needs to be deposited even though the PC substrates can be hydrophilic.
Gueye et al. [32] used a microwave plasma system and introduced argon, nitrogen, and
APTES monomers into the reaction to obtain terminal amine groups (−NH2) by selecting
the best experimental conditions.

To prove the surface modification of this research, Figure 4 presents the emission
intensity of each radicals from the dissociated monomers measured at different ion source
voltages. The intensity of the free radicals from the plasma was measured by optical
emission spectrometer; then, it was quantified and normalized by the emission intensity of
Ar plasma. The content of free radicals that dissociated under different ion source voltages
can be measured from the in situ emission spectrum of Ar/APTES plasma. At the ion
source voltage of 130 V, the N-H radical signal intensity is the highest, indicating that
the APTES cleaves and offers the greatest number of N-H radicals in the current plasma
environment, resulting in the hydrophilic functional group having a higher probability
of grafting on the surface bonding of the substrate. In addition, the signal intensity of
C-N group and 2nd N2+ is the highest, indicating that more nitrogen ions in the plasma
polymerization process can form CN radicals with the fragmented carbon atoms, have a
higher probability of grafting on the substrate, and are likely to synthesize an amine or
imine group with hydrogen ions. This condition contributes to an increase in durability.

XPS measurement was used to measure the polymer film, thereby doubly verifying
the element ratio. The polymer film of APTES is superhydrophilic because the surface
has exposed nitrogen-containing functional groups—amine (C-NH2), imine (C=NH), and
sulfhydryl (C=N-OH)—to generate hydrogen bonds with water [33], with the nitrogen-
containing functional group having the highest amine group content [34]. Therefore,
with more amine groups being formed during the plasma polymerization process, the
probability of grafting of chemical bonding on the surface increases, and the hydrophilic
ability improves. Table 2 shows the surface elemental contents of the plasma polymer film
(C1s, N1s, O1s, and Si2p) measured by XPS, indicating that the N/Si ratio is the highest at
the ion source voltage of 130 V. The hydrophilic functional groups exposed on the polymer
film are proven to be the greatest in number, thereby verifying that the choice of the ion
source voltage is related to the nitrogen-containing functional groups and hydrophilic
durability. This result matches that of hydrophilicity persistence (Figure 4).
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Table 2. Element composition ratio of plasma polymer film on PC substrate.

Anode Voltage C (at %) N (at %) O (at %) Si (at %) C/Si N/Si O/Si

110 V 57.28 6.96 27.87 7.89 7.26 0.88 3.53
130 V 55.15 9.08 30.67 5.10 10.81 1.78 6.01
150 V 54.35 8.77 30.83 6.05 8.98 1.45 5.10
170 V 53.93 9.82 29.07 7.17 7.52 1.37 4.05

3.3. Effect of Coating Time of Polymer Film on Durability

The experiment results of Lecoq et al. [34] showed that APTES polymer film carried
by nitrogen without other gases has the greatest organic and amine content and the lowest
deposition rate. The polymer film can be regarded as a modified layer by grafting functional
group molecules on the PC surface. Figure 5 shows the durability of the hydrophilicity of
polymer films with different coating times. A longer time results in improved hydrophilic
durability. The film thickness is simply a layer of compounds, which is why oxygen in
the environment easily influences the film, thus resulting in poor durability. Therefore,
increasing the coating time to increase the density improves the durability of hydrophilicity.
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3.4. Hydrophilicity of Surface-Modified PC Substrate

The polymer film can be deposited more effectively on the surface of the substrate,
and the functional groups are exposed by using the parameters of 130 V, 4 A, and 25 min
of APTES film coated after the surface is bombarded at 150 V, 4 A for 40 min. Figure 6
presents the hydrophilic durability of PC substrates treated by all processes, having a
superhydrophilic persistence of up to 34 days. The modification process can be consid-
ered a relatively advanced technology for hydrophilic surface treatment for massive-area
plastic substrate.
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4. Conclusions

A superhydrophilic polymer film was prepared in this study by plasma polymerization
on the surface of PC substrates. With the use of APTES as the reaction gas, a highly
permanent superhydrophilic polymer film was obtained by controlling the parameters of
surface modulation.

Ar/O2 was used to increase the substrate surface roughness and simultaneously
activate the surface bonding via plasma bombardment. With the increase in plasma current
and etching time, the surface roughness is effectively increased. The use of 150 V, 4 A,
and 40 min of oxygen argon plasma in particular enables the PC substrate to achieve the
maximum roughness (81.9 nm). However, at a voltage of more than 150 V, the surface of the
substrate will exhibit an aging phenomenon because of the characteristics of its polymer,
thereby decreasing its roughness.

In the preparation of the superhydrophilic polymer film, OES is used for real-time
monitoring. Results show that more exposed nitrogen-containing hydrophilic functional
groups deposited on the film, resulting in better hydrophilicity. When the ion source
voltage of APTES is 130 V, the substrate surface has the highest ratio of CN and NH bonds.
XPS analysis showed the highest proportion of nitrogen-containing hydrophilic functional
groups on the surface (11.8%). The durability of the superhydrophilicity was the highest
(34 days) after plasma treatment (150 V, 4 A, 40 min) and the deposition of APTES film
(130 V, 4 A, 25 min).

Author Contributions: Conceptualization, C.-C.K.; methodology, H.-S.W.; validation, Y.-T.L.; formal
analysis, K.-W.L.; investigation, K.-W.L.; resources, H.-S.W.; writing—original draft preparation,
Y.-T.L. and K.-W.L.; writing—review and editing, K.-W.L. and C.-C.K.; visualization, C.-C.K.; supervi-
sion, C.-C.K.; project administration, H.-S.W.; funding acquisition, C.-C.K. All authors have read and
agreed to the published version of the manuscript.
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