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and evaluating prognostic gene modules
from cancer transcriptome data
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SUMMARY

Cancer prognosis prediction is critical to the clinical decision-making process.
Currently, the high availability of transcriptome datasets allows us to extract
the gene modules with promising prognostic values. However, the biomarker
identification is greatly challenged by tumor and patient heterogeneity. In this
study, a framework of three subnetwork-based strategies is presented, incorpo-
rating hypothesis-driven, data-driven, and literature-based methods with informa-
tive visualization to prioritize candidate genes. By applying the proposed ap-
proaches to a head and neck squamous cell cancer (HNSCC) transcriptome
dataset, we successfully identified multiple HNSCC-specific gene modules with
improved prognostic values and mechanism information compared with the stan-
dard gene panel selection methods. The proposed framework is general and can
be applied to any type of omics data. Overall, the study demonstrates and sup-
ports the use of the subnetwork-based approach for distilling reliable and biolog-
ically meaningful prognostic factors.

INTRODUCTION

Cancer prognosis, the estimation of the recovery chance, plays a key role in clinical decision-making.

Different statistics such as overall survival (OS) rate or fixed-term survival rate have been used to evaluate

the treatment plans for patients. Understanding and identifying the core genes and pathways associated

with cancer prognosis is crucial for the treatment decision-making and patient management. Tumor

microenvironment (TME) as a complicated and active system around the tumor cell consists of not

only immune and stromal cells but also those surrounding tissue components such as blood vessels,

fibroblasts, and extracellular matrix.1 The alterations of both the oncogenes and tumor suppressor genes

in these cells could regulate the biological pathways interactively and result in different patient outcomes.

The tumor heterogeneity, showing differences both within a tumor at the cell level and between individ-

ual tumors at the patient level, also challenges the current treatment because the therapeutic biomarker

is difficult to target. Hence, as a leading cause of death globally, cancer demands a better prognosis for

accurate clinical decision-making.

The rapid revolution of next-generation sequencing such as DNA sequencing and RNA sequencing

(RNA-seq) enlarges the genomics database and allows scientists to gain more comprehensive insights

into cancer prognostic genes. Gene expression holds a unique midpoint between upstream DNA mu-

tation and downstream protein expression, directly measuring the dynamic cell status and activities.2

The cell-specific mRNA dysregulation, as a major contributor to tumor progression, is instructive for

cancer prognosis studies. RNA-seq is undergoing a revolution with the transition from bulk tissue

RNA-seq to single-cell RNA-seq (scRNA-seq), which investigates all cells simultaneously more efficiently

and quantifies the individual cell expression more specifically. In consideration of the interactions be-

tween genes according to the cell heterogeneity as well, RNA-seq has become a mainstay in cancer

research.3

With the revolution of high-throughput sequencing technology, the amount of available genomics data is

increasing drastically. The aggregation of the exhaustive data with convoluted relationships such as pro-

tein-protein and protein-RNA interactions makes the prognostic gene selection more complicated and

challenging. Network-based topology thereby has been introduced for gene panel analysis with
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visualization such as gene expression and protein-protein interaction (PPI) network. A combination of the

data-driven estimated network and the gene regulatory database-derived network with Laplacian matrix

constraint has been proposed for feature selection in a generalized linear model.4 Meanwhile, gene in-

formation redundancy, as the overlapping functions and intercorrelated expression levels, is a major

problem to consider in both gene expression analysis and network-based methodology. The basic

network analysis could not capture and interpret the genome-wide transcriptome data thoroughly as

the gene nodes are numerous with compact edges based on the intricate interactions.5 Taking the spar-

sity and heterogeneity of gene expression profiles into account, cancer types have also been studied by

subgroup clustering and stratification.6 Because no single methodology could work perfectly for top

biomarker candidate prioritization, we consolidated the strategy by integrating both data-driven and

literature-based subnetwork analyses to prioritize informative prognostic genes. This de novo subnet-

work-based framework is able to enhance the prognosis accuracy by providing interconnection informa-

tion, such as gene regulatory and PPI with visualization.

In this article, we illustrate the use of network-based and subnetwork-based approaches for mining the

prognostic genes with the head and neck squamous cell cancer (HNSCC) transcriptome dataset. The

growing cases and low survival rates of head and neck cancer have attracted more attention these years,

while the treatment for this cancer is still a struggle because of the absence of clearly defined prognostic

factors.7 To this end, we demonstrate that the integrated and systematic subnetwork framework can iden-

tify hallmark prognostic units or submodules such as the immune-related and hypoxia-related signatures.

Three different subnetwork-based strategies—(1) hypothesis-driven, (2) data-driven, and (3) literature-

driven—were proposed to explore the HNSCC-specific candidate biomarkers. The overall rationale is

that by exploiting the gene subnetworks (based on gene coexpression patterns, PPIs, or the combina-

tion), we can extract more reliable and optimized prognostic gene panels from the heterogeneous candi-

date gene pools.

RESULTS

Overview of subnetwork-based strategies for prioritizing prognostic genes

In this study, three different subnetwork-based strategies—(1) hypothesis-driven, (2) data-driven, and (3)

literature-driven—were proposed to study the cancer-type-specific prognostic biomarkers. The analytical

workflow for each strategy is illustrated in Figure 1.

The hypothesis-driven strategy focuses on the specific cancer molecular pathways such as hypoxia signa-

ture and tumor interferon (IFN) signaling. Considering the hypoxia pathway as an example, there are

more than 135 gene biomarkers responsible for oxygen deprivation. It is yet uncertain as to which candi-

date genes have the largest impact on HNSCC survival. To address this issue, we will apply the gene

expression-based (GE-based) subnetwork analysis to empirically classify the hypoxia-related genes

into different gene submodules. The prognostic significance of each submodule is then tested based

on the log-rank test on Kaplan-Meier estimate or the Cox regression analysis. The data-driven strategy

directly adopts the genome-wide scan for the top prognostic genes based on the univariable or multi-

variable Cox regression. A PPI network8–10 is then applied on these top genes with the goal to identify

hub gene modules that can be used to construct the final prognostic joint signature. In the last strategy,

a literature search is first conducted to collect all prognostic genes related to a caner type in the pub-

lished studies. We then propose to apply subnetwork analysis to broadly categorize these genes (1 at

each time) into malignant, immune, and stromal cellular communities. We will leverage single-cell tran-

scriptome data to generate ‘‘orthogonal’’ seed genes that can best delineate the different cellular com-

munities for each cancer tissue type.

Hypothesis-driven prognostic submodule discovery based on exploratory graph analysis

Hypoxia, resulting from a low-oxygen condition in a TME, is a hostile hallmark in most solid tumors such

as head and neck cancer. Emerging evidence has revealed that tumor hypoxia is associated with cancer

progression and therapy resistance.11 However, there is no consensus on gene signatures of hypoxia

across cancer types.12 To investigate cancer-specific gene signatures, we performed an unsupervised

subnetwork analysis by combining the genes from three existing hypoxia signatures, i.e., Buffa signa-

ture,13 Hu signature,14 and Winter signature.15 Exploratory graph analysis (EGA) was conducted on the

gene expression data of 135 unique hypoxia biomarker genes, which are derived from the pan-can-

cer-normalized The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) dataset.
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EGA, introduced originally in psychometric, is a popular framework for estimating the number of ‘‘dimen-

sions’’ or subnetworks in a given multivariate dataset based on the graphical lasso and walktrap commu-

nity detection algorithms.16–19 Based on the weighted network community analysis, the results of EGA

(Figure 2A with anchor gene) indicate a total of 8 gene communities underlying the HNSC hypoxia tran-

scriptomic data. We further tested the association between each single gene and patients’ OS. The uni-

variable Cox regression analysis showed 9 genes with p values less than 0.01, and two of them (PGK1 and

P4HA1) with extremely high significance (p value = 1.7 3 10�6 and 8.2 3 10�5, respectively). As indicated

by the significance levels in the plot, most prognostic candidate genes are enriched in community 1 (rep-

resented by the genes GPN3 and KIF20A), community 2 (represented by PFKP and PGK1), and commu-

nity 3 (represented by PSMD2, PLAU, and P4HA1). Furthermore, the lasso-penalized Cox multivariable

regression analysis indicated that genes PGK1, P4HA1, and PLAU were selected in the final predictive

model. Pathway enrichment analysis using MSigDB hallmark gene sets shows that both community 2

and community 3 are highly enriched for hypoxia and glycolysis pathways, while the community 1 is

significantly enriched for cell cycle pathways (G2M checkpoint and E2F targets). Together, these results

suggest that the core prognostic hypoxia submodules for head and neck cancer exist in the discovered

gene communities 2 and 3, represented by the leading genes PGK1 and P4HA1, respectively.

A

B

C

Figure 1. Three subnetwork strategies for prioritizing prognostic genes

(A) The hypothesis-driven approach focuses on the individual prognostic cancer mechanistic pathways. Based on the

genes involved in 1 mechanism, the gene expression analysis by extracting subnetworks (e.g., exploratory graph analysis

[EGA]) is applied to refine the prognostic signatures.

(B) The data-driven strategy examines all genes by their prognostic significance simultaneously. A PPI network is then

used as a complementary affirmation to prioritize the top candidate genes.

(C) The literature-based strategy is a combination of data-driven and hypothesis-driven approaches. The functional/

cellular submodule of the candidate gene is first explored in the context of the anchor genes discovered based on the

scRNA-seq. Both the gene expression (GE) analysis and the PPI network information will be utilized in this approach.
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As a comparison, we also performed the same EGA analysis on the hypoxia-related gene expression ex-

tracted from the TCGA bladder cancer (TCGA-BLCA) dataset. Bladder cancer is also a solid tumor, and

its prognosis is known to be affected by the tumor hypoxia characteristics. As shown in Figure S1A, the prog-

nostic genes show a distinct pattern in the hypoxia gene expression network. Compared with HNSC, there

are more genes significantly associated with patient survival in bladder urothelial carcinoma (BLCA). Ac-

cording to the univariable Cox regression, there were 22 genes with p values less than 0.01, while none of

them exhibited predominating prognostic significance (PLOD1 had the lowest p value at 0.4 3 10�4). The

finding suggests that more genes could be incorporated to create a hypoxia-driven prognostic signature

A

B

Figure 2. Unsupervised gene communities detected with EGA in HNSCC

(A) Eight gene communities grouped by EGA based on the hypoxia gene signature.

(B) p Values of cox models after -log10 transformation. The yellow bar represents the p values from the EGA-selected

prognostic submodule, and the green bar represents the p values from all genes among 7 hypoxia-enriched cancer types:

uterine corpus endometrial carcinoma (UCEC), ovarian cancer (OV), lung squamous cell carcinoma (LUSC), HNSC, colon

adenocarcinoma (COAD), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and bladder

urothelial carcinoma (BLCA).
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in BLCA, and a less-robust ridge-penalized (rather than lasso-penalized) Cox model might be considered.

TheEGAplot also shows thatmost prognostic genes fall within the communities 3, 4, and 5. Thegene enrich-

ment analysis revealed that community 3 was significantly enriched for cell cycle pathways, and communities

4 and 5were enriched for theglycolysis pathway. Thedifferences in theprognostic subnetworks thus confirm

the heterogeneity in hypoxia signature and partially explain the previous observation that a hypoxia meta-

gene signature predicts therapeutic benefits in laryngeal cancer but not bladder cancer.12 For a more

comprehensive validation of this strategy, the EGA subgroup analysis is performed on additional hypox-

ia-related cancer types, including uterine corpus endometrial carcinoma, ovarian cancer, lung squamous

cell carcinoma, HNSC, colon adenocarcinoma, cervical squamous cell carcinoma and endocervical adeno-

carcinoma, and BLCA. Gene set scores for each of the 135 hypoxia-related genes and EGA-clustered gene

subgroups are produced using the enrichment technique single-sampleGSEA, which is implemented in the

R package ‘‘GSVA.’’ As expected, the EGA-refined gene subgroup signatures demonstrated a more signif-

icant association with survival when compared with the all-gene panel (Figure 2B).

The IFN signaling in tumor is another hallmark of cancer. Recent studies have shown that tumor IFN-gamma

(IFNG) signaling plays a dual role in regulating both innate and adaptive immune responses.20 Due to its

essential role in immune regulation, a large cascade of genes are involved in the IFN/IFNG signaling.

Consequently, a small subset of the IFN signature, known as the ISG resistance signature (ISG.RS), has

been proposed as a more effective prognostic signature and potential biomarker for immunother-

apies.20,21 Same as hypoxia signatures, it is unclear whether these IFN signatures and their subsets are

generalizable across different cancer types. To further explore the IFN heterogeneity, we applied a similar

EGA analysis based on the IFN-related genes in the TCGA-HNSC dataset. There were 224 genes from the

IFNG and IFN-alpha hallmark pathways included in the analysis. As shown in the Figure S1B, the EGA

network analysis suggests 7 unsupervised gene communities. Importantly, the results show that the major-

ity of the ISG.RS genes are within or around two major clusters: community 6 and community 4. In addition,

a small cluster is formed by three ISG.RS genes (HLA-B, HLA-G, and CXCL10), which was included in the

immune-related submodules as expected. This pattern indicates the ISG.RS signature, originally discov-

ered using melanoma datasets, that also has a high relevance in head and neck tumors. It also suggests

that the other genes around these two clusters, especially the remaining genes in the community 6 (such

as RSAD2 and DDX58), are potential candidate biomarkers for the HNSC-specific ISG.RS signature.

Data-driven prognostic genes prioritization based on PPI networks

Based on the HNSC transcriptome dataset, this section presents a data-driven strategy for prognostic gene

discovery. As illustrated in Figure 1, this strategy begins with a genome-wide scan by testing the associa-

tion between each gene and survival outcomes, i.e., using the Cox regression model. Genes are then

ranked by their significance levels, and the top-ranked genes will be selected for the downstream network

and subnetwork analyses. We applied the screening method based on the standard Cox regression in or-

der to prioritize the prognostic genes. With the aim to build predictive models in the future, lasso-penal-

ized and elastic-net Cox regressions are proposed with all genes included in the model. In this way, the

candidate genes selected in the final model can be used for the subsequent analysis. For the HNSC

gene expression data, the processed RNA-seq data of a total of 20,501 genes from 520 tumor samples

were used as input. After filtering genes with low expression values and low variations across all samples

(detailed in the STAR Methods section), a total of 17,663 genes were included in the initial Cox-regres-

sion-based screening analysis for testing their association with OS and progression-free survival. The

same analysis steps were conducted after excluding those human papillomavirus-positive (HPV-positive)

patients (resulting in 446 samples). The top 30 prognostic genes (ranked by their p values) from the

HPV-negative population are summarized in Figure 3A. There are only 8 overlapping genes in the OS

screening analyses between the whole group and the HPV-negative subsamples, suggesting that the

HPV status contributes significantly to sample heterogeneity. In the second stage of the analysis, we further

prioritize these candidate genes by incorporating PPI networks from the STRING database. The rationale is

that the closely connected genes in PPI networks are more prone to have functional significance than the

sparse neighbors. We used the STRINGmultiprotein toolkit to construct the network based on the top 200

prognostic genes selected from the HPV-negative subsample of the HNSC OS screening. The resulting

STRING network map is shown Figure 3B, where singleton nodes that are not connected in the PPI network

have been filtered. The prognostic network analysis reveals many functional subnetworks whose functions

can be recognized by the associated hub genes. For example, the center of the PPI network is connected by

multiple hypoxia-related hub genes that were also discovered by the EGA analysis discussed above,
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A

B

C

D

Figure 3. Gene prioritization results from the data-driven strategy workflow

(A) Top genes selected by Cox models for all patients and the stratified HPV-negative patients subgroup. (using both OS

and progression-free survival [PFI] as the outcome)
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including PGK1, HK1, PKLR, and P4HA1. Adjacent to the hypoxia subnetwork is the DNA repair subnet-

work, represented by the hub genes POLR1D, GPN3, and ADCY4. The subnetwork at the top of the plot

(Figure 3B) is made up of the immune-related genes, e.g., CCL22, CD79A, TNFRSF4, and CCR7. The genes

shown at the bottom of the plot are associated with E2F targets and the glycolysis pathway, including

SPDL1, HMMR, KNSTRN, RACGAP1, and DEPDC1. Overall, the PPI map from the top prognostic genes re-

veals two major subnetworks (hypoxia-related and immune-related) in HNSC.

To further translate the findings from the aforementionednetwork analysis, weproposea joint prognostic signa-

ture based on the genes discovered in the hypoxia and immune networks. The lasso-penalized Cox regression

model was trainedwith the TCGA-HNSCOSdata. The final hypoxia-immune joint signature is constructedwith

the 11 genes selected by the lasso model (with non-zero coefficients): PGK1, GPN3, SLC2A14, HK1, HPRT1,

PLOD2, POLR2C, ZAP70,GRAP, TNFRSF4, and S1PR4. The corresponding coefficient estimates of these genes

in thefinalCoxpredictivemodel are 0.30, 0.069, 0.15, 0.33, 0.18, 0.06, 0.20, 0.13,�0.12,�0.06, and�0.08, respec-

tively. As expected, most hypoxia-related genes have positive coefficients (hazard ratio >1) while immune-

related genes have negative coefficients (hazard ratio <1). To validate the prediction performance of the pro-

posed prognostic model, we calculated the risk score based on an external HNSC dataset (GSE27020), which

contains 109 patients. After the batch effect correction, the predicated risk scores based on the TCGA and

GSE27020 showed similar distributions with corresponding quantiles (Figure S2). As shown in the Kaplan-

Meier plots stratified by the risk score quartiles (Figures 3C and 3D), patients with higher predicted risk scores

tend to have worse survival rates in both the training and validation datasets.

Classifying literature-based prognostic genes using gene subnetworks

The literature-based approach is to discover and validate the prognostic biomarkers based on previous pub-

lications or databases, which has emerged as a popular alternative to the data-driven approach. However, too

many prior publications for a certain disease could also result in a large pool of candidate biomarkers. There-

fore, subnetwork analyses that can classify candidate genes into cellular submodules can be of great aid in the

downstream analysis. Here, we continue our demonstration based on the head and neck cancer dataset.

A systematic literature survey via PubMed on March 18, 2022, resulted in 73 publications reporting gene-

expression-based prognostic biomarkers in head and neck cancers (the associated PMIDs and biomarkers

are listed in the Table S1). In the PubMed search, the keyword ‘‘head and neck squamous carcinoma prognostic

gene’’ was used. The inclusion criteria include studies in English, with human subjects and full text available. As

an immunogenic cancer type, higher tumor immune infiltration in HNSCs is associated with favorable patient

survival. Differentially expressed genes in immune cells are often found significantly associated with survival.

However, the observed expression of these immune-related genes from the bulk tumor is also highly

confounded by tumor purity and cellular compositions. Therefore, it is important to first classify the litera-

ture-discovered genes more specifically and determine whether a gene signature is driven by the immune

or stroma compartments.

scRNA-seq makes it feasible to compute the correlations among genes within each cell and identify the

most indicative genes for the three compartments: stroma, malignant, and immune. We thereby applied

the differential expression analysis using ‘‘one-vs-all’’ comparison to distinguish the genes of 1 compart-

ment from the other two. The top five most differentially expressed anchor genes were selected for

each community (immune: RGS1, CXCR4, SRGN, PTPRC, LCP1; stromal: ACTA2, DCN, SPARCL1, A2M,

MGP; malignant: KRT17, KRT14, KRT6A, KRT5, EPCAM), resulted in a 15-gene marker panel.

The genes derived from previous literature (Table S1) are then assigned individually to one of the three

communities according to the scRNA-seq-derived gene marker panel with the spin-glass model, which

is a community detection clustering algorithm. We applied the ‘‘cluster_spinglass’’ function from the

Figure 3. Continued

(B) PPI network demonstrated the key hub genes and subnetwork around them. The hypoxia and immune gene hubs are

highlighted with blue and red circles.

(C) Kaplan-Meier curve plot for patients stratified by risk score quartiles with OS as the outcome. Patients with higher

predicted risk scores (fourth quartile) resulted in lower OS probabilities for the training dataset.

(D) Kaplan-Meier curve plot for patients stratified by risk score quartiles with disease-free survival (DFS) as the outcome.

Consistent with the trend shown in panel C, patients with higher predicted risk scores resulted in lower DFS rates for the

test dataset.
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‘‘igraph’’ R package for this graphical community detection.22–24 For example, the gene ‘‘GZMA’’ is classi-

fied as an immune biomarker based on the 15 principal genes (Figure 4A). Alternatively, the PPI plot

derived from the STRING database (Figure 4B) shows that ‘‘GZMA’’ is also connected directly to the key

immune gene CD4. It is noteworthy that, in the PPI plot with or without a query gene (Figure S3), all three

communities are connected around the hub gene EFGR (epidermal growth factor receptor), which is known

to play a critical role in HNSCC tumor initiation, progression, andmetastasis.8 Next, we examined the prog-

nostic significance of the literature-based genes assigned to each cellular community in two datasets:

TCGA and GSE27020. As shown in Figure 4C, while more than half of the genes are significantly associated

with survival outcome in at least 1 dataset, only a small proportion of genes are significant in both datasets.

The subnetwork-based stratification provides more informative insights into the potential cellular compart-

ments that those double-validated prognostic genes are functioning in. For example, the hypoxia-related

genes PLAU and ENO1 were classified in the malignant gene community; multiple well-known immune-

related genes such as CD3G and CTLA4 were in the immune gene community. The gene set enrichment

Figure 4. Gene subnetwork delineated by the literature-based strategy

(A) The ‘‘Spinglass’’ algorithm clusters the candidate gene into 1 of the three compartments: immune, stroma, or tumor.

As an example, the input gene ‘‘GZMA’’ highlighted with red asterisk was assigned to the immune community.

(B) The PPI network of the representative anchor gene and ‘‘GZMA’’ based on the STRING database.

(C) Overlapped (significant) prognostic genes in TCGA and Gene Expression Omnibus (GEO) datasets. The yellow bars

are the literature-based genes selected in both datasets, gray bars represent the number of genes selected in one

dataset, and the blue bars reveal the number of genes selected in neither dataset.

(D) Gene enrichment analysis of genes assigned in the malignant group, including Msigdb Hamllmark, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, and gene ontology pathways (Gene Ontolgy Biological Process

(GOBP), Gene Ontolgy Molecular Function (GOMF), and Gene Ontolgy Cellular Component (GOCC)).
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analysis (Figures 4D, S4 and S5) further revealed the biological pathways associated with the double-vali-

dated genes in each cellular community.

DISCUSSION

As most research studies in transcriptomic data disregard the tumor cell heterogeneity in prognostic

biomarker discovery, our study focuses on network and subnetwork approaches by integrating both

data-driven and hypothesis-driven methods. For all three proposed strategies, we applied graph-based

network algorithms to optimize and verify the delineation of subcommunities, which narrow down the

massive potential candidates with straightforward visualization. By integrating data-driven statistical

models with evidence-based findings as well, an effective and efficient translational regulation analysis is

provided to prioritize cancer-type-specific prognostic genes. It is also notable that we decode the tumor

heterogeneity by confirming the cancer-specific signature and conducting gene-submodule-level stratifi-

cation for a more detailed while less-biased biomarker discovery.

The hypothesis-based strategy first specifies the particular cancer gene subsets according to prior knowl-

edge, e.g., hypoxia, which is a remarkable hallmark in several tumor types. The workflow combines a series

of statistical models for gene prioritization, EGA for subnet layout, and gene set enrichment analysis for

verification, providing both statistical significance and information visualization. Our results reveal that hyp-

oxia is an ideal signature for biomarker identification in HNSCC yet less dominant in bladder cancer,

whereas another immune-related signature (ISG.RS) originally derived from melanoma is confirmed to

be valuable for HNSCC as well. With this strategy, both tumor heterogeneity and biomarker generaliz-

ability could be accounted for in the prognostic gene optimization. The data-driven strategy starts from

the whole transcriptome data directly, leading to a less-biased and more-inclusive analysis. Considering

the potential false-positive rates caused by genetic heterogeneity and unequal sample size, we ran Cox

models on the whole population and the HPV-positive excluded patient subgroup. As expected, the top

genes selected from the two groups were distinct after cross-checking, and we further investigated the

HPV-positive excluded group with submodules. Given the fact that gene expression data can be unreliable

with many confounding factors, we introduce the PPI network after filtering the redundant genes to further

confirm our data-driven results. The hypoxia-related hub genes such as PGK1 and P4HA1 were prioritized

by both strategy 1 and strategy 2, which confirmed the consistency and accuracy of our strategies.

Cancer studies are accumulated over time due to the prevalence of high-throughput sequencing technology,

leading to the large-scale reusable gene expression profiles in the public domain. As many prognostic studies

use the same source of public dataset, such as TCGA, different but correlated genes (or genes with similar func-

tions) have been reported redundantly in multiple studies. The studies that focus on a targeted mechanism

could also introduce bias into biomarker prioritization. For example, hypoxia as a remarkable condition of

various cancer types has been examined by several HNSCC studies, resulting in generic hub genes being

the prognostic genes prioritized, i.e., oxygen deficiency contributors. Besides the substantial candidates,

another challenge for gene identification is bulk gene sequencing only provides average gene expression

instead of looking into the individual cell. scRNA-seq with a higher granular resolution is incorporated into

the third strategy for bulk RNA sequence deconvolution to reveal the orthogonal genes representing the tu-

mor, immune, and stromal compartments. Our strategy 3 starts with the scRNA-seq-identified seed genes

and use an unsupervised clustering algorithm to classify the candidate genes into 1 of three tumor compart-

ments. Standard PPI is used for further verification. By utilizing this divide-and-conquer strategy, we were

able to classify genes according to their functional modules in the context of HNSCC.

In summary, we demonstrate how data-driven and hypothesis-driven methods could be integrated

together with network-based methods for prognostic biomarker discovery. For different cancer or disease

types, the choice of the best strategy depends on the real data structure and the available data resources.

For example, if there are several prior studies, the literature-oriented strategy will be a suitable choice for a

full-scale investigation at a low cost. Instead, if the whole transcriptome data are available, then the data-

driven strategy is recommended to examine all genes objectively. The hypothesis-based strategy will be

the most appropriate option when certain signatures are required to study or there are well-established

hallmarks for the disease already.
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Limitations of the study

Despite the promise of our framework, several limitations remain. For the hypothesis-based approach, the

EGA algorithm is heavily dependent on distancemetrics and parameter settings, whichmight cluster genes

in different communities randomly. Similar to other unsupervised learning methodologies, the results

might be hard to interpret and reproduce. The PPI network in strategy 2 requires professional domain

knowledge to delineate the subnetworks. Although dominant hub genes could be found in this study

for HNSCC, it could be less obvious for other cancer types. One drawback for the strategy 3 is reporting

bias because only those significant findings would be published with positive results in general. Besides,

it is difficult to extract and cover all the literature information for analysis. For subsequent studies, the liter-

ature-selected genes could be further classified into data-driven or mechanism-derived to reduce bias and

refine the network. Meanwhile, good-quality reference scRNA-seq data might not exist for all cancer types.

Altogether, our framework of the subnetwork analysis with integration of a data-driven and literature-

based methodology is able to prioritize prognostic genes efficiently in a flexible manner, offering a prom-

ising tool for fostering precision medicine.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Processing of cancer transcriptome data

B Gene set analysis

B Hypoxia and IFNG hallmark signature

B Network analysis based on EGA

B Univariate Cox regression and lasso-penalized cox regression for prioritizing top prognostic gene

B PPI analysis based on STRING database

B Malignant-Immune-Stromal anchor gene selection based on scRNA-seq

B Gene cellular community discovery via spin-glass model

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.105915.

ACKNOWLEDGMENTS

This work has been supported in part by a National Institutes of Health grant R01DE030493; the James and

Esther King Biomedical Research Grant (21K04); and Biostatistics and Bioinformatics Shared Resources at

the H. Lee Moffitt Cancer Center & Research Institute, an NCI-designed Comprehensive Cancer Center

(P30-CA076292).

AUTHOR CONTRIBUTIONS

Conceptualization, B.C., K.B.P., S.Y., and X.W.; methodology, software, and formal analysis, B.C., T.L., S.Y.,

and X.W.; investigation, C.H.C., K.B.P., and X.W.; writing-original draft, X.W.; writing-review and editing,

K.B.P, T.L., and X.W.; funding acquisition, C.H.C.; supervision, C.H.C, K.B.P., and X.W.

DECLARATION OF INTERESTS

C.H.C. has received honoraria from Sanofi, Merck, and Brooklyn ImmunoTherapeutics, and Exelixis for

serving in ad hoc scientific advisory boards. All other authors declare no conflict interest.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

ll
OPEN ACCESS

10 iScience 26, 105915, February 17, 2023

iScience
Article

https://doi.org/10.1016/j.isci.2022.105915


Received: November 20, 2022

Revised: December 25, 2022

Accepted: December 28, 2022

Published: February 17, 2023

REFERENCES
1. Kuksin, M., Morel, D., Aglave, M., Danlos,

F.X., Marabelle, A., Zinovyev, A., Gautheret,
D., and Verlingue, L. (2021). Applications of
single-cell and bulk RNA sequencing in onco-
immunology. Eur. J. Cancer 149, 193–210.

2. Kukurba, K.R., and Montgomery, S.B. (2015).
RNA sequencing and analysis. Cold Spring
Harb. Protoc. 2015, top084970.

3. Hwang, B., Lee, J.H., and Bang, D. (2021).
Single-cell RNA sequencing technologies
and bioinformatics pipelines. Exp. Mol. Med.
53, 1005–1014.

4. Li, K., Wang, X., and Kuan, P.F. (2019). Mixture
network regularized generalized linearmodel
with feature selection. Preprint at bioRxiv,
678029. https://doi.org/10.1101/678029.

5. Kim, Y., Kim, T.-K., Kim, Y., Yoo, J., You, S.,
Lee, I., Carlson, G., Hood, L., Choi, S., and
Hwang, D. (2011). Principal network analysis:
identification of subnetworks representing
major dynamics using gene expression data.
Bioinformatics 27, 391–398.

6. Hofree, M., Shen, J.P., Carter, H., Gross, A.,
and Ideker, T. (2013). Network-based
stratification of tumor mutations. Nat.
Methods 10, 1108–1115.

7. Cadoni, G., Giraldi, L., Petrelli, L., Pandolfini,
M., Giuliani, M., Paludetti, G., Pastorino, R.,
Leoncini, E., Arzani, D., Almadori, G., and
Boccia, S. (2017). Prognostic factors in head
and neck cancer: a 10-year retrospective
analysis in a single-institution in Italy. Acta
Otorhinolaryngol. Ital. 37, 458–466.

8. Bonetta, L. (2010). Interactome under
construction. Nature 468, 851–854.

9. Sardiu, M.E., and Washburn, M.P. (2011).
Building protein-protein interaction networks
with proteomics and informatics tools. J. Biol.
Chem. 286, 23645–23651.

10. Franceschini, A., Szklarczyk, D., Frankild, S.,
Kuhn, M., Simonovic, M., Roth, A., Lin, J.,
Minguez, P., Bork, P., von Mering, C., and
Jensen, L.J. (2013). STRING v9. 1: protein-
protein interaction networks, with increased
coverage and integration. Nucleic Acids Res.
41, D808–D815.

11. Ye, Y., Hu, Q., Chen, H., Liang, K., Yuan, Y.,
Xiang, Y., Ruan, H., Zhang, Z., Song, A., Zhang,
H., et al. (2019). Characterization of hypoxia-
associated molecular features to aid hypoxia-
targeted therapy. Nat. Metab. 1, 431–444.

12. Eustace, A., Mani, N., Span, P.N., Irlam, J.J.,
Taylor, J., Betts, G.N.J., Denley, H., Miller,

C.J., Homer, J.J., Rojas, A.M., et al. (2013). A
26-gene hypoxia signature predicts benefit
from hypoxia-modifying therapy in laryngeal
cancer but not bladder CancerGene
signature predicts benefit from antihypoxia
therapy. Clin. Cancer Res. 19, 4879–4888.

13. Buffa, F.M., Harris, A.L., West, C.M., and
Miller, C.J. (2010). Large meta-analysis of
multiple cancers reveals a common, compact
and highly prognostic hypoxia metagene. Br.
J. Cancer 102, 428–435.

14. Hu, Z., Fan, C., Livasy, C., He, X., Oh, D.S.,
Ewend, M.G., Carey, L.A., Subramanian, S.,
West, R., Ikpatt, F., et al. (2009). A compact
VEGF signature associated with distant
metastases and poor outcomes. BMC Med.
7, 9–14.

15. Winter, S.C., Buffa, F.M., Silva, P., Miller, C.,
Valentine, H.R., Turley, H., Shah, K.A., Cox,
G.J., Corbridge, R.J., Homer, J.J., et al.
(2007). Relation of a hypoxia metagene
derived from head and neck cancer to
prognosis of multiple cancers. Cancer Res.
67, 3441–3449.

16. Golino, H.F., and Epskamp, S. (2017).
Exploratory graph analysis: a new approach
for estimating the number of dimensions in
psychological research. PLoS One 12,
e0174035.

17. Golino, H.F., and Demetriou, A. (2017).
Estimating the dimensionality of intelligence
like data using Exploratory Graph Analysis.
Intelligence 62, 54–70.

18. Golino, H., Shi, D., Christensen, A.P., Garrido,
L.E., Nieto, M.D., Sadana, R., Thiyagarajan,
J.A., and Martinez-Molina, A. (2020).
Investigating the performance of exploratory
graph analysis and traditional techniques to
identify the number of latent factors: a
simulation and tutorial. Psychol. Methods 25,
292–320.

19. Pons, P., and Latapy, M. (2006). Computing
communities in large networks using random
walks. J. Graph Algorithms Appl 10, 191–218.

20. Benci, J.L., Johnson, L.R., Choa, R., Xu, Y.,
Qiu, J., Zhou, Z., Xu, B., Ye, D., Nathanson,
K.L., June, C.H., et al. (2019). Opposing
functions of interferon coordinate adaptive
and innate immune responses to cancer
immune checkpoint blockade. Cell 178, 933–
948.e14.

21. Jain, M.D., Zhao, H., Wang, X., Atkins, R.,
Menges, M., Reid, K., Spitler, K., Faramand,
R., Bachmeier, C., Dean, E.A., et al. (2021).
Tumor interferon signaling and suppressive

myeloid cells are associated with CAR T-cell
failure in large B-cell lymphoma. Blood 137,
2621–2633.

22. Csardi, G., and Nepusz, T. (2006). The igraph
software package for complex network
research. InterJournal, complex systems
1695, 1–9.

23. Newman, M.E.J., and Girvan, M. (2004).
Finding and evaluating community structure
in networks. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 69, 026113.

24. Reichardt, J., and Bornholdt, S. (2006).
Statistical mechanics of community
detection. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 74, 016110.

25. Davis, S., and Meltzer, P.S. (2007). GEO.: A
bridge between the gene expression
omnibus (GEO) and bioconductor.
Bioinformatics 14, 1846–1847.

26. Barrett, T., Wilhite, S.E., Ledoux, P.,
Evangelista, C., Kim, I.F., Tomashevsky, M.,
et al. (2013). NCBI GEO: Archive for
Functional Genomics Data Sets-Update.
Nucleic Acids Res. 41 (Database Issue),
D991–D995.

27. Golino, H., and Christensen, A.P. (2022).
EGAnet: Exploratory Graph Analysis – a
Framework For Estimating the Number of
Dimensions in Multivariate Data Using
Network Psychometrics (R Package
version 1.1.1).

28. Therneau, T.M., and Grambsch, P.M. (2000).
Modeling Survival Data: Extending the Cox
Model (Springer).

29. Kassambara, A., Kosinski, M., and Biecek, P.
(2021–). survminer: Drawing Survival Curves
Using ‘ggplot2’ (R Package version 0.4.9.).
https://CRAN.R-project.org/
package=survminer.

30. Puram, S.V., Tirosh, I., Parikh, A.S., Patel, A.P.,
Yizhak, K., Gillespie, S., Rodman, C., Luo, C.L.,
Mroz, E.A., Emerick, K.S., et al. (2017). Single-
cell transcriptomic analysis of primary and
metastatic tumor ecosystems in head and
neck cancer. Cell 171, 1611–1624.e24.

31. Yu, X., Chen, Y.A., Conejo-Garcia, J.R.,
Chung, C.H., and Wang, X. (2019). Estimation
of immune cell content in tumor using single-
cell RNA-seq reference data. BMCCancer 19,
715–811.

ll
OPEN ACCESS

iScience 26, 105915, February 17, 2023 11

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)02188-5/sref1
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref1
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref1
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref1
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref1
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref2
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref2
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref2
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref3
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref3
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref3
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref3
https://doi.org/10.1101/678029
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref5
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref5
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref5
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref5
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref5
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref5
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref6
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref6
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref6
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref6
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref7
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref8
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref8
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref9
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref9
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref9
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref9
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref10
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref11
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref11
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref11
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref11
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref11
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref12
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref13
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref13
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref13
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref13
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref13
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref14
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref14
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref14
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref14
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref14
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref14
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref15
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref16
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref16
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref16
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref16
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref16
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref17
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref17
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref17
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref17
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref18
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref19
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref19
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref19
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref20
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref21
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref22
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref22
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref22
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref22
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref23
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref23
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref23
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref23
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref24
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref24
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref24
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref24
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref32
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref32
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref32
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref32
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref34
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref34
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref34
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref34
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref34
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref34
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref33
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref33
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref33
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref33
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref33
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref33
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref29
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref29
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref29
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref25
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref25
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref25
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref25
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref25
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref25
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref26
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref26
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref26
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref26
http://refhub.elsevier.com/S2589-0042(22)02188-5/sref26


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Xuefeng Wang (xuefeng.wang@moffitt.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All gene expression data used in this study have been downloaded from sites in the public domain.

Accession numbers are listed in the key resources table.

d This paper does not report original code. The key software packages utilized are listed in the key re-

sources table.

d Any additional information required to replicate the analysis reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Processing of cancer transcriptome data

The processed whole transcriptome data (RNAseq) from the TCGA-HNSC and other TCGA cancer types

(TCGA-UCEC,TCGA-BLAC, TCGA-OV,TCGA-LUSC,TCGA-COAD and TCGA-CESC) was downloaded

from the Pan-Cancer Atlas (https://gdc.cancer.gov/about-data/publications/pancanatlas). All data used

are open access. After excluding normal tissue samples, the gene expression data from a total of 520 pri-

mary tumor samples were utilized in the proposed prognostic analysis. To facilitate an efficient genome-

wide screening, we employed three criteria to filter out low-expression or low-variant genes: (1) the median

of the gene expression values is greater than 0; (2) the 90th-percentile of the gene expression values is

greater than 0.1; and (3) the variance of the gene expression is greater than 0.1. In the TCGA-HNSC dataset,

REAGENT or RESOURCERESOURCE SOURCE IDENTIFIER

Deposited data

TCGA raw and analyzed data The Pan-Cancer Atlas (PanCanAtlas)

https://gdc.cancer.gov/about-data/

publications/pancanatlas

TCGA-HNSC

TCGA-UCEC

TCGA-BLAC

TCGA-OV

TCGA-LUSC

TCGA-COAD

TCGA-CESC

GEO raw and analyzed data Gene Expression Omnibus

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE27020

GSE27020

Software and algorithms

STRING STRING: functional protein association networks https://string-db.org

R 4.2.0 The R Foundation https://www.r-project.org

Igraph Igraph R package https://igraph.org/r

EGAnet EGAnet: Exploratory Graph Analysis https://cran.r-project.org/web/packages/EGAnet

Survival survival R package https://cran.r-project.org/web/packages/survival

Survminer survminer R package https://cran.r-project.org/web/packages/survminer
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a total of 17,663 genes (out of 20,501 genes in the input dataset) passed these filters. The same processing

steps were applied to the transcriptome data of ther cancer types. The gene expression and clinical data

from the validation HNSCC dataset were downloaded from GEO (Accession number GSE27020) using the

R package ‘‘GEOquery’’.25,26 When building prognostic signatures, we used the ‘‘ComBat’’ function imple-

mented in the ‘‘sva’’ R package to adjust for the potential batch effects across the two gene expression

datasets.

Gene set analysis

In this study, a series of gene set based analyses were applied on gene expression values. The single-sam-

ple gene set enrichment analysis "ssgsea" implemented in the R package "GSVA" was applied to generate

the pathway enrichment scores for each EGA clustered gene subset and the full hypoxic gene set in differ-

ence cancer types. The web-based tool ‘‘Enrichr’’ (maayanlab.cloud/Enrichr) was used to explore and visu-

alize the enriched signatures of the Gene Ontology (GO) pathways, KEGG, and the Molecular Signatures

Database (MSigDB) Hallmark of the identified literature-based genes.

Hypoxia and IFNG hallmark signature

The hypoxia signature genes were identified based on three published signatures: (1) the Buffa

signature, which contains 51 genes; (2) the Winter signature, which contains 101 genes; and (3) the Hu

signature, which contains 13 core genes. A total of 135 unique hypoxia genes were selected for the down-

stream subnetwork analysis as described in the Strategy 1. The IFNG hallmark gene panel was

generated by combining two hallmark gene sets: HALLMARK_INTERFERON_ALPHA_RESPONSE and

HALLMARK_INTERFERON_GAMMA_RESPONSE annotated in MSigDB, yielding a total of 224 unique

genes. The ISG.RS gene signature was based on 38 genes proposed in the original publication.

Network analysis based on EGA

Exploratory graph analysis (EGA) was used to discover functional submodules based on a selected subset

of candidates based on their gene expression values. We used the ‘EGA’ function from the R package

‘EGAnet’ with the ‘glasso’ model implemented for Graphical Lasso algorithm, which applied extended

Bayesian information criterion to optimize regularization parameter.27 The algorithm started with the calcu-

lation of the correlationmatrix of the variables observed.We then used ‘glasso’ to derive the sparse inverse

covariance matrix with the extended version of BIC (EBIC) defined regularization parameter over 100

different values. Next, we used the graph theory based algorithm ‘Walkstrap’ to determine the number

of clusters of the partial correlation matrix computed derived with ‘glasso’, which equals to the number

of latent factors in the HNSCC gene expression dataset. Then ‘boostEGA’ was used to check the optimum

number of dimensions (communities) of 500 bootstrap iterations. Bootstrap using the resampling from the

empirical dataset (non-parametric). We applied this on the hypoxia and ISG.RS signature in HNSCC. We

checked the submodule derived from EGA based on pathway enrichment analysis of using Enrichr

(https://maayanlab.cloud/Enrichr/).

Univariate Cox regression and lasso-penalized cox regression for prioritizing top prognostic

gene

We screened the full transcriptome data to select the top prognostic genes based on the Cox proportional

hazards regression model, which is from the R package ‘survival’. We ran the test on both overall survival

(OS) and progression-free survival (PFI). Taking the sample heterogeneity into account, we conducted the

tests separately on 1) all patients (n = 520), 2) HPV-pos excluded patients (n = 446). Top 200 genes were

selected for the downstream PPI analysis to discover the potential prognostic gene hubs and modules.

We applied both lasso Cox and elastic-net Cox regression models on the hypoxia and immune signature

genes using the ‘Coxnet’ function from the R package ‘Coxnet’.28 5-fold cross validation was used to deter-

mine the optimized hyperparameter for the final regression model. The prognostic significance of the

generated signatures (e.g., hypoxia and immune) was visualized by the Kaplan-Meier (KM) plot using the

‘ggsurvplot’ function implemented in the ‘survminer’ R package.29 Patient subgroups of the KM plot

were stratified based on the proposed risk scores quartiles. Then we used the Log -rank test for the statis-

tical significance of the separation of the KM curves.

Same procedures were applied on the TCGA HNSC and BLCA datasets.
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PPI analysis based on STRING database

Protein-protein interaction (PPI) analysis based on the ‘‘Multiple proteins’’ searching utility in STRING data-

base (https://string-db.org/) was used to explore the relationships and network graphs among the selected

genes. The minimum required interaction score was set as the medium confidence (0.400) and other

parameters were set based on the default setting in the database. In order to highlight the hub

gene and modules, we removed those sporadic gene nodes unconnected with any other nodes. To

facilitate automatic search, we use https://string-db.org/api/svg/network?identifiers=[identifiers]&

[optional_parameters] by setting the ‘optional_parameters’ to ‘‘network_flavor = evidence&limit = 5&spe-

cies = 9606".

Malignant-Immune-Stromal anchor gene selection based on scRNA-seq

Processed single-cell RNA-seq data of tumors from 21 head and neck squamous cell carcinoma (HNSCC)

patients30 were downloaded fromGSE103322, which contains transcript per million (TPM) values for 23,686

analyzed genes across 5902 cells. Data was analyzed for cell annotation as described previously.31 Three

major cell types and 11 subtypes were identified from this dataset, including Malignant cells, Stromal cells

(Fibroblasts and Endothelial cells), and Immune cells (B cells, Macrophages, Dendritic cells, Mast cells,

CD4+ T cells, regulatory T cells, CD8+ T cells, and CD8+ exhausted T cells). Differential expression analysis

was performed using theWilcoxon test on log2(TPM+1) values betweenMalignant cells, two Stromal types,

and 8 immune types. The cell-type-specific markers for the three major cell types were determined as

follow: 1) Malignant cells, genes significantly highly expressed compared to both Stromal cell types,

and at least 5 subtypes of the immune cells; 2) Stromal cells, genes significantly highly expressed in

both Fibroblasts and Endothelial cells, compared to Malignant cells, and at least 5 subtypes of the immune

cells; 3) Immune cells, genes significantly highly expressed in at least 5 subtypes, compared to Malignant

cells, Fibroblasts and Endothelial cells, respectively. Genes with log2FoldChange >3 and Benjamini-

Hochberg adjusted p value <0.05 were considered as significantly highly expressed.

Gene cellular community discovery via spin-glass model

To perform the clustering analysis of each input gene and malignant-immune-stromal anchor genes, we

used the spin-glass algorithm and simulated annealing based on the ‘‘cluster_spinglass’’ function imple-

mented in the R package ‘‘igraph’’. The function ‘‘graph_from_adjacency_matrix’’ in the package was first

used to create the input (undirected) graph. The spin-glass clustering was then run with default settings.

The final three groups achor genes for detecting the major gene communities are: (1) RGS1, CXCR4,

SRGN, PTPRC, LCP1; (2) ACTA2, DCN, SPARCL1, A2M, MGP; (3) KRT17, KRT14, KRT6A, KRT5, EPCAM, cor-

responding to the immune, stromal, and malignant community, respectively. In most cases, a gene will be

clustered into one of the three subnetwork communities. For example,GZMA was assigned to the commu-

nity containing all the immune genes. If a gene is not assigned into any of the three communities, it will be

labeled as not unclassified (0).
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