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Abstract. The estrogen signaling pathway via nuclear estrogen 
receptors (ER) α and β is considered to be the master regu-
lator of the cellular glucose metabolism in the uterus. While 
in vivo animal studies have demonstrated that 17β-estradiol 
(E2) treatment increases the expression levels and activities 
of several glycolytic enzymes in the uterus, the specific ER 
subtype-dependent regulation of key glycolytic enzymes in the 
uterus has not been experimentally verified. In this study, the 
localization of ERα and ERβ in human and mouse endometria 
were evaluated using immunohistology. Given that ERα and 
ERβ are not functionally equivalent, ERα, ERβ and ERαβ 
knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to 
determine the expression pattern of glycolytic enzymes in 
the uterus. It was found that the level of ERα was higher than 
that of ERβ in the human and mouse endometrial epithelial 
and stromal cells, and both receptors were downregulated 
by E2 treatment in the mouse uterus. The expression of the 
hexokinase 1 and GAPDH was increased in ERα-/- and 
ERβ-/- mice compared with wild-type controls. Increased 
phosphofructokinase expression was observed in ERα-/- and 
ERαβ-/- mice, whereas increased pyruvate kinase isozyme 

M2 and pyruvate dehydrogenase expression was observed in 
ERβ-/- and ERαβ-/- mice. The findings indicated for the first 
time that while estrogen regulates ERα and ERβ expression in 
the uterus, ERα and ERβ selectively regulate uterine glycolytic 
enzyme expression during glycolysis. Additionally, the link 
between endometrial ER subtypes and glycolysis in women 
with polycystic ovary syndrome (PCOS) is discussed. The 
findings suggested that the E2‑dependent ER‑mediated regula-
tion of glycolysis may be involved in the disturbance of the 
glucose metabolism in patients with PCOS with endometrial 
dysfunction.

Introduction

Estrogen elicits many different responses in female repro-
ductive tissues, including the ovary and uterus, as well as in 
extra-reproductive tissues, such as the brain, adipose tissue and 
the liver (1,2). It is well known that numerous, but not all, of the 
concerted actions of estrogen are mediated through binding to 
two nuclear estrogen receptors (ERs), ERα and ERβ (1), both 
of which belong to a family of hormone-activated transcrip-
tion factors and share common structural and functional 
domains (3). Although there is only ~60% homology in the 
ligand binding domain between ERα and ERβ, the receptors 
exhibit a similar binding affinity to endogenous 17β-estradiol 
(E2) (3). While ERα and ERβ can homo- or heterodimerize 
in vivo, they are not functionally equivalent, and in vitro 
experiments show that ERβ functions as a transcriptional 
inhibitor of ERα when ERα and ERβ are co-expressed (4). 
Although ERα and ERβ are often co-expressed in estrogen 
target cells under physiological conditions and although they 
can act together to regulate gene transcription (1,5), the cellular 
localization and abundance of the two receptors show distinct 
patterns in human endometrial epithelial and stromal cells (5). 
For example, ERα represents the most prominent receptor 
type in the endometrial epithelial and stromal cells during the 
menstrual cycle, whereas ERβ is found predominantly in the 
endometrial stromal cells in the late secretory phase (5). Direct 
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evidence for essential roles of the estrogen signaling pathway 
in uterine physiology and disease is provided by different ER 
knockout and mutation studies in mice (1,3) and rats (6). It 
has been reported that female ERαβ-/- and ERα-/- mice and 
female ERα-/- rats are insensitive to E2 stimulation and they 
exhibit uterine hypoplasia and infertility, which is in contrast 
to loss of ERβ (ERβ-/-) in female mice that leads to subfer-
tility. Moreover, changes in ERα expression levels and the 
ERα: ERβ ratio are considered to be the main factors behind 
several gynecological disorders, including impaired fertility 
and endometrial hyperplasia and carcinoma (5,7).

Polycystic ovary syndrome (PCOS), like numerous complex 
diseases, has a multifaceted etiology and pathophysiology, and 
it is associated with hormonal and metabolic impairments, 
ovarian dysfunction, menstrual irregularity and infer-
tility (8,9). Due to chronic anovulation, patients with PCOS 
experience sustained and persistent estrogen stimulation but 
minimal or completely absent progesterone stimulation (10,11), 
and patients with PCOS with endometrial hyperplasia have 
a four-fold greater risk of developing endometrial carci-
noma than non-PCOS controls (12). Preclinical and clinical 
studies have provided evidence that the endometrium from 
PCOS-like rodents and patients with PCOS displays morpho-
logically normal, but structurally and biochemically abnormal 
responses to hormone stimulation (10,13-17). Although few 
PCOS endometrial samples have been analyzed, there is some 
controversial evidence that levels of endometrial ERα and 
ERβ mRNA and/or protein are higher in patients with PCOS 
compared with phase-matched non-PCOS controls, regardless 
of whether endometrial hyperplasia is present or not (18,19). 
Moreover, studies have previously shown that ERα and ERβ 
mRNAs are increased in PCOS-like rodent uteri (20,21). 
These preclinical and clinical findings suggest that altered 
expression and function of both ERs contribute to endometrial 
dysfunction in patients with PCOS.

Glycolysis is an energy-producing mechanism that is 
regulated by different levels and activities of enzymes, such as 
hexokinase (HK), phosphofructokinase (PFK) and pyruvate 
kinase (PK) (22). E2 is a master regulator of endometrial cell 
proliferation (23) and has been shown to increase HK1/2 and 
PK isozyme M2 (PKM2) activities, as well as glycolytic flux 
in the rat uterus in vivo (24-26) and in human endometrial 
stromal cells in vitro (27). Importantly, functional experiments 
demonstrated that de novo synthesis of E2 in stromal cells 
facilitates the decidualization process in the mouse uterus, 
which is a prerequisite for successful implantation and estab-
lishment of pregnancy (28). It was reported that the regulation 
and localization of uterine ERα but not ERβ mRNA was asso-
ciated with the onset of early implantation in mice (29), and the 
acceleration of glycolysis is required for endometrial decidu-
alization in humans and mice (30,31). Moreover, suppression 
of HK2 levels inhibited the proliferation and differentiation of 
human endometrial stromal cells in vitro (32). Taken together, 
these in vivo and in vitro studies suggest that it is possible that 
uterine E2-regulated glycolysis via ERα activation contributes 
to successful implantation and the establishment of pregnancy. 
However, whether uterine glycolysis is regulated by E2 in a 
specific ERα- and/or ERβ-dependent manner remains unclear.

In this study, the localization and regulation of ERα and 
ERβ in human and mouse endometria was assessed and 

ER‑specific knockout mice that lack ERα and/or ERβ (ERαβ-/-, 
ERα-/- and ERβ-/-) were used to determine whether the selec-
tive contribution of ERα and ERβ results in the differential 
expression of key glycolytic enzymes in the mouse uterus.

Materials and methods

Animals and tissue collection. Two distinct experiments were 
performed with the animals. In the first experiment, intact 
prepubertal female C57BL/6J mice (Taconic Biosciences) 
at 26 days of age with a body weight (BW) of 13-15 g were 
used to avoid the complexity of ovarian functions associated 
with estrous cycles and endogenous surges of gonadotro-
pins (33,34). Animals (n=5/group) were given a subcutaneous 
injection of 0.5 µg E2/g BW (in 100 µl sesame oil) or vehicle 
(100 µl sesame oil; Sigma‑Aldrich; Merck KGaA) alone for 
4 days (35). In the second experiment, homozygous mutant 
female mice lacking the genes for ERαβ, ERα and ERβ were 
utilized (age, 60-65 days; weight, 20-25 g); the generation of 
female ERαβ-/-, ERα-/- and ERβ-/- mice has been previously 
described (36-38). Scanbur AB bred and provided the different 
ER knockout mice; animals were inbred on a C57BL/6J back-
ground and littermate controls were used in all groups. All 
adult ER knockout mice were compared to isogenic wild-type 
(WT) age/weight-matched littermates at the same diestrus 
stage of the estrous cycle (n=4/group) (39).

Under anesthesia, the uteri were removed and stripped of 
fat and connective tissue. One side of the uterus in each animal 
was fixed in 4% formaldehyde neutral‑buffered solution for 
24 h at 4˚C and then embedded in paraffin for immunohisto-
chemical analysis. The other side was immediately frozen in 
liquid nitrogen and stored at ‑70˚C for subsequent western blot 
analysis. All mice were housed in polycarbonate plastic cages 
with free access to food pellets and water at the infection-free 
animal facility of University of Gothenburg under a controlled 
temperature of 22±2˚C at 55‑65% humidity with a 12‑h 
light/dark cycles.

Human endometrial tissue collection. Endometrial tissues were 
obtained from reproductive-aged women (range, 25-45 years) 
during the proliferative phase of the menstrual cycle who were 
undergoing routine gynecological investigation. Tissues were 
collected in Obstetrics and Gynecology Hospital of Fudan 
University between March and October 2014. None of selected 
patients had been exposed to any hormonal or steroidal 
therapies within three months prior to tissue sampling. Each 
endometrial sample was diagnosed and staged by routine 
pathology analysis using standard histological criteria (40). All 
tissues were fixed in 10% neutral formalin solution for 24 h 
at 4˚C and embedded in paraffin for immunohistochemical 
analysis.

The animal study was approved by the Animal Care and 
Use Committee of the local Ethics Committee of the University 
of Gothenburg (Sweden) and all animal experiments and care 
procedures were performed in compliance with the institu-
tional guidelines for the care and use of animals in research 
(170-2008 and 236-2012). The human study protocol conformed 
to the principles outlined in the Declaration of Helsinki under 
approval from the institutional Ethics Review Committee of 
the Obstetrics and Gynecology Hospital of Fudan University 
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(approval no. OGHFU 2013-23). Appropriate written informed 
consent was obtained from all patients.

Total protein extraction and western blot analysis. Protein 
lysates were prepared from mouse uterine tissues using 
ice-cold RIPA buffer (Sigma-Aldrich; Merck KGaA) supple-
mented with cOmplete Mini protease inhibitor cocktail tablets 
(Roche Diagnostics) and PhosSTOP phosphatase inhibitor 
cocktail tablets (Roche Diagnostics). Protein concentration 
determination and a western blot analysis protocol were 
previously described (13,41,42). After determining the total 
protein concentration by Bradford protein assay (Thermo 
Fisher Scientific, Inc.), 30‑µg protein was resolved on 4‑12% 
Bis-Tris gradient gels (Novex; Thermo Fisher Scientific, 
Inc.) and transferred to PVDF membranes. The membranes 
were blocked with 0.01 M Tris-buffered saline supplemented 
with 0.1% (v/v) Triton X-100 (TBST) containing 5% non-fat 
dry milk for 1 h at room temperature (RT) and then probed 
with different primary antibodies in the blocking buffer 
overnight at 4˚C. The primary antibody details are as follows: 
HK1 (1:100; cat. no. 2024), HK2 (1:100; cat. no. 2867), PFK 
(1:100; cat. no. 8164), GAPDH (1:200; cat. no. 5174), PKM2 
(1:100; cat. no. 4053), pyruvate dehydrogenase (PDH; 1:100; 
cat. no. 3205) (all from Cell Signaling Technology, Inc.,) 
ERα (1:300; cat. no. 6F11; Novocastra Laboratories Ltd.; 
Leica Biosystems), ERβ (1:1,000; cat. no. 06-629; Upstate 
Biotechnology, Inc.), progesterone receptor (PR; 1:100; 
cat. no. sc-538), proliferating cell nuclear antigen (PCNA; 1:100; 
cat. no. sc-25280) (both from Santa Cruz Biotechnologies, 
Inc.), total caspase-3 (1:500; cat. no. C92-605; BD Biosciences) 
and β-actin (1:500; cat. no. A1978; Sigma-Aldrich; Merck 
KGaA). On day 2, the membranes were washed with TBST 
followed by either anti-rabbit IgG horseradish peroxidase 
(HRP)‑conjugated goat (1:1,000; cat. no. A0545) or anti‑mouse 
IgG HRP‑conjugated goat (1:1,000; cat. no. A2304) secondary 
antibody (both from Sigma-Aldrich; Merck KGaA) for 1 h at RT. 
Chemiluminescence signals were detected using SuperSignal 
West Dura substrate following the manufacturer's instruc-
tions (Thermo Fisher Scientific, Inc.). Band densitometry and 
quantification was performed using Image Laboratory (v5.0; 
Bio-Rad Laboratories, Inc.) and the protein band densities were 
normalized to β-actin. To reprobe the membrane with another 
antibody, the blot was washed with TBST 3x for 10 min at RT 
and incubated with stripping buffer (65 mM Tris-HCl, 2% SDS 
and 100 mM β-mercaptoethanol, pH 6.8) at RT for 15 min. 
Then the steps regarding the washing, blocking and probing of 
the membrane were repeated.

Immunohis tochemical  analyses and microscopy. 
Immunohistochemistry and dual- immunofluorescence 
were performed according to previously described 
methods (20,42,43). Human endometria and mouse uterine and 
ovarian tissues were fixed in 4% formaldehyde neutral‑buffered 
solution for 24 h at 4˚C, paraffin‑embedded and 5 µm sections 
were obtained. Two sections per sample were stained using 
standard hematoxylin and eosin methods (13). After deparaf-
finization (xylene, 10 min at RT) and rehydration (100, 90 and 
70% ethanol, each 10 min at RT), the sections were immersed 
in epitope retrieval buffer (10 mM sodium citrate buffer, 
pH 6.0) and heated in a 700 W microwave for 15 min. Sections 

were subsequently rinsed twice with deionized H2O and once 
with TBST, each 5 min at RT. Endogenous peroxidase was 
removed and non‑specific binding was blocked by incubation 
with 3% H2O2 for 10 min at RT and then with 10% normal goat 
serum for 1 h at RT. After incubation with primary antibody 
overnight at 4˚C in a humidified chamber, same sections were 
incubated with secondary antibodies (30 min; RT) and stain 
from the avidin-biotinylated-peroxidase ABC kit according 
to the manufacturer's instructions (Vector Laboratories, Inc.; 
Maravai LifeSciences) followed by a 5-min treatment with 
3,3'-diaminobenzidine (SK-4100; Vector Laboratories, Inc.; 
Maravai LifeSciences) at RT. All sections were incubated 
with DAB for the same length of time so that comparisons 
could be made between individual samples and all slides 
were stained in a single run to eliminate inter-experiment 
variations in staining intensity. Digital images of stained 
sections were obtained with a Nikon E-1000 microscope 
(Nikon Corporation) using bright-field optics (magnifica-
tion, x2, x10 and x40) and photomicrographed using Easy 
Image 1 (Bergström Instrument AB). Primary antibodies for 
immunohistochemistry included: ERα (1:50; cat. no. MC-20; 
Santa Cruz Biotechnologies Inc.), ERβ (1:300; cat. no. 06-629; 
Upstate Biotechnology, Inc.), ERβ1 (1:100; cat. no. PPG5/10), 
ERβ2 (1:100; cat. no. 57/3) (both from AbD Serotec; Bio-Rad 
Laboratories, Inc.), cytokeratin 8 (1:200; cat. no. C5301; 
Sigma-Aldrich; Merck KGaA) and Ki-67 (1:100; cat. no. 9027; 
Cell Signaling Technology, Inc.).

Human and mouse endometrial tissue sections were blocked 
in PBS containing 1% BSA and 3% fat-free milk for 1 h at room 
temperature. Sections were incubated with the anti-ERα (1:50; 
cat. no. MC-20; Santa Cruz Biotechnologies for human tissues; 
and 1:100; cat. no. 6F11; Novocastra Laboratories for mouse 
tissues), anti-ERβ1 (1:100; cat. no. PPG5/10; AbD Serotec for 
human tissues), anti-ERβ2 (1:100; cat. no. 57/3; AbD Serotec 
for human tissues) or anti-ERβ (1:300; cat. no. 06-629; Upstate 
Biotechnology for mouse tissues) antibody in PBS supple-
mented with 0.1% (v/v) Triton X-100 (PBST) containing 1% 
BSA and 3% fat‑free milk overnight at 4˚C. After washing 
with PBST three times for 5 min each, sections were incubated 
with Alexa Fluor 594‑conjugated goat polyclonal anti‑rabbit 
IgG (1:250; cat. no. A11037), Alexa Fluor 488‑conjugated goat 
polyclonal anti-rabbit IgG (1:250; cat. no. A11008) or Alexa 
Fluor 488‑conjugated goat polyclonal anti‑mouse IgG (1:250; 
cat. no. A11039) (all from Invitrogen; Thermo Fisher Scientific, 
Inc.) for 1 h at RT. After the sections were washed with 
PBST, they were examined under an Axiovert 200 confocal 
microscope (magnification, x20 and x60; Zeiss GmbH) 
equipped with a laser-scanning confocal imaging LSM 510 
META system (Carl Zeiss AG) and were photomicrographed. 
Background settings were adjusted from the examination of 
negative control specimen; different controls for non‑specific 
staining have been described previously (43).

Statistical analysis. For all experiments, n represents the 
numbers of individual animals. Data are presented as the 
mean ± SEM (n=4/group). Statistical analyses were performed 
using the SPSS version 24.0 (IMB Corp.). The normal distri-
bution of the data was tested by Shapiro-Wilk test. Differences 
between groups were analyzed by one-way ANOVA followed 
by Bonferroni's post hoc test for normally distributed data 
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or by the Kruskal-Wallis test followed by Mann-Whitney 
U test for skewed data. P<0.05 was considered to indicate a 
statistically significant difference.

Results and Discussion

The endometrium is composed of a lining of surface epithelium 
and associated glands, and a stroma composed of connective 
tissue (5). During each reproductive cycle, the endometrial 
epithelial and stromal cells display distinct and well‑defined 
patterns of functional differentiation under the cyclic influ-
ence of estrogen and progesterone (23). Increasing evidence 
suggests that the differential effects of estrogen on endometrial 

cells likely depend on the total amount of cellular ERs and/or 
the ratio of ERα to ERβ (5,7). In this study, it was found that 
the level of ERα was higher than ERβ in human (Fig. 1) and 
mouse (Fig. 2A and B) endometrial epithelial and stromal cells. 
This suggested that ERα was the predominant ER expressed 
in the uterus. Immunohistochemical analysis of tissues from 
women during the estrogen-dominant proliferative phase 
showed strong positive nuclear staining for ERα in epithe-
lial and stromal cells but weak to moderate positive nuclear 
staining for ERβ1 and ERβ2, and ERα immunoreactivity was 
more abundant in the nucleus than in the cytoplasm in epithe-
lial cells. ERα and ERβ1 were heterogeneously co-localized 
in the nucleus of epithelial and stromal cells. Compared with 

Figure 1. Localization of ER subtypes in the human endometria. (A) The localization of ERα (red) and ERβ (green). (B) Cellular marker proteins of cytokeratin 
8 and Ki 67 in human endometria during the estrogen-dominant proliferative phase was assessed using immunohistology. Sections exposed to human endome-
trial tissues (the proliferative phase) were used as negative controls. Brown spots were observed using 3,3'-diaminobenzidine as the chromogen. Black arrows 
indicate areas shown at higher magnification; scale bar, 100 µm. Ge, glandular epithelial cells; Str, stromal cells; ER, estrogen receptor.
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ERβ1, the ERβ2 immunoreactivity was evenly detected in the 
nuclei and cytoplasm of epithelial and stromal cells (Fig. 1A). 
These observations of endometrial cellular ERα and ERβ 
localization were broadly in agreement with previous human 
studies (5). As shown in Fig. 2B, ERα immunoreactivity was 
detected in the nuclei of epithelial and stromal cells, whereas 
ERβ immunoreactivity was detected mainly in the nuclei of 
stromal cells only. It was found that prepubescent mice treated 
chronically with E2 had decreased ERα and ERβ protein 
expression and increased PR isoform protein expression 
compared with the vehicle-treated controls (Fig. 2C). In the 

same experimental mouse uterus, increased PCNA, a cellular 
marker for proliferation, was associated with decreased acti-
vated caspase-3, a marker for cell apoptosis (Fig. 2C). These 
finding confirmed that E2 contributed to normal endometrial 
growth through the direct regulation of uterine ERα and ERβ 
in vivo.

There is increasing clinical and experimental evidence 
suggesting that aberrant regulation of ERα and ERβ expres-
sion is involved in the development and progression of several 
reproductive and metabolic diseases (1,2). For example, one 
female patient with a homozygous ERα mutation and female 

Figure 2. Localization of ER subtypes in the mouse uterus. (A) Uterine tissue sections stained with hematoxylin and eosin staining. (B) Immunohistological 
localization of ERα and ERβ in the mouse uterus. A mouse ovarian tissue section was used as the positive control for the anti-ERβ antibody specificity. 
Immunohistochemistry was performed using 3,3'‑diaminobenzidine (brown). Immunofluorescence detection shows ERα (red) and ERβ (green). Black arrows 
indicate areas shown at higher magnification; scale bar, 100 µm. (C) Western blot analysis of ER subtypes, proliferation and apoptosis markers in the prepu-
bescent mouse uterus. E2, 17β-estradiol; BW, body weight; MW, molecular weight; Le, luminal epithelial cells; Ge, glandular epithelial cells; Str, stromal cells; 
GC, granulosa cells; TC, thecal cells; ER, estrogen receptor; PR, progesterone receptor; proliferating cell nuclear antigen.
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mice and rats lacking ERα display similar polycystic ovary 
phenotypes and infertility (6,44,45) as observed in patients 
with PCOS. Moreover, an ERβ polymorphism (+1730 G/A) has 
been implicated in susceptibility to the development of PCOS 
in humans (46). While the exact mechanisms of the pathogen-
esis of PCOS remains unknown, increasing evidence suggests 
that PCOS is a clinically heterogeneous and multifactorial 
disorder (8,9). Taken together, these findings indicate that 
multiple cellular and molecular signaling pathways are likely 
to be involved in its pathogenesis.

Glycolysis is the splitting apart of a glucose molecule 
in the cytosol by a sequence of enzymatic reactions, and its 
efficient operation requires adequate glucose uptake mediated 
by a number of glucose transporters (GLUTs) (47). Among the 
GLUTs, GLUT1 has been identified as the most prominent 
in endometrial tissues in vivo (48). Thus, it is thought that 
GLUT1 is responsible for the basal level of glucose uptake 

needed for normal glucose utilization in the uterus. It has 
been reported that E2 decreases glucose uptake in associa-
tion with decreased GLUT1 expression in human and mouse 
endometrial stromal cells in vitro (49). Although there is no 
cyclical fluctuation of insulin‑sensitive GLUT4 expression 
observed in human endometrium (50), it was previously 
shown that GLUT4 mRNA and protein expression are 
decreased in patients with PCOS compared with non-PCOS 
controls (50-52) and a similar observation has been made in 
the PCOS-like rat uterus (13,51). An analysis of gene expres-
sion in endometrial tissues found significantly reduced levels 
of key glycolytic genes in patients with PCOS compared with 
non-PCOS controls (53). Reproductive dysfunction and infer-
tility are common in patients with PCOS (11,54), who often 
display E2-mediated endometrial hyperproliferation (55). 
Further studies have demonstrated that several proteins 
involved in cytosolic glycolysis, such as PKM2, are impaired 

Figure 3. Expression of glycolytic enzymes in ER knockout mouse uteri. Protein levels of glycolytic enzymes were determined by western blot and are 
presented relative to β-actin (n=4/group). Data are expressed as the mean ± SEM. *P<0.05. HK, hexokinase; PFK, phosphofructokinase; PKM2, pyruvate 
kinase isoform M2; PDH, pyruvate dehydrogenase.
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in the endometrium of patients with PCOS and in PCOS-like 
animals with an endometrial hypoplasia phenotype (13,56). 
These findings support the notion that dysregulation of 
E2-mediated glycolysis is, at least partially, involved in the 
endometrial dysfunction in patients with PCOS with endome-
trial hyperplasia.

Changes in the glucose metabolism are a fundamental part 
of many biological processes (22). However, at present there 
is limited knowledge as to whether the estrogenic regula-
tion of the uterine glucose metabolism depends on different 
ER subtypes. In this study, the expression pattern of uterine 
glycolytic enzymes in ERαβ-/-, ERα-/- and ERβ-/- mice was 
compared with WT controls (Fig. 3). Using western blot 
analysis, it was found that HK1 and GAPDH expression was 
significantly increased in ERα-/- and ERβ-/- mice compared 
with the WT controls. Moreover, significantly increased HK2 
and PFK expression was observed in ERα-/- mice compared 
with the WT controls, whereas significantly increased PKM2 
and PDH expression was observed for ERβ-/- mice compared 
with the WT controls. As indicated in the expression pattern 
of glycolytic enzymes, disruption of ERα and ERβ (ERαβ-/-) 
resulted in significantly increased PFK, PKM2 and PDH 
expression compared with the WT controls. This suggested 
that although ERα is the predominant ER expressed in the 
uterus, ERβ may partially compensate for the loss of ERα 
by increasing the expression of certain glycolytic enzymes in 

the uterus. Furthermore, the significantly increased uterine 
PDH expression in ERβ-/- but not ERα-/- animals compared 
with the WT controls suggested that the cell's mitochondria 
contained primarily ERβ and not ERα (5). It is noteworthy that 
the estrogen responsiveness becomes more complex because 
human and rodent reproductive tissues contain splice vari-
ants of ERα and ERβ (5,35,57), and the two subtypes form 
heterodimers with in vivo (3). It was previously shown that 
ERα-/- mouse uteri, similar to ERαβ-/- mouse uteri, remain to 
have one ERα splice form (35) and the levels of estrogen-regu-
lated ERα protein are positively associated with endometrial 
hyperplasia in patients with PCOS (56). To better understand 
the role of estrogen-regulated glycolysis in the endometria of 
patients with PCOS, further studies are needed to determine 
whether ERα splice variants are differentially regulated by 
E2 using well-controlled endometrial tissue samples collected 
from patients with PCOS with various phenotypes.

Furthermore, the western blot analysis demonstrated 
that two distinct forms of PFK were present in the mouse 
uterus (Fig. 3). PFK is synthesized as an unstable inactive 
monomer, which associates rapidly to form minimally active 
dimers essential for maintaining the tertiary structure of 
the enzyme (58). Several studies have shown that PFK has 
three isoforms (M, P and L) and differentially expresses in 
various mammalian tissues in vivo (59,60). It is hypothesized 
that the PFK antibody used in this study was able to detect 

Figure 4. Glycolysis, mitochondria-mediated energy metabolism and ER-mediated genomic actions in the uterus. GLUT, glucose transporter; HK, hexokinase; 
PFK, phosphofructokinase; PKM, pyruvate kinase isoform; LDHA, lactate dehydrogenase A; PDH, pyruvate dehydrogenase; OXPHOS, oxidative phosphory-
lation; TCA, tricarboxylic acid; ER, estrogen receptor; P, phosphate; BP, bisphosphate.
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two different isoforms of PFK; however, which PFK isoform 
is expressed in the mouse uterus remains to be determined. 
As the varying ratio of PFK isoforms may determine the 
glycolytic rate in a tissue‑specific manner (61), further work 
is needed to determine which PFK isoforms contribute to the 
uterine glycolytic rates in mice.

The role of aberrant glucose metabolism in the develop-
ment of hormone-related diseases has become a topic of great 
interest. In addition to hyperandrogenism, numerous patients 
with PCOS also exhibit core metabolic manifestations, 
including peripheral insulin resistance (8,9). Of interest, 
female ERα-/- but not ERβ-/- mice develop obesity and 
insulin resistance (2). Hulchiy et al (62) have reported that 
endometrial ERα but not ERβ mRNA is decreased in over-
weight/obese patients with PCOS compared with controls, 
which is in contrast to the increased endometrial ERα and 
ERβ mRNA and/or protein expression observed in patients 
with hyperandrogenic PCOS (18,19). Thus, it remains unclear 
how insulin resistance and hyperandrogenism differentially 
affect ER subtype- mediated regulation of glycolysis in the 
endometrium in patients with PCOS. Based on a growing 
number of preclinical and clinical studies (13,18,41,42,63,64), 
it is hypothesized that abnormal steroid hormone responsive-
ness, such as hyperandrogenism, metabolic dysfunction, 
such as insulin resistance, molecular aberrations in the 
endometrium, such as glycolysis (Fig. 4), oxidative stress, 
immune factors and inflammatory uterine environments are 
all potential to be involved in the endometrial dysfunction 
observed in patients with PCOS (42). Further investigations 
are required to elucidate the crosstalk between these possible 
mechanisms in the uterus under both physiological and 
pathological conditions.
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