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Abstract

In principle, formal dynamical models of decision making hold the potential to represent fun-
damental computations underpinning value-based (i.e., preferential) decisions in addition to
perceptual decisions. Sequential-sampling models such as the race model and the drift-dif-
fusion model that are grounded in simplicity, analytical tractability, and optimality remain
popular, but some of their more recent counterparts have instead been designed with an
aim for more feasibility as architectures to be implemented by actual neural systems. Con-
nectionist models are proposed herein at an intermediate level of analysis that bridges men-
tal phenomena and underlying neurophysiological mechanisms. Several such models
drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-
normalization, and competing-accumulator models were tested with respect to fitting empiri-
cal data from human participants making choices between foods on the basis of hedonic
value rather than a traditional perceptual attribute. Even when considering performance at
emulating behavior alone, more neurally plausible models were set apart from more norma-
tive race or drift-diffusion models both quantitatively and qualitatively despite remaining par-
simonious. To best capture the paradigm, a novel six-parameter computational model was
formulated with features including hierarchical levels of competition via mutual inhibition as
well as a static approximation of attentional modulation, which promotes “winner-take-all”
processing. Moreover, a meta-analysis encompassing several related experiments vali-
dated the robustness of model-predicted trends in humans’ value-based choices and con-
comitant reaction times. These findings have yet further implications for analysis of
neurophysiological data in accordance with computational modeling, which is also dis-
cussed in this new light.

Introduction

How do we make value-based (i.e., preferential) decisions? A variety of computational models
have put forth possible answers to this question in the form of general algorithms by which
options are effectively compared and decided upon in the presence of noisy information [1].
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With numerous existing models to choose among and so many possible models yet to be
defined, the pressing key issues concerning which new models merit exploration and which
models are best under which circumstances remain far from resolved. As theory ultimately
must be reconciled with praxis and actual data, the present study took an empirical approach
to model selection for a two-alternative forced-choice (2AFC) paradigm [2] involving the sub-
jective values of foods (Fig 1).

Following the introduction of the sequential probability-ratio test (SPRT) [3-5], stochastic
control theory offered an optimal standard [6] for dynamical modeling of decision-making
processes and was adopted by cognitive psychology as the basis of the sequential-sampling
models (SSMs) [7] that would rival the atemporal models of signal-detection theory [8]. Truest
to the SPRT and since emerging as the most popular and influential SSM is the drift-diffusion
model [7,9-11], which posits a unidimensional (or mirror-symmetric) process accumulating
the relative evidence between alternatives (i.e., the log-likelihood ratio). An alternative to the
drift-diffusion model commonly referred to as the race model [12-15] instead assumes a race
of independent accumulators in parallel within a multidimensional system. In addition to
boasting mathematical elegance, both of these models can be regarded as normative inasmuch
as each adheres to a distinct definition of optimality (see Discussion).

Yet, recent advances in neuroscience have begun to lend insight toward a less prescriptive
and more descriptive account of human decision making constrained by neural plausibility
rather than simplicity, analytical tractability, or optimality. The implications of these advances
are not limited to interpretation of neurophysiological signals. On the contrary, the present
study reveals unique contributions of this neurocentric modeling to the emulation of human
behavior. Measurements of the concomitant reaction time (RT) complemented measurements
of discrete choices inasmuch as chronometry provides additional information for inference
about neurophysiological and mental processes underlying behavior [16]. A substantial and
growing body of theoretical and experimental work has solidified the notion that animals’
decisions are driven by diffusion-like sequential-sampling and integration-to-threshold pro-
cesses in the nervous system [17,18]. That is, inputs in the form of reward-value or evidence
signals are sampled and integrated into accumulating decision signals that activate respective
execution signals upon reaching a threshold at which an action is selected. Rather than making
decisions about the perceptual qualities of stimuli, subjects in the present study instead chose
which of the two foods presented for each trial they would prefer to eat. Whereas research
within this domain has typically emphasized the simpler case of perceptual decision making,
more recent investigation has begun to suggest that such canonical computations are similarly
implicated in value-based and economic decision making as well [19-21]. Invoking “field the-
ory” [22,23] with its mathematical formalization of decision making in terms of topology,
“decision field theory” [24,25] was among the first dynamical models to be explicitly related to
preferential decisions, and SSMs originally intended for perceptual decision making were
eventually suggested to generalize to other domains (e.g., [26]). Nevertheless, many questions
remain as to pivotal details of the architectures of these putative dynamical systems, including
the extent to which the representations of individual options interact [27-29].

Any computational model of decision making occupies a position along a spectrum [30]
ranging from the most simple and abstract cognitive models to the most detailed and biophysi-
cally realistic models that explicitly represent properties of individual neurons and membrane
proteins [31]. A connectionist model as desired here could stand as a middling hybrid to
appease the tension between these dichotomous extremes, each of which entail advantages and
disadvantages with respect to accuracy, parsimony, and interpretability. The present work
implicitly tested for oft-overlooked modulatory effects of attention [32,33] and its associated
positive-feedback loops as well as essential aspects of established neuroalgorithmic models—
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a Original b Meta-analysis

Fig 1. Task. (a) For all studies, subjects were required to make a two-alternative forced choice between a pair of
randomly sampled foods with uncorrelated subjective values. The original data set to which the forthcoming
computational models were fitted was distinguished by a paradigm with adjacent stimuli and persistent fixation,
allowing for only covert shifting of the focus of visual attention. (b) In contrast, the other studies included in the meta-
analysis featured stimuli that were well separated spatially and thus required eye movements.

https://doi.org/10.1371/journal.pone.0186822.9001

namely, the feedforward-inhibition model [34,35], the leaky-competing-accumulator (LCA)
model [26,36], and the divisive-normalization model [37-40], which actually has origins out-
side the realm of SSMs. Prior studies have generally evaluated SSMs using stimuli that vary
along a single dimension and are thus intrinsically competitive, such as in a signal-detection or
motion-discrimination task. Crucially, the 2AFC paradigm explored herein is distinguished by
alternatives with parameters that are statistically independent across trials [29,41]. This feature
enabled rigorous assessment of competitive mechanisms or lack thereof.

In the spirit of Occam’s razor and the proverbial assertion that “all models are wrong, but
some are useful” [42], various dynamical models were compared with an aim for achieving an
ideal balance of parsimony and accuracy [43], where the latter reflects both empirical fitting
performance and theoretical neural plausibility. Temporality was essential, as effects on
observed RT—that is, half of the available behavioral data—are beyond the scope of any static
model. Moreover, applicability to computational-model-based analysis of neurophysiological
data [44,45] imposed additional constraints. A novel synthesis of key concepts at a moderate
level of complexity was to quantitatively account for this class of value-based decisions in a
sizeable data set including RT distributions from human subjects. Furthermore, a meta-analy-
sis of experiments similarly involving binary choices about randomly sampled foods with
uncorrelated values went on to reveal qualitative trends across multiple independent data sets
that could be related to predictions of this novel hybrid model.

Materials and methods
Participants

Participants in all of the individual studies were generally healthy volunteers between 18 and
40 years old from Caltech and the local community. The number of participants included in
each study is listed in Table 1. Participants in the JC1, JC2, and SL studies were all right-
handed. Across all studies, criteria for participation included enjoying and regularly eating
common American snack foods such as those used for the experiments. Participants provided
informed written consent for every individual study’s protocols, which were in this and all
other cases approved by the California Institute of Technology Institutional Review Board.
Participants were paid for completing a study and always received a chosen food item.
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Table 1. Meta-analysis: Data sets.

Data set

J. Colas 1 (JC1)

J. Colas 2 (JC2)

C. Hutcherson (CH)

I. Krajbich, 2010 (IK)

S. Lim (SL)

Colas & J. Lu, 2017 (JL)
N. Sullivan, 2015 (NS)
Aggregate

Subjects Trials Values Details
31 21,394 4 fixation, 3 cond. (actions), EEG
27 9,174 4 3 cond. (actions), fMRI
34 1,632 D) mouse, control condition only
39 3,791 11
24 8,549 7 2 cond. (approach/avoid), fMRI
35 13,992 5 4 cond. (spatial bias)
28 5,560 5 mouse, health-conscious
218* 64,092

Listed for each of the studies included in the meta-analysis are the number of subjects, the number of trials across subjects, the number of discrete option
values that were to be normalized to a common range prior to analysis, and miscellaneous notable details.
*This total does not account for subjects who participated in more than one study.

https://doi.org/10.1371/journal.pone.0186822.t001

Experimental procedures: Modeled data set

Prior to acquisition of the “JC1” data set proper, the subject first completed an ancillary rating
task that solicited the subjective values of all stimuli with linear rankings. Images of 70 gener-
ally appetitive snack foods were presented against a black background one at a time. The sub-
ject reported the desirability of eating each food at the end of the experiment according to a
5-point scale (0: “not at all”, 1: “slightly”, 2: “moderately”, 3: “strongly”, 4: “extremely”). The
subject was given unlimited time to respond by pressing one of five buttons along a row on a
keyboard with the right hand. As feedback, the selected rating was presented centrally as a
white Arabic numeral during an intertrial interval of 1000 ms. The orientation of the scale was
counterbalanced across subjects so that neither side was consistently associated with positive
valence. The order of stimulus presentation was randomized for each subject. These images
were chromatic and had a resolution of 288 x 288 pixels and each subtended 8.0° x 8.0° of
visual angle. Stimuli were presented on a 23-inch LCD monitor with a resolution of 1024 x 768
pixels from a distance of 100 cm as part of an interface programmed using MATLAB and the
Psychophysics Toolbox [46].

Stimuli were randomly selected to form 720 pairs for the subject’s unique sequence of trials
in the main choice task (i.e., for the modeled JC1 data set) as follows. Only foods with a rating
of subjective value greater than zero were included. Pairs were first selected so as to balance
the differences in value ranging from 0 to 3 as much as possible. Each pair of values among the
ten possible combinations was also balanced within each value-difference bin. The side on
which the food with greater value was presented was counterbalanced within each of the ten
combinations. Stimuli were never repeated in consecutive trials.

The subject was allotted 3 s to choose between a pair of food stimuli presented adjacently to
each other on either side of the white fixation spot (Fig 1A). Incidentally, electroencephalogra-
phy (EEG) data were also being acquired while the subject performed this choice task. Thus,
the subject needed to maintain fixation at all times during trials to prevent eye-movement arti-
facts from contaminating EEG signals. This task also featured three main experimental condi-
tions in randomly ordered blocks of 60 trials with balanced values: the subject would choose
by pressing one of two buttons with either index finger, by stepping on one of two pedals, or
with the actions unknown until the time of choosing is indicated. Whereas the subject imme-
diately indicated the choice using the appropriate action for the button and pedal conditions,
the unknown condition instead required that the time of choice first be indicated without
regard to action by pressing the space bar with the right thumb. This nonspecific response,
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which corresponded to the relevant reaction time (RT), would initiate a cue in the form of
the letter H above fixation or the letter F below fixation as instruction for a button or pedal
response, respectively. Only 800 ms was allotted to subsequently indicate which item was
chosen in the unknown condition’s second phase so as to prevent further deliberation after
reporting that a decision had been made. Thus, the data from all three conditions could be
concatenated prior to analysis. The subject was prepared for the time constraint of the un-
known condition with practice trials as well as at least 100 trials of a task with the same timing
that merely required reporting which randomly selected side of the screen a gray square app-
eared on for each trial. The action cues of the unknown condition were randomly counterbal-
anced for each subject. These cues were colored cyan and yellow with the color mapping
counterbalanced across subjects. Trials were separated by an intertrial interval drawn from a
uniform distribution ranging between 2500 and 3500 ms, and self-paced breaks for blinking
and other movements that must be restricted for EEG were available every three trials.

The subject was required to refrain from eating or drinking anything except for water for at
least 2 hours prior to the start of the experiment. The procedure was incentive-compatible [47]
inasmuch as the hungry subject was informed that one of the choices made was to be selected
randomly and implemented at the end of the session. That is, upon completion, the subject
was provided with this chosen food and required to consume it. Failure to choose in time for
any trial resulted in the choice being made randomly by the computer, such that the subject
could not avoid any choice.

Experimental procedures: Meta-analysis

The meta-analysis included six additional data sets (Table 1). Common to these studies was
the basic scheme of a 2AFC task for which subjects made incentive-compatible preferential
decisions about randomly sampled foods with values that were uncorrelated across trials; how-
ever, unlike the original (i.e., JC1) study that was modeled, the stimuli were always presented
separately on opposite sides of the display with no restrictions on eye movements (Fig 1B).
Option values were similarly derived from single-stimulus rating tasks, and the number of pos-
sible values is listed for each study in Table 1. The specific details of the experimental proce-
dures of these studies are not directly relevant to the meta-analysis, but their primary
distinguishing features are described here.

The “JC2” data set was taken from a functional magnetic-resonance imaging (fMRI) study
analogous to the original EEG study. As mentioned previously, however, eye movements were
allowed. Moreover, the subject was instead allotted 4560 ms to respond.

The “CH” data set was taken from the blocked control condition of a mouse-tracking study.
In the two experimental conditions omitted here, decisions were not made naturally but rather
on the basis of either only taste or only healthiness. Instead of responding with a conventional
button press, the subject used a computer mouse to move a cursor from the center of the bot-
tom of the display to the location of the preferred food in either the upper-left or the upper-
right corner and clicked within a rectangle surrounding the image. This mouse-click response
was delivered within 4 s.

The “IK” data set [33] was taken from an eye-tracking study with the most standard version
of the 2AFC task. The subject was given unlimited time to respond.

The “SL” data set was taken from an fMRI study including two experimental conditions
that were collapsed prior to analysis, as with the JC1 and JC2 data sets. This study was unique
in that generally aversive foods were also included in equal proportion in the set of stimuli.
Seven possible values emerged from averaging of two separate ratings along a 4-point scale.
Whereas the subject simply indicated the preferred food in the “approach” condition, the
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instruction was to instead indicate the nonpreferred food in the “avoid” condition. The subject
was allotted 3 s to respond.

The “JL” data set [48] was taken from an eye-tracking study including four between-subject
experimental conditions divided into two blocks of trials each that could all be analyzed
together. The essential manipulation was that for one of the two blocks the stimulus with
greater value was presented on the same side of the display for 90% of the trials. The four con-
ditions corresponded to a control block followed by a leftward-bias block, a control block fol-
lowed by a rightward-bias block, a leftward-bias block followed by a control block, and a
rightward-bias block followed by a control block. The relatively subtle effects of the learned
spatial biases could be averaged out for the sake of simplicity. The subject was given unlimited
time to respond.

The “NS” data set [49] was taken from a second mouse-tracking study. Although the
instruction was simply to choose the more desirable food, the subject was also reminded to be
health-conscious with the presentation of information concerning the importance of healthy
eating before the task. The subject was given unlimited time to respond.

Computational modeling

The neural-network framework common to all of the models posits that separate populations
of neurons represent the decision signals specific to each option under consideration. These
neuronal ensembles are reduced to individual units in a connectionist scheme, such that the
decision signal d,(t) corresponds to the current aggregate level of activity in the decision-mak-
ing neurons representing alternative x at time ¢. These decision signals are initialized to zero at
stimulus onset (i.e., t = 0) as follows:

Vx:d(t=0)=0

The latent value V, of each alternative is unknown at stimulus onset, as the processes under-
lying stimulus recognition and evaluation require some time. Thus, the value signal v.(¢)
within an ensemble of value-encoding neurons is initialized to zero and subsequently elevates
to V, as a step function after the constant predecision time T has elapsed like so:

0, t<T,
V, t>T,

X7

Vhx @ v (t) = {

The fixed predecision time for the value-signal input was biologically constrained to be 150
ms for this paradigm (see Discussion). Time is discretized here to reflect the iterative imple-
mentations of these algorithms in practice as approximations of differential equations in con-
tinuous time. While every decision signal remains below the threshold level D (an arbitrary
positive constant here set to 100 to represent 100%), the Markov process evolves by fixed time
increments At (here set to 10 ms) according to this generalized recurrence relation:

d (t + At) = max{0,d, (¢) + f.(t) + ()}

The first decision signal to reach the threshold level of activity D immediately triggers the
respective execution signal e,(¢) for the alternative represented. This motoric execution signal
takes the form of a step function that defines the RT upon onset and also resets the entire sys-
tem in preparation for the next trial. A threshold-linear activation function is implemented
with the max operator to rectify negative activity, which is neurally implausible and also would
exaggerate the effects of lateral inhibition if present. The first recursive term, d,(t), produces
perfect integration across time by means of balanced recurrent self-excitation and leakage. The

PLOS ONE | https://doi.org/10.1371/journal.pone.0186822 October 27, 2017 6/40


https://doi.org/10.1371/journal.pone.0186822

o @
‘®-PLOS | ONE v o . _
X2 alue-based decision making via sequential sampling

final term, £,(t) (or N(00,%).(t) henceforth to be explicit), combines all sources of noise into a
Gaussian distribution with mean p = 0 and parameterized standard deviation o that is drawn
from independently within each alternative’s subsystem at every time step. The middle term,
fx(t), collectively represents all of the terms that vary across the individual models compared
(Figs 2 & 3, Table 2).

The race model

The race model (Fig 2A) [12-15] postulates the most basic of the algorithms tested with com-
plete independence at all levels of the process. Thus, the recurrence relation for the decision
signal is only modified as follows:

d.(t + At) = max{0,d,(t) + b+ gv,(t) + N(0,6°) (t)}

The positive constant b corresponds to the baseline input (e.g., urgency signals) common to
every ensemble of decision-making neurons. The positive constant g represents the gain of the
value-signal input v,(%).

The neural drift-diffusion (NDD) model

The standard drift-diffusion model [7,9-11] is neurally implausible to the extent that it is
unidimensional, which would translate to negative activation as the signal is biased toward
an arbitrarily designated alternative. A two-channel representation of the standard drift-dif-
fusion model can always be reduced to a single dimension because the mirror-symmetric
paired signals are perfectly anticorrelated by definition and lack independent sources of
noise. Thus, a neural drift-diffusion (NDD) model (Fig 2B) was contrived to be relatable to
the other models within this neural-network framework. This similarity was to facilitate
comparison and emphasize specifically the ramifications of perfect competition between
inputs. That is, this neural implementation still retains the distinguishing feature of sensitiv-
ity to differences in input alone, as reflected here (where #n denotes the number of alterna-
tives):

d (t + At) = max {0, d.(t)+b+ g(vx(t) L y#vy(t)) + N(0, ag)x(t)}

n—1

This parsimonious “max-minus-average” variant of the drift-diffusion model extended to
multiple alternatives could be regarded as less optimal than the “max-minus-next” variant
with a drift rate that only reflects the difference between the two signals with greatest magni-
tude by means of an obscure filtering process (see Discussion). Nevertheless, this distinction
becomes irrelevant in the present case of two alternatives (i.e., # = 2), which reduces the gen-
eral equation for alternative x to the following pair of equations:

d,(t + At) = max{0,d, (t) + b+ g(v,(t) — v,(t)) + N(0,0%), ()}
d,(t + At) = max{0,d,(t) + b+ g(v,(t) — v, (t)) + N(0,0°),(t)}
The subtractive normalization-or-feedforward-inhibition (SNFI) model

The subtractive normalization-or-feedforward-inhibition (SNFI) model (Fig 2B) [34,35]
resembles the NDD model with a similar subtractive term but also adds a free parameter to
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Fig 2. Dynamical models of neural decision making. (a) The race model [12—15] is the most basic of these by virtue
of assuming that the representations of each option are completely independent. (b) Input-dependent competition is
the signature feature common to the subtractive normalization-or-feedforward-inhibition (SNFI) model [34,35], the
divisive normalization-or-feedforward-inhibition (DNFI) model [37-40], and the neural drift-diffusion (NDD) model [7,9—
11]. The NDD model is nested within the SNFI model but instead posits perfect competition (i.e., i, = 1). (¢) The
competing-accumulator (CA) model [26,36] is instead characterized by state-dependent competition via lateral
inhibition at the level of accumulating decision signals. (d) The subtractive competing-accumulator (SCA) and divisive
competing-accumulator (DCA) models take a novel approach of including both input-dependent competition and state-
dependent competition in tandem. Solid green and dashed red arrows indicate excitatory and inhibitory connections,
respectively. At the level of value signals, the leftmost vertical and diagonal dashed red arrows denote lateral inhibition
(i.e., input normalization or relative coding) and feedforward inhibition, respectively, which are represented collectively
here because in this context they are equivalent in terms of output. The gray clouds reflect independent sources of
noise. Vertical gray bars symbolize thresholding mechanisms. v, represents the ensemble of value-encoding neurons
representing alternative x. dy represents the corresponding ensemble of decision-making neurons. e, represents the
corresponding ensemble of execution neurons. The free parameters are b for baseline input, g for the gain of value-
signal inputs, o for noise, i, for value-signal inhibition as part of a subtractive transformation, s for semisaturation as
part of a divisive transformation, and iy for decision-signal inhibition.

https://doi.org/10.1371/journal.pone.0186822.9002
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Fig 3. The supralinear subtractive competing-accumulator (SSCA) model. The SSCA model builds upon
the SCA model with the intention of approximating the net effects of the addition of an attentional module that
selectively modulates value signals. The positive-feedback loops that are consequently formed generate
disproportionate amplification of value signals that are already greater in magnitude, thus promoting “winner-
take-all” processing [32]. This schematic only depicts a positive-feedback loop at the level of value signals to
adhere more closely to the parsimonious implementation used here with a static supralinear power law
requiring only one free parameter, a. However, also plausible are loops at the next level bridging decision-
making signals and attentional processes either with or without intermediate value signals. The contrast
between solid and dotted green lines symbolizes the asymmetry in the positive-feedback loop’s impact on
each alternative’s representation. As time progresses, there is an increasingly higher probability of attention
being directed at the alternative with greater value, which is denoted by the G subscript, rather than the
alternative with lesser value, which is denoted by the L subscript.

https://doi.org/10.1371/journal.pone.0186822.9003

Table 2. Model parameters.

Model df Baseline (b) Input-dependent State-dependent Power law as attention
Gain (g) competition competition (a)
Noise (o) (iyorsori,=1) (iq)
Race 3 Free Absent Absent Absent
NDD 3 Free Fixed / Subtractive (1) Absent Absent
SNFI 4 Free Free / Subtractive (i) Absent Absent
DNFI 4 Free Free / Divisive (s) Absent Absent
CA 4 Free Absent Free Absent
SCA 5 Free Free / Subtractive (i,) Free Absent
DCA 5 Free Free / Divisive (s) Free Absent
SSCA 6 Free Free / Subtractive (i,) Free Free

All of the candidate models share three free parameters that correspond to baseline input (b), gain (g), and noise (o), but the former two take on a different
form in the divisive models. The SNFI and DNFI models introduce an additional free parameter for subtractive (i,) or divisive (s) input-dependent
competition, respectively. Nested within the SNFI model is the NDD model for i, = 1. The CA model instead introduces a free parameter for state-dependent
competition (iy). The SCA and DCA models combine the CA model with the SNFI and DNFI models, respectively. The SSCA model adds a sixth free
parameter (a) for a static supralinear power law approximating attentional modulation. The models are listed in ascending order of complexity. Divisive
models are recognized as being inherently more complex than their subtractive counterparts irrespectively of degrees of freedom. Additionally, state-
dependent competition is recognized as being inherently more complex than input-dependent competition. “df” stands for degrees of freedom.

https://doi.org/10.1371/journal.pone.0186822.t1002
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render that input-dependent competition imperfect like so:

dx(t—l—At):max{O,dx()—i-b—l-g( IZ# ; >+NOO')()}

For two alternatives, the equation is again reducible to a simpler pair of equations:

d,(t + At) = max{0,d, () + b+ g(v, (t) — i,v,(t)) + N(0,0°), (1)}

d(t + At) = max{0,d,(t) + b+ g(v,(t) — i,v; (t)) + N(0,0%),(t)}

The NDD model is thus a special case of the SNFI model where i, = 1/(n-1), such that i, = 1
for n = 2. The constant i, (with the constraint 0 < i, < 1) represents value-signal inhibition
ambiguously and potentially corresponds to the combined influence of lateral inhibition (i.e.,
input normalization or relative coding as opposed to absolute coding) and feedforward inhibi-
tion. To be precise, lateral inhibition should actually be incorporated into an equation repre-
senting the value-signal input v,(t), whereas feedforward inhibition would remain as is in the
equation for decision signals. This distinction is relevant for actual nervous systems. At this
level of abstraction, however, lateral and feedforward inhibition are represented collectively in
simplified equations because the two variants are ultimately mathematically equivalent insofar
as each can mimic the other at the levels of decision signals and behavioral output.

The divisive normalization-or-feedforward-inhibition (DNFI) model

The divisive normalization-or-feedforward-inhibition (DNFI) model (Fig 2B) [37-40] is
merely the divisive analog of the SNFI model with the recurrence relation modified as follows:

dx(t+At)_max{0, 40+ g s N(O,ﬁ)x(t)}

For two alternatives, this translates to the following reduction:

b+v(t)

=l a0

+N(0,02)1(t)}

b+ (1)

dy(t + At) = max{O, dy(t) +gm

NO.0),(0}

The positive constant s denotes semisaturation. As was also the case for the SNFI model, the
simplified notational convention places input-dependent competition entirely within the equa-
tion for the decision signal rather than that for the value signal despite the ambiguity between lat-
eral and feedforward inhibition at the level of value signals. Even without a quantifiable confound
in degrees of freedom, the divisive transformation entails a less parsimonious assumption than a
subtractive transformation by virtue of the complexity inherent to an actual neural implementa-
tion of shunting inhibition or otherwise divisive inhibition [50-52]. Another consideration—one
that is also relevant for other computational mechanisms explored herein—is that the divisive
transformation itself could emerge from a process with more temporally complex properties [53].
However, the simpler model of divisive normalization from which the DNFI model is derived
has in fact been suggested to account for empirically observed neuronal activity thought to
encode motivational value [38].
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The competing-accumulator (CA) model

The competing-accumulator (CA) model (Fig 2C) [26,36] substitutes state-dependent compe-
tition (i.e., dependent on the state of a decision signal) in lieu of input-dependent competition
as the means by which each alternative’s representations interact, producing a more complex
recurrence relation:

dx(t+At)—max{0,d()+b+gv —zdz +N00)()}

For two alternatives, the system is described by these coupled equations:

d,(t + At) = max{0,d, (t) + b+ gv,(t) — iyd,(t) + N(0,0%),(£)}

dy(t + At) = max{0,d,(t) + b+ gv,(t) — i,d,(t) + N(0,0°),(¢)}

The constant i; (with the constraint 0 < iy < 1) represents decision-signal inhibition, which
only reflects the lateral inhibition between competing ensembles of decision-making neurons.

The subtractive competing-accumulator (SCA) model

The subtractive competing-accumulator (SCA) model (Fig 2D) synthesizes the SNFI and CA
models with subtractive input-dependent competition and subtractive state-dependent com-
petition acting in concert as written here:

dx(t—O—At)—max{O,d()—O—b—i-g( _ZZ#X ) zdz —I—NOJ)()}

For two alternatives, the same reductions apply to produce the following coupled equa-
tions:

d,(t + At) = max{0,d, () + b+ g(v, (t) — i,v,(t)) — i,dy(t) + N(0,0°), ()}

d,(t + At) = max{0,d,(t) + b+ g(v,(t) — i,v; (1)) — igdy (£) + N(0,0%),(1)}

The divisive competing-accumulator (DCA) model

The divisive competing-accumulator (DCA) model (Fig 2D) is the divisive analog of the SCA
model and instead synthesizes the DNFI and CA models with divisive input-dependent com-
petition and subtractive state-dependent competition per the following algorithm:

dx(t+At)—max{0, d.(t) + Si; — i, 40+ N, a)()}

For two alternatives, this can again be reduced to a pair of coupled equations:

b+, (1)

d,(t+ At) = max{O7 d(t) +gm

iy (1) + N(O, o?>1<t>}

b+ v,(t)

d,(t + At) = m{o O B v

—i,d,(t) +N(o,ag)2(t)}
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The supralinear subtractive competing-accumulator (SSCA) model

The supralinear subtractive competing-accumulator model (SSCA) model (Fig 3) retains all of
the features of the best-performing SCA model with only one exception to relate to the concept
of attentional modulation. Rather than being encoded in a linear fashion, value signals are
transformed according to a power law determined by the constant a (with the constraint

a > 1) as the exponent. As a static approximation of dynamic processes, this strictly supra-
linear exponentiation is intended to capture the net effects of attention, which tends to be
drawn to the representations of options with greater value and thus selectively amplifies them
as part of a positive-feedback loop promoting “winner-take-all” processing [32] (see Discus-
sion). Whereas the recurrence relation for the decision signal of the SCA model remains
unchanged, the value signal is instead modeled with this new equation:

0, t<T,
Vsx: v (t) =
Vi t2 T,

Model fitting

The free parameters of each model (Table 2) were fitted to the original JC1 data set using a stan-
dard chi-squared fitting method as follows [54]. Trials were first arbitrarily divided between
training and test data sets of equal size according to the parity of the trials’ indices; odd-num-
bered trials from odd-numbered subjects and even-numbered trials from even-numbered sub-
jects were assigned to training, and the remaining half of the trials were reserved for subsequent
out-of-sample validation. Excessively fast contaminant observations (only 8 in total) were omit-
ted below a lower limit of 300 ms, which accounts for the cumulative temporal constraints of
visual recognition, decision making, and motoric execution. Data were concatenated across
experimental conditions and subjects to sample RT distributions sufficiently and compensate
for having few trials per subject and infrequent incorrect responses. Taking only the training
data, the frequencies of either choice and the 10, 30, 50, 70, and 90% quantiles (i.e., six bins) of
their respective RT distributions were calculated for each of the ten possible input vectors pair-
ing the four linearly ranked input values. These input vectors were assigned equal weight in fit-
ting to capture parametric effects. For comparison, Monte Carlo simulation was employed to
generate 2,000 trials with each input vector for a given model and a given set of parameters. A
¥ statistic served as the objective function to be minimized, and the tuning parameters were
optimized with respect to goodness of fit using iterations of the Nelder-Mead simplex algorithm
[55] with randomized seeding.

In addition to the generative models, two discriminative models were fitted to the data to
provide extreme upper and lower benchmarks for fitting performance. The saturated model
was used to predict behavior in the test data using all of the training data directly, thus maxi-
mizing the degrees of freedom in accordance with the number of observations. The null model
with a minimal three degrees of freedom assumes no effects of different inputs; rather, the
mean choice frequencies across inputs were extracted along with the means of the minima and
maxima of the RT distributions across both inputs and choices to define the range of a single
uniform distribution for prediction.

Comparing models in a pairwise manner, likelihood-ratio tests were first used to verify the
statistical significance of any improvement in fitting performance. Moreover, for the model
comparison as a whole, penalties were imposed for model complexity at two standard levels
using either the Akaike information criterion with correction for finite sample size (AICc)
[56,57] or the stricter Bayesian information criterion (BIC) [58].
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Data analysis

The best-fitting instantiations of the models were used to simulate 20,000 trials with each of
the ten possible input vectors. Trials were first classified into three distinct categories within
the empirical data set and the simulated data set for juxtaposition as follows. Correct choices
consistent with value ratings occurred when the option with greater value was chosen. Incor-
rect choices not consistent with value ratings occurred when the option with lesser value was
chosen. Indifferent choices were defined as such when the two options were of equal value.
RTs for these different types of choices were compared independently of parametric effects
using two-tailed independent-samples f tests.

Excluding indifferent choices, the first logistic-regression model described accuracy (i.e.,
the probability of choosing the option with greater value) as a function of the absolute value of
the difference between input values and the sum of the input values. The second model
included the greater value and the lesser value in their original forms. An analogous pair of
complementary linear-regression models was applied to the RT separately for correct and
incorrect choices. For the special case of indifferent choices (i.e., difference equals zero), only
one model including the sum of values was necessary. As discussed previously, excessively fast
contaminant observations were omitted below a lower limit of 300 ms. To facilitate compari-
son across studies in the meta-analysis, the values were first normalized linearly such that the
minimum and maximum values corresponded to zero and unity, respectively. Moreover,
parameter estimates for the RT analyses were subsequently normalized such that each regres-
sion coefficient was divided by the coefficient for the constant term. To illustrate, a hypotheti-
cal coefficient of -0.1 for the greater value’s effect on RT would imply that, ceteris paribus, the
RT becomes 10% faster than the mean if the greater value is at its maximum level. Statistical
significance was determined for main effects and contrasts using two-tailed one-sample ¢ tests
and 95% confidence intervals. Despite one-tailed tests being justified by strong a priori
hypotheses in most cases, more conservative two-tailed tests were used in their stead here to
err on the side of caution. Contrasts of the effects within a regression model were limited to
the absolute values of the parameter estimates to avoid redundancy. That is, a significant dif-
ference between a signed positive effect and a signed negative effect is less informative than a
significant difference between these effects irrespective of sign.

The same analyses of accuracy and RT were employed within each of the other data sets that
were included in the meta-analysis. Aggregate results across all data sets were produced by assign-
ing weights to each data set in proportion to the total number of trials included for each analysis.

Results
Computational modeling

Multiple theoretically sound hypotheses for competitive interactions have been proposed in
the literature—including the absence of any such interactions. Seven models were first assem-
bled a priori per a factorial design (Fig 2). Taking into consideration the role of attentional
processes, the most successful of these models was then augmented to form an eighth model
with superior performance (Fig 3). Dissociating and testing specific mechanisms requires a
tractable common framework be nested within incrementally varied models representing each
potential feature. Thus, the particular versions of the models included in this formal model
comparison (Table 2) all derived core ideas from published models but were not strictly iden-
tical to the original versions.

The race model (Fig 2A) [12-15] is the most basic option by virtue of its rigid assumption
that the channels representing each option remain independent at all levels. The drift-diffusion
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model [7,9-11] corresponds to the opposite extreme of a single channel that represents the rel-
ative evidence between two inputs collectively. Whereas this work emphasized some degree of
neural plausibility, the standard drift-diffusion model is implausible insofar as it simulates
only one bidirectional decision signal. In light of this shortcoming, a modified neural drift-dif-
fusion (NDD) model was substituted for its separate decision signals that better align with the
arrangement of pathways in the nervous system. This neural implementation still retains the
distinguishing feature of sensitivity to differences alone by means of perfect competition
between inputs. Such input-dependent competition (Fig 2B) could also be imperfect and take
the form of lateral inhibition (i.e., input normalization or relative coding) or feedforward inhi-
bition at the level of value-signal inputs, which could entail either subtractive [34,35] or divi-
sive [37-40] transformations of inputs. These two alternatives served as the basis for the
subtractive normalization-or-feedforward-inhibition (SNFI) model and its more complex
divisive analog, the divisive normalization-or-feedforward-inhibition (DNFI) model. Input
normalization and feedforward inhibition are referred to collectively in this particular context
because of mimicry in effects at the level of decision signals and thus in ultimate behavioral
output. In contrast, state-dependent competition (Fig 2C)—that is, competition dependent on
the states of accumulating decision signals—can be implemented via downstream lateral inhi-
bition, as for the competing-accumulator (CA) model [26,36]. The hitherto unexplored possi-
bility of input-dependent competition and state-dependent competition coexisting at
hierarchical levels (Fig 2D) was considered as well with the introduction of a novel pair of
hybrids—namely, the subtractive competing-accumulator (SCA) and divisive competing-
accumulator (DCA) models.

Despite yielding the best performance among these candidates, the SCA model still failed to
account for some qualitative effects in empirical data. This deficiency was addressed as the
missing factor of selective attention [32,33] was incorporated into this framework with a parsi-
monious approximation to produce the supralinear subtractive competing-accumulator
(SSCA) model (Fig 3).

Initial model comparison

As determined by a global metric for goodness of fit to distributions of choices and RTs both
within and out of sample, the seven initial models were ranked as follows (in descending
order): SCA, DCA, CA, SNFI, DNFI, NDD, race, and null (p < 0.05 with the following excep-
tion) (Fig 4). However, the evidence favoring the DCA model over the CA model was insignifi-
cant for the test data set after model complexity was formally taken into account (p > 0.05), as
could also be demonstrated by the Bayesian information criterion (BIC) [58], which imposes a
penalty for each degree of freedom, or even a less stringent alternative in the form of the Akaike
information criterion with correction for finite sample size (AICc) [56,57]. Otherwise, addi-
tional free parameters were objectively justified, and predictive performance even remained
comparable with out-of-sample validation, ruling out overfitting. All fitted parameters, includ-
ing the baseline input, were robustly nonzero (or greater than unity in the case of attentional
modulation) (Table 3). In the cases of the hybridized SCA and DCA models, the fitted parame-
ters for input- and state-dependent competition decreased as expected relative to their assign-
ments in the SNFI, DNFI, and CA models, where one level of competition is omitted and so
must be compensated for by overfitting at the remaining level. The superior performance of the
subtractive models relative to the divisive models was all the more remarkable in light of the
greater—albeit unquantifiable—degree of complexity inherent to the divisive models irrespec-
tively of countable degrees of freedom, as this added complexity and nonlinearity would enable
more flexible fitting of data in general.
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Fig 4. Model comparison. (a) The global fitting performance of each candidate model is first shown for the training
data set. The xZ statistic corresponds to raw lack of fit, but two levels of adjustment for model complexity are also
provided in the form of the corrected Akaike information criterion (AICc) and the Bayesian information criterion (BIC).
(b) A test data set of equal size was reserved for out-of-sample validation. The saturated model revealed the best out-
of-sample performance possible with maximal degrees of freedom. Degrees of freedom are listed in parentheses.

https://doi.org/10.1371/journal.pone.0186822.9004

As the value of one stimulus was not a reliable predictor of the other value, this paradigm’s
two-dimensional input space facilitated extraction of effects parametrically related to stimulus

Table 3. Fitted parameters.

Model b g o iy s g a X2 Training Xorest

SSCA 1.434 0.085 2.265 0.465 - 0.0180 1.373 153.26 186.84
SCA 1.195 0.187 2.665 0.470 - 0.0154 - 189.50 227.41

DCA 3.073 5.117 2.571 - 13.80 0.0174 - 240.03 295.48
CA 1.219 0.233 1.933 - - 0.0252 - 278.85 296.49
SNFI 0.614 0.225 3.968 0.733 - - - 322.65 354.44
DNFI 0.109 2.212 3.970 - 1.697 - - 422.12 461.82
NDD 0.761 0.185 3.803 - - - - 437.77 501.84
Race 0.336 0.233 3.569 - - - - 1257.36 1255.40
Saturated 0.10 87.91

Null 26,606 26,165

The best-fitting sets of parameters for each computational model are listed along with y? statistics. b corresponds to baseline input, gis gain, o is noise, i, is
value-signal inhibition, s is semisaturation, iyis decision-signal inhibition, and a is the exponent representing attentional modulation. The null and saturated
models provided extreme lower and upper benchmarks for fitting performance, respectively. As will be the convention for all tables and figures hereafter, the
models are listed in descending order of performance.

https://doi.org/10.1371/journal.pone.0186822.t003
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Fig 5. Choice accuracy. (a) Choice accuracy (i.e., the probability of correctly choosing the option with greater value)
as a function of both values is displayed first for the empirical data set. Only the probabilities of correct choices are
provided in the upper-left corners of each panel to avoid redundancy. (b) Accuracy is likewise shown for data sets
simulated with each of the computational models in the first and third rows. Differences between model predictions
and observed results are highlighted in the second and fourth rows. (¢) The differences between chosen and
nonchosen values and their sums are provided for reference.

https://doi.org/10.1371/journal.pone.0186822.g005

values. The subjective value (i.e., utility) of each option was derived from the subject’s linear
rating of the desirability of eating the food when presented in isolation. A complete portrait of
accuracy and RT was attained by means of two complementary models. One regression analy-
sis included the ranked greater and lesser values individually, and the other featured the abso-
lute difference between the values and their sum, which are orthogonal linear combinations of
the original terms. To be thorough, RT was analyzed in this fashion separately for the distinct
categories of correct, incorrect, and indifferent choices—with the exception that only the effect
of the sum was relevant for indifferent choices. These difference and sum terms can represent
(inverse) difficulty and overall motivational (or incentive) salience [59,60], respectively, to an
extent, but net effects must be interpreted with prudence because these linear combinations
together are sufficiently flexible for mimicry to occur. As an illustration of this caveat, which
has been overlooked all too often in previous studies, an effect of the greater value alone could
also result in effects of difference (i.e., greater minus lesser) and sum (i.e., greater plus lesser)
each with magnitude equal to half of that of the greater-value effect.

As expected for the modeled data set, choice accuracy (Fig 5, Table 4) increased as the
greater value increased (8 = 3.517, t = 29.05, p < 10'**) and conversely decreased as the lesser
value increased (B = -3.038, t = 24.42, p < 10"*°). Notably, the option with the greater value
also possessed significantly more weight than its lesser-valued alternative (M = 0.479,

p < 0.05). A corollary of this asymmetry is that accuracy not only increased with the difference
between the values (8= 3.278,t=29.37,p < 107'%%) but also effectively increased with their
sum (8= 0.239, t = 4.68, p < 10°), albeit to a much smaller degree (M = 3.038, p < 0.05). None
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Table 4. Meta-analysis: Choice accuracy.

Data set
JC1

JC2

CH

IK

SL

JL

NS

Aggregate

Model
SSCA

SCA

DCA

CA

SNFI

DNFI

NDD

Race

Trials
15,600

6,868

1,128

3,266

6,707

13,992

3,663

51,224

Constant
-0.263*
(0.075)

-0.238
(0.126)
0.778*
(0.334)
0.222*
(0.105)
0.537*
(0.123)
0.000
(0.107)
-0.158
(0.152)
-0.022
(0.110)

Constant
-0.325*
(0.025)

-0.035
(0.026)
0.172*
(0.026)
-0.084*
(0.025)
-0.052*
(0.027)
0.582*
(0.025)
-0.053*
(0.026)
0.127*
(0.022)

Greater
3.517*
(0.121)
3.831*
(0.199)
3.211*
(0.599)
4.349*
(0.364)
4.052*
(0.270)
4.768*
(0.202)
3.774*
(0.287)
4.036*
(0.193)
Greater
3.319*
(0.042)
3.229*
(0.045)
2.990*
(0.045)
2.955*
(0.041)
3.415*
(0.047)
2.096*
(0.040)
3.331*
(0.046)
1.944*
(0.034)

[[vs. I

n.s.

n.s.

n.s.

n.s.

Il vs. I

n.s.

n.s.

Lesser
-3.038*
(0.124)
-3.031*
(0.206)
-3.526*
(0.525)
-4.154*
(0.396)
-3.650*
(0.280)
-3.881*
(0.196)
-3.236*
(0.270)
-3.444*
(0.154)
Lesser
-2.890*
(0.043)
-3.373*
(0.045)
-3.485*
(0.044)
-3.005*
(0.041)
-3.514*
(0.047)
-3.211*
(0.039)
-3.357*
(0.046)
-2.252*
(0.034)

Differ.
3.278*
(0.112)
3.431*
(0.183)
3.368*
(0.532)
4.251*
(0.367)
3.851*
(0.260)
4.325*
(0.186)
3.505*
(0.269)
3.740*
(0.168)
Differ.
3.104*
(0.039)
3.301*
(0.042)
3.237*
(0.042)
2.980*
(0.038)
3.465*
(0.044)
2.653*
(0.036)
3.344*
(0.043)
2.098*
(0.031)

[[vs. I

>

>

Sum
0.239*
(0.051)
0.400*
(0.087)
-0.158
(0.185)

0.097
(0.102)
0.201*
(0.089)
0.444*
(0.071)
0.269*
(0.096)
0.296*
(0.049)

Sum
0.214*
(0.016)
-0.072*
(0.016)
-0.248*
(0.016)
-0.025
(0.016)
-0.050*
(0.016)
-0.558*
(0.016)
-0.013
(0.016)
-0.154*
(0.015)

Listed for each data set and each computational model fitted to the original JC1 data set are parameter estimates from complementary logistic-regression

models of the probability of correctly choosing the option with greater value. The first regression model included the individual greater and lesser values as

regressors, whereas the second substituted the absolute difference between values (“Differ.”) as well as their sum. Standard errors of the means are
provided in parentheses.
Boldface and an asterisk indicate statistical significance (p < 0.05).
Contrasts between absolute values of effects (“|| vs. ||” meaning “absolute value versus absolute value”) are reported with a greater-than sign denoting a
greater absolute effect to the left (p < 0.05), a less-than sign denoting a greater absolute effect to the right (p < 0.05), and “n.s.” (i.e., “not significant”)
denoting failure to reject the null hypothesis of no difference between the absolute values of the effects (p > 0.05). These conventions apply to all tables

hereafter.

https://doi.org/10.1371/journal.pone.0186822.t1004

of the seven a-priori models were capable of capturing these effects in subjects’ choices—even
qualitatively. The NDD model naturally predicted equal weights for the greater and lesser val-
ues and missed this pattern of overweighting (p >> 0.05), as did the CA model (p > 0.05), but
the SCA, DCA, SNFI, DNFI, and race models even predicted a contradictory overweighting of
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Fig 6. Reaction time. (a) Following the conventions of the previous figure, mean reaction time (RT) as a function of
both values is displayed first for the empirical data set. (b) RT is likewise shown for data sets simulated with each of

the computational models in the first and third rows. Differences between model predictions and observed results are

highlighted in the second and fourth rows. (¢) The differences between chosen and nonchosen values and their sums
are again provided for reference. The upper-left and lower-right corners of each panel correspond to correct and
incorrect choices, respectively, and the diagonal midline between them corresponds to indifferent choices.

https://doi.org/10.1371/journal.pone.0186822.9006

the lesser value instead (p < 0.05). To clarify, “overweighting” in this context implies deviation
from the symmetric weighting of each value prescribed by the normative drift-diffusion
model. As detailed below, the SSCA model alone could address this phenomenon.

When choosing correctly between options of unequal value (upper-left corners in Fig 6,
Table 5), the greater value exerted a speedup effect on RT (8 =-0.260, t = 23.02, p << 0.05)
while the lesser value exerted a slowdown effect (8 = 0.066, t = 5.73, p < 10”7). Moreover, the

degree to which the greater value sped up the RT exceeded the degree to which the lesser value
slowed down the RT (M = 0.195, p < 0.05). Correspondingly, the RT became faster as both the
difference (8 =-0.163, t = 17.43, p << 0.05) and the sum (8 = -0.097, ¢ = 15.05, p << 0.05)
increased, but more so for the difference (M = 0.066, p < 0.05). All of the more neurally plausi-
ble models featuring imperfect competition—namely, the SCA, DCA, CA, SNFI, and DNFI
models—could account for this set of effects on RT (p < 0.05), whereas the more normative
NDD and race models categorically fail to do so regardless of parameter assignments. A
byproduct of the NDD model’s assumption of perfect subtractive competition is that the
observed effect of sum on RT is missed altogether (p >> 0.05) with perfectly anticorrelated
weights for the individual values (p >> 0.05). The opposite issue applies to the race model

due to its lack of competition, such that the weights for the individual values are unequal

(p < 0.05) but instead both negative (p < 0.05) and so produce an effect of the difference
weaker than that of the sum (p < 0.05). This pattern is to be expected in the presence of “statis-
tical facilitation” [13,61,62] (see Discussion). Such subtleties in effects of individual values on
behavior again underscore the importance of taking both inputs into consideration rather
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Table 5. Meta-analysis: Reaction time for correct choices.

Data set Trials Constant Greater | vs. || Lesser Differ. || vs. || Sum
JC1 13,342 1.093 -0.260* > 0.066* -0.163* > -0.097*
(0.010) (0.011) (0.011) (0.009) (0.007)
Jc2 6,122 1.594 -0.282* > 0.043* -0.163* > -0.120*
(0.023) (0.017) (0.017) (0.014) (0.010)
CH 998 1.668 -0.242* > 0.088* -0.165* > -0.077*
(0.053) (0.043) (0.036) (0.034) (0.020)
IK 2,562 2.638 -0.742* n.s. 0.646* -0.694* > -0.048
(0.079) (0.081) (0.092) (0.082) (0.029)
SL 6,036 1.480 -0.301* > 0.197* -0.249* > -0.052*
(0.017) (0.017) (0.018) (0.015) (0.009)
JL 12,696 1.668 -0.521* > 0.300* -0.410* > -0.111*
(0.026) (0.022) (0.020) (0.018) (0.010)
NS 3,041 2.344 -0.320* > 0.087 -0.204* n.s. -0.116*
(0.161) (0.098) (0.086) (0.080) (0.046)
Aggregate 44,797 1.563 -0.374* > 0.182* -0.278* > -0.096*
(0.159) (0.054) (0.058) (0.055) (0.009)
Model Constant Greater [|vs. || Lesser Differ. | vs. || Sum
SSCA 1.101 -0.306* > 0.146* -0.226* > -0.080*
(0.003) (0.004) (0.004) (0.004) (0.002)
SCA 1.095 -0.299* > 0.142* -0.220* > -0.079*
(0.003) (0.004) (0.004) (0.003) (0.002)
DCA 1.093 -0.300* > 0.169* -0.235* > -0.066*
(0.003) (0.004) (0.004) (0.004) (0.002)
CA 1.099 -0.303* > 0.133* -0.218* > -0.085*
(0.004) (0.004) (0.004) (0.004) (0.002)
SNFI 1.078 -0.278* > 0.157* -0.217* > -0.060*
(0.003) (0.004) (0.004) (0.003) (0.002)
DNFI 0.980 -0.221* > 0.101* -0.161* > -0.060*
(0.003) (0.004) (0.004) (0.003) (0.002)
NDD 1.009 -0.214* n.s. 0.212* -0.213* > -0.001
(0.003) (0.004) (0.004) (0.004) (0.002)
Race 1.202 -0.314* > -0.087* -0.114* < -0.201*
(0.003) (0.003) (0.003) (0.003) (0.002)

Listed for each data set and each computational model fitted to the original JC1 data set are parameter estimates from complementary linear-regression
models of RT in units of seconds for correct choices of the option with greater value that are analogous to the previous logistic-regression models. As in the
tables hereafter, these four regression coefficients of interest were normalized with respect to their associated constant term.

Boldface and an asterisk indicate statistical significance (p < 0.05).

https://doi.org/10.1371/journal.pone.0186822.t005

than reducing them to a single dimension of difficulty by analyzing on the basis of differences
alone, which is standard among previous studies.

Incorrect choices of the option with lesser value (lower-right corners in Fig 6, Table 6)
were much less frequent and dominated by pairs of stimuli with small differences in value,
resulting in substantially reduced statistical power. Nevertheless, RTs for these enigmatic
errors were notably slower than those for correct choices (M = 108 ms, ¢ = 14.93, p << 0.05).
All of the models could exhibit this slowing effect to varying degrees (p < 0.05). There were
also speedup effects of the greater value (8 =-0.111, t = 2.88, p = 0.004) and the difference
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Table 6. Meta-analysis: Reaction time for incorrect choices.

Data set
JC1

JC2

CH

IK

SL

JL

NS

Aggregate

Model
SSCA

SCA

DCA

CA

SNFI

DNFI

NDD

Race

Trials
2,258

746

130

704

671

1,296

622

6,427

Constant
1.046
(0.024)
1.559
(0.067)
2.000
(0.196)
2.448
(0.158)
1.498
(0.051)
1.680
(0.097)
2.808
(0.202)
1.624
(0.218)
Constant
1.094
(0.007)
1.130
(0.008)
1.147
(0.008)
1.164
(0.008)
1.073
(0.007)
0.998
(0.006)
1.012
(0.007)
1.211
(0.005)

Greater
-0.111*
(0.039)
-0.070
(0.071)
-0.153
(0.181)
0.023
(0.224)
-0.329*
(0.072)
-0.421*
(0.111)
-0.543*
(0.142)
-0.220*
(0.069)
Greater
-0.114*
(0.012)
-0.162*
(0.012)
-0.159*
(0.013)
-0.084*
(0.012)
-0.196*
(0.013)
-0.156*
(0.009)
-0.149*
(0.013)
-0.262*
(0.006)

[[vs. I
n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

[| vs.

n.s.

Lesser
0.063
(0.040)
-0.009
(0.073)
-0.109
(0.164)
0.169
(0.251)
0.394*
(0.074)
0.432*
(0.105)
0.185
(0.131)
0.184*
(0.064)
Lesser
-0.036*
(0.012)
-0.025*
(0.012)
-0.032*
(0.013)
-0.168*
(0.012)
0.074*
(0.013)
0.007
(0.009)
0.154*
(0.013)
-0.150*
(0.006)

Differ.
-0.087*
(0.036)

-0.031
(0.066)

-0.022
(0.164)

-0.073
(0.228)
-0.361*
(0.068)
-0.426*
(0.101)
-0.364*
(0.130)
-0.201*
(0.061)

Differ.
-0.039*
(0.011)
-0.068*
(0.012)
-0.063*
(0.012)
0.042*
(0.011)
-0.135*
(0.012)
-0.082*
(0.009)
-0.152*
(0.012)
-0.056*
(0.006)

[[vs. I
n.s.

n.s.

n.s.

n.s.

n.s.

Ilvs. |

n.s.

Sum
-0.024
(0.016)
-0.040
(0.030)

-0.131*
(0.055)

0.096
(0.068)

0.032
(0.026)

0.006
(0.038)

-0.179*
(0.044)
-0.018
(0.026)

Sum

-0.075*
(0.004)

-0.093*
(0.004)

-0.095*
(0.004)

-0.126*
(0.004)

-0.061*
(0.004)

-0.074*
(0.003)

0.003
(0.004)

-0.206*
(0.003)

Listed for each data set and each computational model fitted to the original JC1 data set are parameter estimates from complementary linear-regression
models of RT for incorrect choices of the option with lesser value.
Boldface and an asterisk indicate statistical significance (p < 0.05).

https://doi.org/10.1371/journal.pone.0186822.t006

between values (8 = -0.087, t = 2.41, p = 0.016), which nearly all of the models shared as well

(p < 0.05) with the lone exception of a net slowdown effect for the difference in the CA model
(p < 0.05). Lacking power, however, the absence of significant effects for both the lesser value
(8=0.063, t =1.57, p = 0.116) and the sum of values (8 = -0.024, t = 1.55, p = 0.120) remains

ambiguous while at least one of these variables has a significant impact on RT as part of every
model’s predictions (p < 0.05).
Decisions made with indifference when the values were matched (diagonals from lower left to

upper right in Fig 6, Table 7) were slower than correct responses as expected with increased diffi-
culty (M =107 ms, t = 20.86, p << 0.05), which was likewise true of all models (p < 0.05). In this

PLOS ONE | https://doi.org/10.1371/journal.pone.0186822 October 27, 2017

20/40


https://doi.org/10.1371/journal.pone.0186822.t006
https://doi.org/10.1371/journal.pone.0186822

@° PLOS | ONE

Value-based decision making via sequential sampling

Table 7. Meta-analysis: Reaction time for indifferent choices.

Data set
JC1

JC2

CH

IK

SL

NS

Aggregate

Model
SSCA

SCA

DCA

CA

SNFI

DNFI

NDD

Race

Trials
5,794

2,306

504

525

1,842

1,897

12,868

Constant
1.040
(0.007)
1.543
(0.018)
1.671
(0.053)
2.543
(0.133)
1.549
(0.023)
2.016
(0.086)
1.433
(0.171)
Constant
1.058
(0.002)
1.089
(0.002)
1.107
(0.002)
1.106
(0.002)
1.048
(0.002)
1.032
(0.002)
0.972
(0.002)
1.228
(0.002)

Sum
-0.069*
(0.006)
-0.089*
(0.010)
-0.061*
(0.023)

0.006
(0.069)
-0.052*
(0.013)
-0.089*
(0.035)
-0.070*
(0.008)

Sum
-0.078*
(0.002)
-0.096*
(0.002)
-0.097*
(0.002)
-0.107*
(0.002)
-0.073*
(0.002)
-0.110*
(0.001)

-0.001
(0.002)
-0.220*
(0.001)

Listed for each data set and each computational model fitted to the original JC1 data set are parameter
estimates from a linear-regression model of RT as a function of the sum of values for indifferent choices
between options of equal value. The JL data set is not listed here because it does not include indifferent

choices.

Boldface and an asterisk indicate statistical significance (p < 0.05).

https://doi.org/10.1371/journal.pone.0186822.1007

case the RT again became faster as the sum of the equal values increased (3 = -0.069, t = 10.76,
p << 0.05), providing the strongest evidence of an effect of motivational salience. Excluding the
NDD model, which cannot account for such an effect outside of the difference under any circum-

stances (p > 0.05), all other models had this prediction in common (p < 0.05).

The SSCA model

Although the more neurally plausible of the seven a-priori models could account for the more
robust impact of a stimulus with greater value on subjects’ RTs, none of these five accounts—

PLOS ONE | https://doi.org/10.1371/journal.pone.0186822 October 27, 2017

21/40


https://doi.org/10.1371/journal.pone.0186822.t007
https://doi.org/10.1371/journal.pone.0186822

o @
‘®-PLOS | ONE v o . _
X2 alue-based decision making via sequential sampling

Chosen =4/ Nonchosen = 1 C=4/N=2 C=4/N=3 C=4/N=4
220 20 20 20
?15 15 15 15
@ 10 10 10 10
>
g s 5 5
Qo
Lo 0 0 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
C=3/N=1 C=3/N=2 C=3/N=3 C=3/N=4
220 20 20 20
?15 15 15 15
@ 10 10 10 10
>
g, . . oA
L oo 0 0 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
C=2/N=1 C=2/N=2 C=2/N=3 C=2/N=4
220 20 20 20
?15 15 15 15
@ 10 10 10 10
=
s 5 5 5
o
L o 0 0 Ol T
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
C=1/N=1 C=1/N=2 C=1/N=3 C=1/N=4
220 20 20 20
?15 15 15 15
@ 10 10 10 10
=
g s 5 5 5
o
w o 0 Ol T 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
Reaction time (s) Reaction time (s) Reaction time (s) Reaction time (s)

Fig 7. Reaction-time distributions. RT distributions for each combination of chosen (“C”) and nonchosen (“N”)
values are displayed with 100-ms bins for the empirical data set (bars) and the data set generated by the preferred
SSCA model (lines).

https://doi.org/10.1371/journal.pone.0186822.9007

to wit, SCA, DCA, CA, SNFI, and DNFI—entailed the analogous overweighting of greater
values observed in subjects’ choices. With even the best-performing SCA model still
incomplete, its successor, the SSCA model, offered a viable remedy for this deficit with an
assumption of attentional modulation, which translates to selective amplification of inputs
that are already of high magnitude as part of a positive-feedback loop promoting “winner-
take-all” processing [32] (see Discussion). As a static approximation of these dynamics, the
impact of attention was parsimoniously reduced to a single free parameter that controls a
supralinear power law. This addition enhanced the overall goodness of fit to an extent that
justified the extra degree of freedom (p < 0.05). Furthermore, the SSCA model demon-
strated a qualitative improvement by correctly reproducing the overweighting of options
with greater value (p < 0.05) as reflected in choices that were similarly characterized by a
net positive effect of the sum of values (p < 0.05) (Fig 5, Table 4). With respect to RT, the
SSCA model essentially retained all of the aforementioned desirable predictions of the
nested SCA model (p < 0.05). Despite this qualitative resemblance, however, there was sig-
nificant quantitative improvement in the correspondence between simulated and actual
RT distributions (Fig 7).

This data set served as an ideally rigorous test case; that is, the benefits of the SSCA model
were even more striking here in light of the fact that central visual fixation was mandatory and
sufficient to process the adjacent stimuli simultaneously (Fig 1A). It is therefore implied that
the downstream effects of covert shifting of the focus of attention could be revealed in the
absence of overt eye movements.
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Meta-analysis

To verify the extent to which these findings that were amenable to computational modeling
were robust and so would generalize beyond the particular data set under scrutiny, a meta-
analysis subsequently tested for qualitative replication of the critical effects with a scope
encompassing seven experiments altogether (Table 1). In contrast to the modeled data set,
which will henceforth be referred to as “JC1,” the added studies featured stimuli that were well
separated spatially and thus required saccades in order for each to be foveated (Fig 1B). Other-
wise, these experimental paradigms generally adhered to the same basic scheme of a 2AFC task
for which subjects made preferential choices between randomly sampled foods with uncorre-
lated subjective values.

With regard to choice accuracy (Table 4), the aggregate results of the meta-analysis repli-
cated the findings from the original data set. Across all studies, accuracy increased as the
greater value increased (8 = 4.036, p < 0.05) and asymmetrically decreased as the lesser value
increased (8 = -3.444, p < 0.05). As before, significant overweighting of the alternative with
greater value was apparent (M = 0.592, p < 0.05). This pattern likewise translated to increasing
accuracy as a function of both the difference between the values (3 = 3.740, p < 0.05) and their
sum (8= 0.296, p < 0.05), where the difference had substantially more of an impact (M = 3.444,
p < 0.05). The tendency toward overweighting options with greater value was statistically signif-
icant within three data sets (i.e., JC1, JC2, and JL) (p < 0.05) and at least trending in the same
direction for another three. Likewise, the positive effect of the sum was significant within five
data sets (i.e., JC1, JC2, SL, JL, and NS) (p < 0.05).

Turning next to RTs for correct choices (Table 5), the aggregate results again completely
replicated the original set of findings. The greater value made the RT faster across studies (8 =
-0.374, p < 0.05), whereas the lesser value slowed it down (8 = 0.182, p < 0.05). There was a
similar asymmetry between these oppositional effects (M = 0.192, p < 0.05). In keeping with
that pattern, so too did the RT become faster as both the difference (8 =-0.278, p < 0.05) and
the sum (8 =-0.096, p < 0.05) increased with another imbalance between those two effects
(M =0.182, p < 0.05). All of these relevant trends were fully significant within five data sets
(i.e.,JC1,JC2, CH, SL, and JL) (p < 0.05). Moreover, the remaining two data sets (i.e., IK and
NS) were still largely in harmony with the others, such that four of the six critical effects were
significant for each (p < 0.05).

Whereas the previous results were adequately powered and robust across most of the data
sets included in the meta-analysis, the RTs observed for incorrect choices (Table 6) were not
sampled sufficiently and thus formed less consistent distributions. Despite the additional
noise, it remained the case for all studies that incorrect choices tended to be made more slowly
than correct choices (p < 0.05). Furthermore, the aggregate result suggested that RTs became
faster as the difference between values increased for incorrect choices as well (8 = -0.201,

p < 0.05). That is, the speedup effect of the greater value (8 = -0.220, p < 0.05) was not signifi-
cantly different (M = 0.036, p > 0.05) from the slowing effect of the lesser value (8 = 0.184,

p < 0.05). Four data sets (i.e., JCL, SL, JL, and NS) all yielded speedup effects of the greater
value (p < 0.05) and the difference between values (p < 0.05), but only two of these (i.e., SL
and JL) also demonstrated a significant slowing effect of the lesser value (p < 0.05). Although
the NDD model does corroborate such a pattern in error RTs (p < 0.05) despite underper-
forming otherwise, even more data will be necessary to reconcile the discrepancies here and
reach more definitive conclusions. For instance, two data sets (i.e., CH and NS) also showed
subjects responding more quickly as the sum increased (p < 0.05), which is instead in keeping
with predictions from the more neurally plausible models (p < 0.05).
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Table 8. Meta-analysis: Qualitative summary.

Data set Accuracy Reaction time
Correct Incorrect Indif.

G L D v S G v L D \' S G \' L D \' S S
JC1 (21) + - + > - > + - > - - ns ns - ns ns -
JC2(9) + > - + > - > + - > - ns ns ns ns ns ns -
CH (2) + ns - + > ns - > + - > - ns ns ns ns ns - -
IK (4) + ns - + > ns - ns + - > ns ns ns ns ns ns ns ns
SL (9) + ns - + > + - > + - > - - ns + - > ns -
JL (14) + > - + > + - > + - > - - ns + - > ns N/A
NS (6) + ns - + > + - > ns - ns - - > ns - ns - -
Aggregate + > - + > + - > + - > - - ns - > ns -
Model G v L D v S G v L D v S G v L D v S S
SSCA + > - + > + - > + - > - - > - - < - -
SCA + < - + > - - > + - > - - > - - < - -
DCA + < - + > - - > + - > - - > - - < - -
CA + ns - + > ns - > + - > - - < - + < - -
SNFI + < - + > - - > + - > - - > + - > - -
DNFI + < - + > - - > + - > - - > ns - ns - -
NDD + = - + > 0 - = + - > 0 - = + - > 0 0
Race + < - + > - - > - - < - - > - - < - -

This summary reduces the previous four tables to only qualitative assessments of effects on the basis of statistical significance (p < 0.05) or lack thereof

(p > 0.05). Plus signs denote significantly positive effects, whereas minus signs denote significantly negative effects. The NDD model is sufficiently rigid for
the null hypothesis to actually be accepted with significance for any effects independent of the difference between values. Approximate trial counts in units
of thousands are listed in parentheses for each data set. “G”, “L”, “D”, “S”, and “v” correspond to the headers in previous tables for “Greater,” “Lesser,”
“Difference,” “Sum,” and “versus,” respectively. “N/A” stands for “not applicable.”

https://doi.org/10.1371/journal.pone.0186822.t008

As concerns the final case of RT for indifferent choices (Table 7), which were again deliv-
ered more slowly than correct choices across all studies (p < 0.05), the aggregate result repli-
cated the speedup effect of the sum of values (8 = -0.070, p < 0.05). Five of the six data sets that
included indifferent choices (i.e., JC1, JC2, CH, SL, and NS) exhibited this effect individually
(p < 0.05).

Altogether, the meta-analysis generally validated the original claims suggested by the mod-
eled data set. Certain qualitative aspects of the findings are summarized in Table 8.

Discussion
Summary

The present study has made strides toward achieving a mechanistic understanding of value-
based decision making by formally juxtaposing the explicit predictions of computational models
and empirical observations of the behavior of human subjects. The two-dimensional input
space common to every experiment tested as part of this meta-analytic approach crucially
enabled rigorous assessment of parametric value-related effects. Although the NDD model
appreciably outperformed the race model, the strictest normative assumptions of either inde-
pendent accumulation or perfect subtractive comparison that underlie the race and drift-diffu-
sion algorithms, respectively, were each apparently falsified. By instead representing signals
separately but also with imperfect direct competition between them in the form of mutual inhi-
bition, more neurally plausible SSMs offered an account both quantitatively and qualitatively
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superior while remaining relatively parsimonious. Foremost among these was the SSCA model,
a novel connectionist model of a multidimensional nonlinear dynamical system featuring hier-
archical levels of competition as well as an approximation of attentional modulation with the
efficiency of only six free parameters.

Optimality or lack thereof

The drift-diffusion model, which is most closely derived from the SPRT, prescribes an optimal
solution for the 2AFC paradigm by virtue of attaining the fastest possible mean RT for a given
level of accuracy. However, this is but one of many feasible definitions of optimality. The
extent to which biology is optimal in domains such as this and which parameters natural selec-
tion should optimize remain elusive points of contention [27,63-68]. Whereas Bogacz and col-
leagues [27] suggested equivalence between the original LCA model [26] and the optimal drift-
diffusion model under specific conditions, van Ravenzwaaij and colleagues [67] suggested oth-
erwise and demonstrated that such equivalence only applies under even more extreme condi-
tions that are so improbable and artificial as to be negligible. In a similar vein, the purely
descriptive SSCA model is relatively far removed from any provably optimal computations
other than the fundamental sequential sampling. Yet, a constrained optimization shaped by
evolutionary adaptation need not necessarily align with mathematically provable optimality in
a specific context when there also exists demand for versatility across the diverse and dynamic
environments that humans and other animals encounter.

The discrepancy between the normative race and drift-diffusion models illustrates one
aspect of the nuanced nature of optimality in this context. An oft-cited limitation of the frame-
work shared by the SPRT and the drift-diffusion model is that it does not readily generalize
beyond binary decisions as the race model does. The “max-minus-average” variant of the
drift-diffusion model directly implied by the standard SPRT is suboptimal [27,69-71], but the
unknown optimal standard for multiple alternatives can be approximated asymptotically for
sufficiently low error rates by the multihypothesis SPRT [72] and an analogous “max-minus-
next” variant of the drift-diffusion model assuming that all signals other than the two with
greatest magnitude are somehow filtered out [29,69,71,73]. However, the feasibility of such a
scheme when extrapolating to many more than three alternatives has yet to be fully established
as tenable. The need to accommodate multiple responses was a relevant factor to motivate lay-
ing the groundwork of the race model [74], but it was not the only factor.

Incidentally, Raab [13] was not concerned with matters of optimality and actually first pro-
posed the basic scheme of a race of independent accumulators to account for a documented
effect of “statistical facilitation” [61,62]. In the context of a 2AFC paradigm, statistical facilita-
tion implies a tendency towards faster responses as both values increase—that is, not only the
value of the better (i.e., more frequently chosen) alternative but also the value of the worse
alternative. Under the assumption of independent parallel processes driving each choice, this
phenomenon results from additional overlap between each choice’s RT distributions as the
accumulation rate of the alternative with lesser value approaches that of the alternative with
greater value. The present study made use of these predictions as they starkly contrasted with
those of the drift-diffusion and NDD models or more neurally plausible models featuring
imperfect competition. The former symmetrically yield slower RT's as the lesser value increases
and reduces the relative evidence, whereas the latter for most parameter assignments exhibit a
weaker net slowing effect on RT as the lesser value increases but are also flexible enough to
accommodate statistical facilitation with a sufficiently low degree of mutual inhibition.

By postulating absolute rather than relative representations of value within independent
accumulating signals, the race model can also be regarded as prescriptive or optimal but in a
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manner altogether separate from the drift-diffusion model. The optimality of the speed-accu-
racy tradeoff [75] in the SPRT and the drift-diffusion model is predicated on options and
sources of evidence for them remaining stable, as is true of most artificial laboratory settings.
However, such circumstances are not representative of the dynamic world in which organisms
have evolved to make fitness-maximizing decisions in real time that regularly demand flexibil-
ity and rapid reaction to changing states [76,77]. Absolute representations of individual stimuli
that are insensitive to context could actually be ideal for such situations in which external sur-
roundings and even internal states are unstable. Moreover, ecological validity aside, normative
decision theory mandates that, when faced with multiple alternatives, a rational agent whose
goal is to maximize utility should make decisions exhibiting “independence of irrelevant alter-
natives” (ITA) in accordance with the Shepard-Luce choice rule [78,79]. This independence
axiom, which entails the probability of choosing one alternative over another being wholly
unaffected by any other alternatives, can emerge directly from the race model in the form of a
Gibbs softmax function [80,81]. In a certain respect, then, the more neurally plausible SSMs
with imperfect competition offer an intermediate alternative that effectively tempers the nar-
row optimality of the SPRT with the broad optimality of the ITA axiom.

Features of the SSCA model

The persistent popularity of classical SSMs such as the race and drift-diffusion models among
experimentalists also stems from their efficiency and ease of use, and thus even the SSCA
model is intended to reach a viable compromise with a minimal increase in complexity out-
weighed by significant improvement in applicability to actual behavior and neurophysiology.
Essentially, the SSCA model has been designed to be somewhat biologically plausible while bal-
ancing the constraint of minimizing its parameter count so as to ensure that each element
remains fully interpretable and also avoid inappropriate assumptions and overfitting of empir-
ical data. Moreover, fitting the free parameters of a model of this complexity can pose an
intractably nonconvex optimization problem with computational demands exacerbated by
Monte Carlo simulation of stochastic time series lacking closed-form expressions. Each degree
of freedom added intensifies this problem exponentially. In contrast, simpler variants of the
race and drift-diffusion models boast more tractable optimization problems further amelio-
rated by closed-form expressions for distributions of choices and RT's [11,15]. Given these con-
siderations, every free parameter of the SSCA model was carefully selected for proving itself
critical both from a theoretical standpoint and from a practical standpoint.

Findings from electrophysiology and other neuroscientific methods at scales ranging from
single neurons to whole-brain networks have begun to characterize the dynamics of neural
decision-making processes. The SSCA model parsimoniously draws from key neurocomputa-
tional principles that have emerged from this line of research. In several regions of the brain,
option-selective decision signals encoded in neuronal firing rates have been shown to accumu-
late up to a threshold level during decision making at a rate proportional to the evidence in
favor of a particular option [82-87]. Some additional observations from work in this domain
stand out for their core mechanistic implications. Opposing decision signals representing non-
preferred alternatives tend to be commensurately suppressed. The rate of accumulation reflects
not only stimulus attributes but also the nonspecific urgency to act [87-90]. Thresholds for
downstream activation of motor output remain constant [91]. Also relevant is the notion that
attending to stimuli or stimulus features—whether perceptual or valence-related—selectively
enhances the neural signals representing them [92-98].

Essentially, separate neural ensembles are here assumed to encode option-specific decision
signals that compete at hierarchical levels while accumulating activity up to a fixed threshold
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for motor output at a rate proportional to the value of the option encoded and also boosted
by the additional impetus of value-dependent attention and nonspecific urgency signals.
Although its influences are broad—also including the feedforward-inhibition model [34,35],
the urgency-gating model [99,100], and the drift-diffusion model with attention [33,71]—the
SSCA model is distinguished as a member of a narrow class of nonlinear attractor-network
models such as the LCA model [26,36] and established biophysical models [31,101,102] that
emphasize state-dependent competition via lateral inhibition. However, the SSCA model as a
whole is unique and deviates from the original seven-parameter LCA model in multiple ways.
In catering to this paradigm, the SSCA model exchanges four free parameters representing
leakage, decision-signal thresholds, nondecision time, and starting-point variability for only
three new parameters representing baseline input, input-dependent competition, and atten-
tional modulation.

In contrast to the perfect integration of the SSCA model, the LCA model’s assumption that
leakage overrides recurrent self-excitation is a strong one and may not apply universally in
reality [24,25,103,104]. Indeed, leakage is only an optimal feature for dynamic situations in
which information is updated after initial stimulus onset so as to potentially warrant an effec-
tive change of mind prior to action. A single free parameter represents the net effect of the bal-
ance between leakage and recurrent self-excitation as part of an Ornstein-Uhlenbeck process
[105], and this parameter is constrained to be negative (i.e., leakage-dominant) for the LCA
model. However, for this particular paradigm where the stimuli predictably remain stable
within every trial, there was no compelling evidence of a need for either net leakage or net self-
excitation within the framework. Whereas leaky integration is a fundamental characteristic of
the dynamics of individual neurons, populations of neurons characterized by a range of intrin-
sic time constants are nonetheless capable of achieving perfect integration collectively by
means of reverberating activity, as is assumed by the SSCA model [106-109].

The decision signal’s threshold for execution is fixed at an arbitrary value to serve as the
SSCA model’s scaling parameter. Generally, the interpretation of fitted parameter assignments
must be contextualized in the presence of a scaling parameter, which is typical of this variety of
models [110]. However, especially with the addition of an urgency signal, a fixed threshold for
motor output is actually better justified by observations of neurophysiology [82-84,87-91]
than alternative constraints proposed in previous models. As discussed below, the urgency sig-
nal can mimic the theoretical collapsing boundary of a diffusion process. Past approaches
include fixed within-trial noise [10,17] or—as in the original LCA model—normalized inputs
that always sum to a fixed constant [15,36,111]. Tradeoffs are inevitable in this case, but the
former solution overlooks the possibility that the fidelity of signaling could vary across condi-
tions being compared. The latter solution, on the other hand, is inflexible in its rescaling of
inputs and can degrade both absolute and relative information about their magnitudes.

Decision-making processes are generally expected to be preceded and followed by percep-
tual stimulus-encoding processes and motoric action-execution processes, respectively, which
collectively fall under the concept of nondecision time [10,16]. Whereas these nondecision
processes are typically reduced to a single additive constant as part of the estimated RT, such a
simplification is prone to miss subtle dynamics of actual neural decision signals [112], which
are nonlinear, susceptible to noise, and driven by the urgency to act as well as perhaps atten-
tion itself. Furthermore, the ensuing ambiguity surrounding predecision time, postdecision
time, and intermittent lapses of attention (e.g., during blinking or saccades) [33,71,113] obfus-
cates the correspondence between simulated dynamics of neural activity and the time courses
of acquired neurophysiological signals. In contrast to fitted nondecision times often in the
range of several hundred milliseconds, the initial stages of visual object recognition [114-117],
processing of a stimulus’s associated hedonic value [118,119], and response preparation [120]
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generally begin within 200 ms of the onset of stimulation. Thus, parameterizing the nondeci-
sion time not only necessitates an additional degree of freedom that is noisy and particularly
susceptible to overfitting but also makes neurally implausible assumptions that cannot be
applied directly to computational-model-based analysis of neurophysiological data. The SSCA
model instead opts for a biologically constrained predecision time—conservatively set to 150
ms in this value-based paradigm [118,119]—only at the level of value-signal inputs, which are
defined with a step function. Downstream decision signals as simulated are never static, evolv-
ing explicitly even before the onset of value signals.

Another consequence of the SSCA model’s predecision phase is that starting-point variabil-
ity emerges from the accumulation of persistent noise before the delayed onset of value-signal
inputs. Although this emergent starting-point variability does not have as much flexibility as
explicitly parameterized variability in the actual starting point corresponding to trial onset,
qualitative effects such as the potential for more frequent fast errors [121] remain without the
complications of an additional degree of freedom. Conversely, RT distributions for errors can
simultaneously be shifted in the opposite direction relative to correct responses, which typi-
cally constitutes the more prominent effect. Along with non-Gaussian noise [122] and asym-
metric biases [123,124], across-trial variability in rates of evidence or valence accumulation
has been suggested to account for the slower RTs observed for errors [10,15,17,111,121].
Multiple sources of variability across trials as well as hysteresis are entirely feasible insofar as
biological signals are inherently probabilistic. Nevertheless, in light of recent reports of neuro-
physiology reflecting fixed thresholds and urgency signaling, across-trial variability in drift
rate may not be the only factor or even a primary factor involved in such discrepancies in tim-
ing between correct and incorrect responses [125]. The scope of the present model comparison
does not include free parameters for auxiliary sources of variability across trials in the interest
of interpretability, but the significance of across-trial variability in starting points, rates of
accumulation, onset of input signals, and other parametric elements yet to be explored as part
of a more comprehensive model also featuring urgency signals will merit investigation in
future research.

Inclusion of a parametric baseline input in the models tested here substantially improves
fitting performance but is even more significant for its theoretical implications in relation to
signaling of the urgency to act. The stationary threshold of the SPRT is no longer optimal even
in the most basic 2AFC paradigm if either of the following commonly occurring conditions
apply: the reliability of information could vary from trial to trial, or a cost of effort could be
associated with deliberation time within a trial. The psychometric implications of a decaying
threshold [126-130], including in particular decreasing accuracy as a function of elapsed time
(i.e., slower errors), can bear striking resemblance to those of a nonspecific urgency signal
[125]. However, the urgency signal is more neurally plausible when considering the robust evi-
dence of constant thresholds for decision signals as encoded in the firing rates of neurons [82-
84,87-91]. This persistent baseline input also prevents decision signals that represent relatively
low or even negative (i.e., aversive) values from being deterministically attracted to the null-
activity state by the forces of lateral inhibition. Such attraction might also be avoided with
the assumption of a sufficiently high starting point for the decision signal at trial onset [67],
but the neural plausibility of a nonzero starting point of high relative magnitude remains
questionable, which implies yet another free parameter that is ambiguously constrained by
neurophysiology.

Whereas the urgency-gating model suggests that a growing urgency signal is multiplica-
tively combined with a low-pass-filtered evidence signal [90,99,100], the constant baseline
input of the SSCA model yields some overlapping predictions for ultimate neural dynamics
and behavior by means of a qualitatively distinct mechanism—that is, integration in lieu of
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independent gating. There is experimental support for the existence of evidence accumulation
as opposed to merely urgency accumulation alone, such as the persistent influence of early evi-
dence on decisions when changing information conflicts across different time points within a
trial [131-135]. However, inclusion of a low-pass filter with an appropriate time constant can
also address these issues to some extent [136]. Further investigation of behavior under deliber-
ately manipulated conditions as well as the flow of information across brain regions at the sin-
gle-neuron level will prove necessary to fully dissociate urgency gating, the integration of
urgency-like inputs, and—albeit to a lesser extent—recurrent self-excitation, which is depen-
dent on the states of decision signals and thus most capable of mimicking nonspecific urgency
signals when competing decision signals correspond in magnitude.

Whereas variants of the SNFI, DNFI, and CA models’ schemes for competition have typi-
cally each been considered in isolation and even posed as rivals in the literature, the present
work has introduced the alternative possibility of complementarity between input-dependent
and state-dependent forms of competition. Their synthesis with free parameters for these two
levels of competition within a novel hierarchical architecture further distinguishes the SSCA
model from the original LCA model, which was instead proposed with the simplest divisive
[36] or subtractive [26] input transformations lacking parameterization (i.e., b=0and s =0 or
i, = 1, respectively). The theoretical interpretation of these rigid transformations was limited
to input normalization (or relative coding) alone as opposed to feedforward inhibition. How-
ever, although the more fine-grained distinction between lateral and feedforward inhibition
may not substantially impact behavioral model predictions at this level of abstraction, this dis-
tinction will nonetheless prove relevant for separately identifying value signals and decision-
making signals in the brain, where putative roles of different inhibitory mechanisms can be
tested for directly. This nonparametric divisive normalization also has been put forth in part to
eliminate the aforementioned scaling problem and reduce the number of free parameters, but
that solution is less plausible than the one proposed herein. The present results instead suggest
the need for the flexibility of parameterized input-dependent competition in a descriptive
model even when including state-dependent competition despite the cost of the added com-
plexity. For example, the speedup effect of the sum of values on RT is missed with nonpara-
metric subtraction, and with nonparametric division this effect of sum is too strong relative to
the effect of the difference between values even to the point of outweighing the latter, contrary
to what is observed in behavior.

Selective attentional modulation of value signals and in particular the asymmetry of its allo-
cation in proportion to value was demonstrated to provide a viable account for the overweight-
ing of greater values observed in choice data as discussed previously. Although at first drawn
to perceptually salient [137] or novel [138] stimuli [139], attention disproportionately ampli-
fies value signals of greater magnitude as they are integrated into respective decision signals
because more attention also tends to be allocated for more rewarding options—and particu-
larly so in the final moments prior to making a decision when acquisition of necessary infor-
mation approaches its saturation point [32,33,71,73,113,140-142]. Reflecting preferential
looking [143] and the mere-exposure effect [144] in parallel with information seeking, this cas-
cade effect of gaze and attention more generally in response to motivational salience [60] or
incentive salience [59] emerges as a positive-feedback loop biasing decisions. Of additional
note is that these effects were even present as a reflection of covert shifting of the focus of visual
attention in the absence of eye movements for the modeled data set.

Whereas Stevens’s power law [145] from psychophysics in the vein of a nonlinear transfer
function could in principle accommodate the possibility of supralinear as well as sublinear
input-output relationships, such an interpretation is not merited here because the subjective
perception of hedonic value constitutes a special case that is described by a sublinear function
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in accordance with Gossen’s law of diminishing marginal utility from classical economics
[146,147]. Supralinear manifestations of Stevens’s power law in general may actually them-
selves be a manifestation of the “winner-take-all” attentional phenomenon in question to some
extent because attention permeates even processes at levels of representation independent of
overt motoric orienting. Moreover, ratings of subjective value were already explicitly mapped
onto a linear scale here. Linear rating scales are ubiquitous outside the laboratory and quite
familiar for these human subjects, and such linearized subjective ratings have been shown to
be linearly related [148] to fully incentive-compatible [47] measurements of one’s “willingness
to pay” for an item with currency [149]. Thus, it may be the case that, over time, the positive-
feedback loop emerging from attentional modulation during comparison that is essentially
averaged out in the present model can effectively override the initial scaling of subjective value
as can be observed in independent evaluations of isolated stimuli.

Emphasizing net effects, the static power-law implementation of attention currently used in
the SSCA model is only intended to suffice as the most parsimonious solution to the challeng-
ing problem posed by the role of attention, however. At this early stage, forcing potentially
impactful mechanistic assumptions about the precise nature of attentional processes would
not be appropriate in consideration of the fact that they still remain poorly understood in the
context of decision-making processes. Further investigation of the neural mechanisms under-
lying such attention and their temporal properties will be necessary. For example, findings sug-
gesting that attention improves signal-to-noise ratios not only via amplification of gain [92-
94, 96-98] but also via reduction of noise [95] or converse suppression of unattended input
[150,151] have important implications for modeling. An enhancement of signal-to-noise ratio
is consistent with evidence that visual fixations at the beginning of a trial tend to be directed at
stimuli from which information must be obtained in contrast to fixations toward the end of a
trial that tend to be directed at more rewarding stimuli [142] and thus asymmetrically drive
the positive-feedback loops formed across at least attentional and value-encoding signals if not
also decision-making signals. Moreover, in addition to this more top-down motivational
salience, bottom-up perceptual salience directly tied to physical characteristics has the poten-
tial to initially exert a stronger influence on the attraction of attention to particular stimuli
under consideration [137], producing biases even in contexts where only hedonic value is rele-
vant [73,152].

For future investigation, the spatial focus of attention can be approximated with high tem-
poral resolution by measuring the direction of eye gaze as it shifts within a trial as part of eye-
tracking studies. Along with neurophysiological measurements, eye tracking will prove fruitful
for this line of research because it can be used to empirically test more complex models with
an aim to describe not only how attention and visual fixation shapes decision-making pro-
cesses [33,71,113] but also how eye movements are generated as part of this [73]. That is, atten-
tional processes themselves can be modeled beyond their net effects as yet another dynamical
system embedded within this framework. On the other hand, the scope of the present work as
an initial step is structured so as to demonstrate in a generalizable manner the effectiveness of
these neurally inspired tools even when only choice and RT data are available, which is typi-
cally the case for empirical computational studies of this nature.

Finally, as the SSCA model aims to an extent for a descriptive and neurally plausible
account, it forgoes the simplification of ballistic accumulation—that is, deterministic accumu-
lation in the absence of within-trial noise—which has been proposed for tractability and easier
fitting of empirical data [15,111,153-155]. Although ballistic accumulation does offer practical
advantages, this feature would fundamentally alter the chaotic and nonlinear dynamics of the
model, resulting in overly rigid “winner-take-all” attractor effects. The same is true of the mod-
el’s psychological interpretation inasmuch as the algorithm would no longer correspond to a
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sequential-sampling process, which is necessarily stochastic. The intrinsic stochasticity of biol-
ogy strongly supports the notion of decision making as sequential sampling rather than ballis-
tic accumulation, however.

Levels of analysis in computational modeling

Opting for yet more detail than connectionist models such as the SSCA model, biophysical
models such as that of Wang [31] can grow substantially more complex but nonetheless pre-
serve the fundamental structure proposed herein. As a testament to this high-level similarity,
the schematic of the mean-field reduction of the biophysical model [101,102] generally aligns
with that of the CA model depicted in Fig 2C [27]. Reducing a population of neurons with cor-
related dynamics to a collective unit has indeed been shown to be a valid simplification
[156,157]. The SSCA model and certain variants of the LCA model potentially provide a more
parsimonious account for certain empirical findings that this biophysical model has been put
forth to explain, including the prominent effects of the sum of values and the difference in val-
ues on RT and aggregate neural activity [158], the relationship between the balance of neural
excitation and inhibition and the speed-accuracy tradeoff [159], and a positive correlation
between the bias in favor of choosing alternatives with greatest value and the values of alterna-
tives with least value when more than two are under consideration [160]. Nevertheless, there is
no “correct” degree of abstraction for modeling phenomena of the brain and mind; models at
levels of analysis even as seemingly disparate as biophysics and cognition should be regarded
as complementary and ultimately linkable rather than in rivalry [30].

In contrast with such biophysical models, the relative strength of the low-dimensional
SSCA model is endowed by its parsimony, interpretability, and generalizability. Tests of data
from an independent hold-out sample verified that overfitting was not of concern for the
SSCA model, which is a critical feature. Aside from the obvious advantage of mitigated compu-
tational demands, low dimensionality is especially relevant for situations in which a model
must be fitted to multiple data sets while remaining valid and meaningful for comparison
across data sets and with alternative models. Generalization across experimental settings with
varied tasks and temporal properties warrants freedom in the assignment of tuning parame-
ters, which the biophysical model lacks in the ambiguity surrounding its degrees of freedom.
That is, the parameters of the biophysical model are fixed by default and necessarily derived
from past experimental measurements made in particular parts of the brain in a single species
while engaged in a single task—for example, lateral intraparietal cortex (i.e., “area LIP”) in a
rhesus macaque while performing a random-dot-motion task with saccades [31]. However,
considering that the predictions of more complex models correspondingly depend even more
heavily on their parameter assignments as well as the parameters of the task, a valid model
comparison requires that all relevant parameters of any model under consideration be opti-
mized for the training data in order to ascertain each candidate’s true potential.

The models in this study are nested within a common neural-network framework and dis-
tinguished by isolated key features for the sake of commensurability. Comparing models that
differ in complex ways can prove futile to the extent that interpreting the exact sources of
unique predictions is limited by contamination from other sources. Thus, any extensions of
the SSCA model, which is minimalistic by design, should be constructed with one incremental
change at a time and tested for qualitative more so than quantitative improvement at describ-
ing empirical data in order to justify every additional assumption and the ensuing obstacles
posed by fitting and theoretical interpretation [161]. Constraining models to be as simple and
parsimonious as possible is advantageous for testing the consequences of incremental changes
to enable concrete understanding of fundamental mechanisms. Basic models should be
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augmented to make them more neurally plausible from a theoretical standpoint, but account-
ing for effects related to stimulus attributes in empirical data remains the foremost priority.
For instance, the race model is fully nested within the SNFI and CA models by assuming no
competition with i, = 0 and i; = 0, respectively, and effectively nested within the DNFI model
if semisaturation is sufficiently greater than input magnitudes (i.e., s >> X,V,). The NDD
model, on the other hand, is only nested within the SNFI model with i, = 1. The SNFI and CA
models are in turn nested within the SCA model, whereas the DNFI and CA models are nested
within the DCA model. The additional free parameters could be adequately justified only with
a demonstration of objectively superior performance in fitting empirical data.

This incremental “top-down” approach to modeling based on measurable functional prop-
erties stands as a viable alternative to the massively parallel “bottom-up” approach advocated
in using biophysical models, which instead impose many strong but putatively biologically
grounded assumptions at once to generate complex emergent phenomena. Although undoubt-
edly more applicable at the single-neuron level, the bottom-up approach can be hampered by
issues related to high dimensionality, lack of interpretability, the potential for impactful inap-
propriate assumptions, questionable generalizability, ambiguity in selection of tuning parame-
ters, and the risk of overfitting if tuning parameters are introduced. In addition to the aspect of
model complexity quantified with statistical criteria that reflect explicit degrees of freedom,
there is an unquantifiable aspect implicit in the model’s ostensible physical implementation.
As a case in point, a neural implementation of a divisive transformation of input would entail
stricter structural assumptions than a less complex subtractive transformation despite both
types similarly being reducible to only one additional free parameter here. If the juxtaposition
of the state- and input-dependent competition of the CA and SNFI or DNFI models, respec-
tively, were transposed from the connectionist framework to a biophysical framework, com-
pound interactions among the many elements of such a detailed system, which are not
completely understood and also highly dependent upon context and parameter assignments,
would severely limit inference with regard to the mechanistic implications of any disparities.

Even without a foray into the most elaborate biophysics, one could hypothesize a connec-
tionist model still more neurally plausible than the SSCA model by incorporating elements as
varied as increased connectivity with both excitatory and inhibitory feedback connections,
value and execution signals with more complex dynamics than step functions [162], noise spe-
cific to distinct layers of neural ensembles or subprocesses, state-dependent (e.g., mean-scaled)
sources of within-trial noise [28,39,163,164], and across-trial variability as discussed earlier.
However, selecting a model with so many features to relate to empirical data can quickly grow
into an intractable problem in the presence of complex nonlinear interactions that prevent dis-
sociating and fitting the relevant parameters so as to discern among the myriad of possible
combinations. Many degrees of freedom, reciprocal connections, the associated feedforward
and feedback loops, and partially redundant mechanisms in a complex dynamical system can
give rise to functional mimicry and thus overlapping predictions for output that further limit
interpretability. Furthermore, if parameter optimization is successful, the addition of any free
parameter within reason is likely to at least marginally improve the quantitative fit of a model
merely by virtue of an added opportunity for nonlinearity. A challenge for future work thus
arises in assigning priority to certain elements over others while it is impractical to simply
include every element that can be theorized in a model. Incremental augmentations of the
model could then be achieved by deliberately controlled experiments that would yield testable
predictions contingent on inclusion of a given element that in theory better emulates actual
nervous systems at a more abstract computational level.
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Computational-model-based analysis of neurophysiological data

One of the principal goals of computational cognitive neuroscience [165] is to formulate gen-
erative models that encompass brain, mind, and behavior together. To this end, a hybrid SSM
such as the SSCA model that has been honed to balance the demands of efficiency in modeling
and representativeness of neurobiology can also cater to computational-model-based analysis
for neurophysiological data [44,45]. That is, the SSCA model can ultimately be related to not
only behavioral output but also neural activity such as blood-oxygen-level-dependent (BOLD)
signals from functional magnetic-resonance imaging (fMRI) with its high spatial resolution
(e.g., [166]) or event-related potentials from electroencephalography (EEG) with its high tem-
poral resolution (e.g., [20]). Attempts have been made to relate output of normative SSMs
such as the race and drift-diffusion models to neurophysiological data under the assumption
of adequately representing the brain’s functional architecture, but the SSCA algorithm could
be appreciably more effective in such endeavors with the benefit of greater neural plausibility,
better fits of behavior, and nonlinear flexibility. For any given trial, this model can generate
temporally precise predictions for aggregate neural activity from stimulus onset to the time of
response as collectively determined by attributes of all stimuli, the subject’s choice, and the RT.
Such comprehensiveness is critical and actually sets the approach proposed herein apart from
previous neuroimaging studies’ attempts to identify decision-making processes with computa-
tional models instead limited to some subset of that information available to describe the input
and output of individual trials.

In terms of accuracy and interpretability, this fully model-based approach to localization of
decision-making processes in the brain has far more potential than conventional methods that
instead often rely on a functional signature involving reduction of the information in each trial
to the relative evidence between options as a proxy for normative difficulty. These linear signa-
tures generally take the form of either the absolute difference between the values of options or
the signed difference between chosen and nonchosen values, but the latter formulation cannot
even be reconciled with speedup effects of RT and concomitant negative effects on cumulative
neural activity as a function of the absolute difference for incorrect as well as correct choices.
Although the RT is potentially a superior alternative for its direct reflection of actual behavior
rather than parameters of stimuli, it is nonetheless also insufficient as an independent variable
for the brain not only because of omission of information about choices and inputs but also
because of further nonlinearity in the relationship between RT and the underlying neural
dynamics that can be simulated on a trialwise basis.

For each condition under which they are engaged, neural decision-making processes should
exhibit correlation between observed signals and the simulated signals of the SSCA model to
the extent that these simulations would be derived from a theoretically sound and neurally
plausible model empirically proven to fit well. Decision-making processes can thus be identi-
fied selectively among all processes active in the brain during a given task, including but not
limited to the value-encoding and action-execution processes also within the scope of the
model. Specificity or lack thereof to experimentally manipulated conditions can then be deter-
mined. This methodology enables principled “forward inference” across various conditions of
interest by revealing qualitative dissociations in recruitment of particular brain areas during
decision making [167,168]. The precision afforded by a comprehensive yet tractable account
of both the brain and behavior in terms of explicit computations and algorithms will prove piv-
otal in achieving a complete mechanistic understanding of decision making across diverse
settings.
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