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Research by other investigators has established that insulin-like growth factor-1 receptor (IGF-1R) is a key oncological target,
and that derivatives of 1, 3-disubstituted-imidazo[1,5-α] pyrazine are potent IGF-1R inhibitors. In this paper, we report on our
three-dimensional quantitative structure activity relationship (3D-QSAR) studies for this series of compounds. We validated the
3D-QSAR models by the comparison of two major alignment schemes, namely, ligand-based (LB) and receptor-guided (RG)
alignment schemes. The latter scheme yielded better 3D-QSAR models for both comparative molecular field analysis (CoMFA)
(q2 = 0.53, r2 = 0.95) and comparative molecular similarity indices analysis (CoMSIA) (q2 = 0.51, r2 = 0.86). We submit that
this might arise from the more accurate inhibitor alignment that results from using the structural information of the active site.
We conclude that the receptor-guided 3D-QSAR may be helpful to design more potent IGF-1R inhibitors, as well as to understand
their binding affinity with the receptor.

Copyright © 2008 M. Muddassar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The insulin-like growth factor-1 receptor is a membrane-
associated receptor that belongs to subclass I of the recep-
tor tyrosine kinase (RTK) superfamily [1]. IGF-1R has been
shown to have significant roles in the regulation of normal
cell growth. It has mitogenic and survival effects on human
cancer cells [2]. The Binding of IGF-1 to IGF-1R activates
the RTK, and later, in turn, activates a cascade of down-
stream signals, which are postulated to stimulate cell prolif-
eration and enhance resistance to apoptosis [3]. Understand-
ably, the abnormal expression of the IGF-1R has been im-
plicated to cancer. Epidemiological studies have also shown
a link between serum concentrations of IGF-1 and IGFBP-3
with increased risks of breast cancer [4]. A number of anti-
cancer agents which inhibit the IGF-1R activity and prolifer-
ation [5] have been extracted from plants [6] as well as syn-
thesized, such as BMS-554417 (2-(4-substituted-2-oxo-1,2-
dihydropyridin-3-yl)-benzimidazole) [7] and NVP-AEW541
(pyrrolo[2,3-d] pyrimidine derivative) molecules. Both of
these compounds are orally administered and have proved
antitumor activity. Various QSAR techniques are being used
to explore more potent ligands [8–11]; but in this study,
we performed comparative three-dimensional quantitative

structure activity relationship (3D-QSAR) [12–14] analy-
ses on IFG-1R inhibitors [15] of imidazo [1, 5-α] pyrazine
derivatives. In 3D-QSAR [14], determination of the bioac-
tive conformer [16] and molecular alignment of the com-
pounds is key factor to get meaningful results. The biologi-
cally active conformations of the structures should be aligned
in a way that represents a similar binding mode [17]. Here
we first applied the ligand-based (LB) strategy using the sys-
tematic search-based minimum energy conformer approach
[18]. Second, receptor-based 3D-QSAR [19] using molecu-
lar docking of inhibitors in the available X-ray crystal struc-
ture [20] of the receptor protein. The qualities of these 3D-
QSAR models were compared and discussed with respect to
the IGF-1R target.

2. MATERIAL AND METHODS

A series of 54 potent 1, 3-disubstituted imidazole [1, 5-α]
pyrazine derivatives with their inhibitory activities to IGF-
1R were taken from the literature [15]. The dataset was ran-
domly divided into 43 and 11 molecules, the training and
test datasets, respectively. The observed IC50 values were con-
verted into pIC50 values and are reported in Table 1.
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Table 1: The structures and observed IGF inhibitory activities [15].

No. Structure R IC50 (M) pIC50

1 A 4-OBn 1.97× 10−6 5.706

2 A 3-OH 0.518× 10−6 6.286

3 A 3-OBn–4-OMe 1.35× 10−6 5.870

4 A 3-OBn–4-OH 3.31× 10−6 5.480

5∗ B Cyclopentyl 3.5× 10−6 5.456

6 B Cyclohexyl 1.05× 10−6 5.979

7∗ B –CH2–cyclopropyl 2.27× 10−6 5.644

8∗ B –CH2–cyclohexyl 1.11× 10−6 5.955

9 B –CH2CH2OMe 6.28× 10−6 5.202

10 B –CH2–2-pyridyl 1.09× 10−6 5.963

11 C H 0.606× 10−6 6.218

12 C 2-F 0.224× 10−6 6.650

13 C 3-F 0.51× 10−6 6.292

14 C 4-F 1.23× 10−6 5.910

15 C 2-Cl 0.343× 10−6 6.465

16 C 3-Cl 2.12× 10−6 5.674

17∗ C 4-Cl 0.980 ×10−6 6.009

18 C 2-OCF2H 3.28 ×10−6 5.484

19 C 3-OCF2H 5.78 ×10−6 5.238

20 C 4-OCF2H 2.82 ×10−6 5.550

21 C 2,3-Difluoro 0.898 ×10−6 6.047

22 C 3,4-Difluoro 4.48 ×10−6 5.349

23∗ C 2,5-Difluoro 0.329 ×10−6 6.483

24 C 2,6-Difluoro 0.215 ×10−6 6.668

25 C 3,5-Difluoro 1.35 ×10−6 5.870

26 C 2,6-Dichloro 1.67 ×10−6 5.777

27 C 2-Cl,6-F 0.248 ×10−6 6.606

28 D Cyclopentyl 1.05 ×10−6 5.979

29 D Cyclohexyl 3.51 ×10−6 5.455

30 D Cycloheptyl 3.79 ×10−6 5.421

31∗ D Phenyl 1.68 ×10−6 5.775

32 E trans-NH2 0.221 ×10−6 6.656

33 E cis-NH2 0.775 ×10−6 6.111

34∗ E trans-NHMe 0.105 ×10−6 6.979

35 E trans-Pyrrolodinyl 1.82 ×10−6 5.740

36∗ E trans-Piperidinyl 3.40 ×10−6 5.469

37 E trans-NHPh 1.30 ×10−6 5.886

38 E trans-NHBn 1.39 ×10−6 5.857

39 F trans-NH2 0.119 ×10−6 6.924

40 F cis-NH2 0.228 ×10−6 6.642

41 F trans-N(Et)2 0.115 ×10−6 6.939

42 F trans-Azetidinyl 0.081 ×10−6 7.092

43 F trans-Pyrrolidinyl 0.103 ×10−6 6.987

44∗ F trans-Morpholino 0.091 ×10−6 7.041

45∗ G trans-Pyrrolidinyl 0.116 ×10−6 6.936

46 G cis-Pyrrolidinyl 0.089 ×10−6 7.051

47 G cis-NH2 0.060 ×10−6 7.222

48 G cis-NMe2 0.166 ×10−6 6.780

49∗ G cis-Piperidinyl 0.237 ×10−6 6.625

50 G cis-Morpholino 0.148 ×10−6 6.830

51 G cis-NH-iPr 0.220 ×10−6 6.658

52 G cis-N(Me)-Piperizinyl 0.265 ×10−6 6.577
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Table 1: Continued.

No. Structure R IC50 (M) pIC50

53 H trans-NH2 0.526 ×10−6 6.279

54 H cis-NH2 0.554 ×10−6 6.256
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2.1. Computational details

The molecular modeling studies were carried out using
SYBYL 7.3. The initial structures were minimized at Tri-
pos force field [21] with MMFF94 charge by using conju-
gate gradient method, and convergence criterion was 0.005
kcal/mol.The comparative molecular field analysis (CoMFA)
and comparative molecular similarity indices analysis (CoM-
SIA) studies require aligned structures [16]. The ligand-
based (LB) and receptor-guided (RG) alignment techniques
were used in two geometrical schemes respectively.

2.2. CoMFA and CoMSIA

Lennard-Jones and Coulomb potentials-based CoMFA anal-
ysis has been performed and the steric as well as electrostatic
energies were calculated by using sp3 carbon probe atom with
Van der Waal radius of 1.52 Å and +1 charge. The energies
were truncated to ±30 kcal/mol and the electrostatic contri-
butions were ignored at lattice interactions with maximum
steric interactions. The CoMFA were generated by standard
method in SYBYL. The CoMSIA models were also derived
with the same lattice box used as in CoMFA calculations.
All five CoMSIA similarity indices (steric, electrostatic, hy-
drophobic, H-bond donor, and H-bond acceptor) were eval-
uated using the probe atom. The CoMSIA models from hy-
drophobic and H-bonds were calculated between the grid
point and each atom of the molecule by a Gaussian function
[14]. An attenuation factor’s default value of 0.30 was used,
which is the standard distance dependence of molecular sim-
ilarity.

2.3. PLS analysis and validation of QSAR models

In order to derive 3D-QSAR models, the CoMFA and CoM-
SIA descriptors were used as independent variables and
the pIC50 values as the dependent variable. Partial least-

square (PLS) method [22] was used to linearly correlate these
CoMFA and CoMSIA descriptors to the inhibitory activity
values. The CoMFA cutoff values were set to 30 kcal/mol
for both steric and electrostatic fields, and also all fields
were scaled by the default options in SYBYL. The cross-
validation analysis was performed using the leave one out
(LOO) method in which one compound is removed from the
dataset and its activity is predicted using the model derived
from the rest of the dataset. The cross-validated correlation
coefficient (q 2) that resulted in optimum number of compo-
nents and lowest standard error of prediction were calculated
using the following formulae,

q2 = 1−
∑

y

(
ypred − yobserved

)2

∑
y

(
yobserved − ymean

)2 ,

PRESS =
∑

y

(
ypredicted − yobserved

)2
,

(1)

where γpred, γactual, and γmean are predicted, actual, and mean
values of the target property (pIC50), respectively. The non-
cross-validated PLS analyses were performed with column
filtering value of 2.0, to reduce analysis time with small effect
on the q 2 values. To further assess the robustness and statisti-
cal confidence of the derived models, bootstrapping analysis
for 100 runs were performed.

The predictive power of 3D-QSAR models, derived by
using the training set were examined by an external test set
of eleven molecules. The predictive ability of the models is
expressed by the predictive r 2 value, which is analogous to
cross-validated r 2 (q 2) and is calculated using the following
formula:

r2
pred =

SD− PRESS
SD

, (2)

where SD is the sum of the squared deviations between the
biological activities of the test set and mean activities of the
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training molecules and PRESS is the sum of squared devi-
ation between predicted and actual activities of the test set
molecules.

3. RESULTS AND DISCUSSION

3.1. Ligand-based alignment

In this scheme, the most active molecule was used as a tem-
plate. Systematic search routine was used in the conforma-
tional analysis and all rotatable bonds were searched in 10◦

increments from 0◦ to 350◦. Conformational energies were
computed with electrostatic term, and the lowest energy con-
former was selected. The template was modified for other
ligands of the series. All ligands were minimized by Tripos
force field but the common moiety was constrained during
minimization. The molecules were aligned by superimpos-
ing common substructures using SYBYL database alignment
option. These aligned structures were subsequently used for
ligand-based CoMFA/CoMSIA probe interaction energy cal-
culations.

3.2. Receptor-guided alignment

This geometrical scheme is based on docked geometry. The
best docked mode of the smallest compound was taken
as template and modified for the other compounds. The
compounds were minimized by Tripos force field (Pow-
ell method, 2000 iterations, and 0.05 kcal·mol−1·Å−1 en-
ergy gradient convergence criteria). All minimized struc-
tures at this binding mode were superimposed to get the
molecular alignment for CoMFA and CoMSIA. The super-
imposed structures inside the receptor site were further used
for CoMFA and CoMSIA analysis.

3.3. Molecular docking

The structure coordinates of IGF-1R were obtained from
protein databank (1JQH) [20]. Recently, Mulvihill et al. [15]
presented a possible binding mode of compound-2 by using
FlexX-based docking. Here we have also performed molec-
ular docking of same compound. The PDB file obtained
from protein data bank was used as receptor site. All wa-
ter molecules were removed and the protein was modified
to dock inhibitor. The active site was defined with a distance
of 6.5 Å of ATP binding site. The ligand-2 was docked into
the monomer unit (A) of IGF-1R and out of 100 conformers
the best mode was selected as template. This binding mode
seems prominent as the hydrophobic zone of inhibitor corre-
sponds to hydrophobic pocket of IGFR. The residue E-1080,
M-1082, K-1033, D-1086, G-1006, and L-1005 makes hinge
contact and might have significant role in the inhibition of
IGF-1R. It is also clear from all the figures that the depicted
mode holds 3 H-bonds in this region. The –OH group of
benzene ring makes H-bond with –NH of K-1033, nitrogen
of pyrimidine ring makes contact with –NH of M-1082 and
both act as H-bond acceptor. The NH2 group of pyrimidine
ring acts as H-bond donor and makes contact with oxygen of
E1080.

3.4. CoMFA and CoMSIA results

The CoMFA and CoMSIA studies were carried out by using
both geometrical schemes with different descriptors fields
independently and in combination. The ligand-based align-
ment gave better results for CoMFA model using both field
descriptors with cross-validated r2(q2) = 0.52 and non-
cross-validated r2 = 0.88, while for CoMSIA model, combi-
nation of steric, electrostatic, and H-bond acceptor yielded
the best statistical values with q2 = 0.42 and r2 = 0.80.
The internal predictivity of these CoMFA and CoMSIA mod-
els was also good with boot-strapped correlation coefficient
r2

bs = 0.91 and 0.85, respectively. These models were also val-
idated on a test set of 11 molecules with predictive r2 = 0.67
for CoMFA model and 0.57 for CoMSIA model. In compar-
ison to LB, receptor-guided alignment yielded more signif-
icant models with better understanding of these inhibitors
and receptor interactions. Best CoMFA models were ob-
tained by combination of steric and electrostatic field de-
scriptors with q2 = 0.53 and r2 = 0.95. Whereas steric,
electrostatic, and H-bond acceptor filed descriptors gave the
best CoMSIA model with q2 = 0.51 and r2 = 0.86. To
further asses the robustness and statistical confidence, the
boot strapping analysis were performed for 100 runs. The
r2

bs for CoMFA = 0.97 and CoMSIA = 0.90 models suggest
that a good internal consistency exists within the underly-
ing dataset. The high r2 predictive values for CoMFA and
CoMSIA (0.67 and 0.64, resp.) also prove models validity. In
our efforts to obtain the more pronounced model, region fo-
cusing was performed. It only yielded high q2 value which is
not sufficient condition for the model to have high predictive
power [23]. The regression summary of different 3D-QSAR
models obtained at default parameters and after region fo-
cusing are presented in Tables 2 and 3, respectively. The pre-
dicted pIC50 values for training and test set from CoMFA and
CoMSIA models are given in Tables 4 and 5, respectively.

In 3D-QSAR, the determination of the bioactive con-
former and molecular alignment of the compounds is an im-
portant step. In ligand-based techniques, the minimum en-
ergy conformers are often used as bioactive conformer. In
contrast, the binding poses obtained from cocrystal struc-
ture are used in receptor-guided techniques. Here, both tech-
niques were used. The statistical results indicate that confor-
mation obtained from molecular docking is more reliable.
In Figure 1, the yellow conformer displays systematic search-
based minimum energy conformer while the red structure
shows docked conformer. The findings are reasonable as the
oxygen attached with benzyl group of docked conformer is
more closed to amino acid (Asp1086) that facilitates an H-
bonding between –NH of Asp-1086 and this oxygen atom
of the inhibitor; but in case of minimum energy conformer
(yellow), the benzyl moiety is quite far and disfavors such in-
teractions.

3.5. The CoMFA contour maps

Figures 2 and 3 show the electrostatic and steric contour
maps of the best models based on receptor-guided alignment
scheme. The electrostatic interactions are represented by
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Table 2: Statistical summary of different PLS analysis. (GS: geometrical scheme; SE: standard error of estimate; n.: number of components;
F: Fischer’s F value for test of significance; r2

bs: coefficient of determination after 100 bootstrapping runs; SD: standard deviation; Field
contribution: (S) steric field, (E) electrostatic field, (H) hydrophobic field, (D) H-bond donor field, and (A) H-bond acceptor field.).

Analysis GS Field q2 n. r2 F SE r2
bs SD r2

pred

CoMFA LB S 0.52 4 0.84 50.12 0.23 — — —

CoMFA LB E 0.38 3 0.73 34.7 0.30 — — —

CoMFA LB 0.49S/0.51E 0.52 4 0.88 70 0.20 0.91 0.1 0.67

CoMFA RG S 0.38 4 0.72 24.5 0.31 — — —

CoMFA RG E 0.42 7 0.86 33.12 0.22 — — —

CoMFA RG 0.45/0.55 0.53 6 0.95 113.6 0.13 0.97 0.00 0.67

CoMSIA LB S 0.27 3 — — — — — —

CoMSIA LB E 0.36 1 — — — — — —

CoMSIA LB H 0.32 4 — — — — — —

CoMSIA LB D 0.00 1 — — — — — —

CoMSIA LB A 0.33 2 — — — — — —

CoMSIA LB E/S 0.37 2 — — — — — —

CoMSIA LB 0.60E/0.40A 0.41 2 — — — — — —

CoMSIA LB 0.73E/0.27D 0.41 3 — — — — — —

CoMSIA LB 0.51E/.49H 0.39 2 — — — — — —

CoMSIA LB 0.41E/0.27S/0.31A 0.42 4 0.80 39.2 0.26 0.85 0.04 0.57

CoMSIA LB E/A/D 0.41 2 — — — — — —

CoMSIA RG S 0.37 1 — — — — — —

CoMSIA RG E 0.46 4 — — — — — —

CoMSIA RG H 0.35 3 — — — — — —

CoMSIA RG D 0.15 5 — — — — — —

CoMSIA RG A 0.39 3 — — — — — —

CoMSIA RG 0.71E/0.29S 0.46 5 — — — — — —

CoMSIA RG 0.66E/0.34A 0.52 5 0.85 41.2 0.23 0.89 0.04 0.57

CoMSIA RG E/D 0.48 6 — — — — — —

CoMSIA RG 0.57E/0.43H 0.48 5 — — — — — —

CoMSIA RG 0.54E/0.21S/0.25A 0.51 5 0.86 45.4 0.22 0.9 0.03 0.64

CoMSIA RG E/A/D 0.47 6 — — — — — —

Table 3: Statistics of different PLS analysis after region focusing. (GS: geometrical scheme; SE: standard error of estimate; n.: number
of components; F: Fischer’s F value for test of significance; r2

bs: coefficient of determination after 100 bootstrapping runs; SD: standard
deviation; Field contribution: (S) steric field, (E) electrostatic field, (H) hydrophobic field, (D) H-bond donor field, and (A) H-bond acceptor
field.).

Analysis GS Field Grid spacing q2 n. r2 F SE r2
bs SD r2

pred

CoMFA LB S 0.5 Å 0.59 5 0.84 40.41 0.234 0.89 0.11 0.65

CoMFA LB E 0.5 Å 0.13 2 — — — — — —

CoMFA LB 0.57S/0.43E 0.5 Å 0.56 4 0.84 49.62 0.235 076 0.13 0.68

CoMFA LB S 1.5 Å 0.25 1 0.36 23.40 0.450 — — —

CoMFA LB E 1.5 Å −0.03 1 — — — — — —

CoMFA LB 0.35S/0.65E 1.5 Å 0.38 2 0.51 21.20 0.40 — — —

CoMFA RG S 0.5 Å 0.41 4 0.71 23.47 0.315 — — —

CoMFA RG E 0.5 Å 0.42 7 0.87 33.11 0.220 — — —

CoMFA RG 0.47S/0.53E 0.5 Å 0.55 6 0.94 97.78 0.145 0.96 0.02 0.67

CoMFA RG S 1.5 Å 0.44 4 0.65 17.93 0.345 — — —

CoMFA RG E 1.5 Å 0.11 4 0.26 3.32 0.505 — — —

CoMFA RG 0.45S/0.50E 1.5 Å 0.29 3 0.60 18.99 0.370 — — —
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Table 4: Experimental and predicted activities with their residuals by CoMFA and CoMSIA analyses of the training set.

n.

CoMFA CoMSIA

Experimental Predicted Predicted

pIC50 pIC50 Residual pIC50 Residual

1 5.706 5.553 0.153 5.646 0.060

2 6.286 6.296 −0.010 6.172 0.114

3 5.870 5.948 −0.078 5.781 0.089

4 5.480 5.888 −0.408 5.814 −0.334

6 5.979 5.365 0.614 5.421 0.558

9 5.202 5.275 −0.073 5.074 0.128

10 5.963 6.200 −0.237 6.199 −0.236

11 6.218 6.191 0.027 6.135 0.083

12 6.650 6.276 0.374 6.330 0.320

13 6.292 6.065 0.227 5.849 0.443

14 5.910 5.870 0.040 5.842 0.068

15 6.465 6.487 −0.022 6.363 0.102

16 5.674 5.927 −0.253 5.787 −0.113

18 5.484 5.473 0.011 5.589 −0.105

19 5.238 5.102 0.136 5.579 −0.341

20 5.550 5.615 −0.065 5.625 −0.075

21 6.047 6.015 0.032 6.226 −0.179

22 5.349 5.544 −0.195 5.754 −0.405

24 6.668 6.571 0.097 6.474 0.194

25 5.870 6.034 −0.164 5.832 0.038

26 5.777 5.929 −0.152 6.416 −0.639

27 6.606 6.586 0.02 6.498 0.108

28 5.979 5.981 −0.002 5.676 0.303

29 5.455 5.471 −0.016 5.562 −0.107

30 5.421 5.473 −0.052 5.604 −0.183

32 6.656 6.366 0.290 6.297 0.359

33 6.111 6.366 −0.255 6.297 −0.186

35 5.740 5.706 0.034 6.068 −0.328

37 5.886 5.934 −0.048 5.864 0.022

38 5.857 5.828 0.029 5.763 0.094

39 6.924 6.826 0.098 6.785 0.139

40 6.642 6.826 −0.184 6.785 −0.143

41 6.939 7.009 −0.070 6.951 −0.012

42 7.092 7.032 0.060 6.916 0.176

43 6.987 7.012 −0.025 7.008 −0.021

46 7.051 6.950 0.101 7.130 −0.079

47 7.222 7.325 −0.103 7.126 0.096

48 6.780 6.763 0.017 6.881 −0.101

50 6.830 6.776 0.054 6.842 −0.012

51 6.658 6.648 0.010 6.806 −0.148

52 6.577 6.547 0.030 6.429 0.148

53 6.279 6.328 −0.049 6.298 −0.019

54 6.256 6.328 −0.072 6.298 −0.042
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Table 5: Experimental and predicted activities with their residuals by CoMFA and CoMSIA analyses of the test set.

n.
CoMFA CoMSIA

Experimental Predicted Predicted

pIC50 pIC50 Residual pIC50 Residual

5 5.456 5.404 0.052 5.536 −0.080

7 5.644 5.779 −0.135 5.811 −0.167

8 5.955 6.015 −0.060 5.787 0.168

17 6.009 5.966 0.043 5.819 0.190

23 6.483 6.274 0.209 6.304 0.179

31 5.775 5.703 0.072 5.728 0.047

34 6.979 6.269 0.710 6.205 0.774

36 5.469 5.696 −0.227 5.924 −0.455

44 7.041 7.080 −0.039 7.227 −0.186

45 6.936 6.950 −0.014 7.130 −0.194

49 6.625 6.902 −0.277 6.834 −0.209

Figure 1: Comparison of minimum energy (yellow) and docking
based (red) conformers.

Figure 2: CoMFA electrostatic maps with the most (red) and least
(orange) active compound within the active site.

Figure 3: CoMFA steric maps with the most (red) and least (or-
ange) active compound within the active site.

red- and blue-colored contours while steric interactions are
represented by green and yellow colored contours. In electro-
static field, blue color contour represents region where elec-
tropositive group enhances the activity, whereas red-color re-
gion likes electron-rich groups to increase the biological ac-
tivity. In case of steric interactions, the green region demands
bulky substituents to enhance the activity, while in yellow
contours, bulky substituents decrease the activity.

The most potent compound-47 (red color) and least-
active compound-9 (orange color) of the series with CoMFA
contour maps have been superimposed in the active site
of the receptor protein. Figure 2 shows that red polyhe-
drons locate the region where electron-rich group will en-
hance the inhibitory activity, and vice versa for blue poly-
hedron. Therefore, the phenyl ring in compound-47 might
be responsible for its higher activity than methoxy group of
compound-9 because it might have the π-π interactions with
the phenyl ring of phenyl alanine (Phe1010) amino acid. The
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red contour around 1–3 carbon of cyclobutane also demands
the electron-rich group for higher potency. Compound-47
has amino group at C-3 position which might be responsi-
ble for its higher activity than least-active compound-9. It
is also clear in most of compounds from the dataset that
electron-rich group at this position have higher activity than
compound-9. In Figure 3, green polyhedron locates the re-
gion where bulky substitutent would increase the inhibitory
activity and yellow polyhedron where the steric bulk is not
required for high potency of the compounds. The small green
contour near the phenyl ring of compound-47 explains its
higher activity than compound-9. Similarly, the green con-
tour around 2 and 3 carbon of cyclobutane requires the bulky
substitutent to be highly active. Thus the bulky substitutent
at this position in dataset favors the higher inhibitory activ-
ity of the compounds than compound-9. Yellow polyhedron
below the plane of phenyl ring and cyclopropane requires the
small group to be more active.

3.6. CoMSIA contour maps

The CoMSIA contour maps were also developed on the mod-
els based on the geometrical scheme 2. Figures 4, 5, and 6
show the steric electrostatic and H-bond acceptor contour
maps superimposed in the active site of the IGF-1R. In CoM-
SIA method, steric and electrostatic contours maps have the
same meaning as that of CoMFA contour maps whereas H-
bond acceptor contours are represented by magenta and red
colors. Magenta favors H-bond acceptor group while red dis-
favors. The steric and electrostatic maps are more or less sim-
ilar to the corresponding CoMFA models (Figures 2 and 3,
resp.) except that there is a small green contour near phenyl
ring of compound-47 in CoMFA model. In Figure 6, the ma-
genta contour around C-2 and C-3 position of cyclobutane
favors the H-bond accepting group to enhance the inhibitory
activity of the molecules. Thus the H-bond accepting sub-
stituent at C-4 position might enhance inhibitory activity of
the compounds through H-bonding with Glycine (Gly1008)
or Valine (Val1013).

4. CONCLUSION

A comparative CoMFA and CoMSIA models were devel-
oped for the series of potent IGF-1R inhibitors. Ligand-based
and receptor-guided protocols were applied to develop the
models. Receptor-guided alignment gave models with better
statistics than the ones from the ligand-based approach, pre-
sumably because the alignment using receptor information
is more realistic. Moreover, the interpretation of receptor-
guided models are directly associated with the receptor in-
formation. That is, in general, the superposition of a CoMFA
or CoMSIA contour map inside the receptor shows reason-
able correspondence between the contour map property and
the physical property of surrounding active site region. This
provides more detailed understanding about the interaction
between the series of inhibitors and IGF-1R. The informa-
tion drawn here can be used to design new inhibitors of
IGF-1R.

Figure 4: CoMSIA electrostatic maps with the most (red) and least
(orange) active compound within the active site.

Figure 5: CoMSIA steric maps with the most (red) and least (or-
ange) active compound within the active site.

Figure 6: CoMSIA H-bond acceptor map with the most (red) and
least (orange) active compound within the active site.
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