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For a reliable prediction of an epidemic or information spreading pattern in complex systems, well-defined
measures are essential. In the susceptible-infected model on heterogeneous networks, the cluster of infected
nodes in the intermediate-time regime exhibits too large fluctuation in size to use its mean size as a representative
value. The cluster size follows quite a broad distribution, which is shown to be derived from the variation of the
cluster size with the time when a hub node was first infected. On the contrary, the distribution of the time taken
to infect a given number of nodes is well concentrated at its mean, suggesting the mean infection time is a
better measure. We show that the mean infection time can be evaluated by using the scaling behaviors of the
boundary area of the infected cluster and use it to find a nonexponential but algebraic spreading phase in the
intermediate stage on strongly heterogeneous networks. Such slow spreading originates in only small-degree
nodes left susceptible, while most hub nodes are already infected in the early exponential-spreading stage. Our
results offer a way to detour around large statistical fluctuations and quantify reliably the temporal pattern of
spread under structural heterogeneity.
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I. INTRODUCTION

Heterogeneity of the connectivity of elements in complex
systems [1] leads to peculiar dynamic behaviors, including
large connected components formed with a small number of
links [2], the onset of a global epidemic [3] or synchronization
[4] at all positive interaction strengths, and a novel singularity
of the free energy in the Ising and the Potts models [5–7].
Different dynamic influences of nodes essentially determined
by their degrees (numbers of connected nodes) have been
shown to underlie such anomalous emergent behaviors by
extensive studies on the structure and dynamics of complex
networks [8–10].

This advancement in our understanding is, however, re-
stricted to the equilibrium or stationary state. In reality, taking
quick action before reaching the stationary state is necessary
to control, e.g., the spread of a life-threatening virus or the
word about marketed products. Despite such importance, the-
oretical understanding of the nonstationary state is far from
complete. This is partly because of the time variation of
relevant variables and having neither small nor large order
parameters in the intermediate-time regime, defying analytic
approaches based on approximations which are valid in the
early- or late-time regime. Moreover, the speed of epidemic
spreading shows a large statistical fluctuation, presumably
due to the heterogeneity of the infection seed’s degree and
the stochasticity of infection trajectories [11,12]. As we will
address here, the epidemic size at a given time suffers from
such a large fluctuation that it is disqualified from being
a reliable measure, particularly in the intermediate stage of
spreading. Therefore, a new reliable measure and its theory
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are required to predict and control efficiently disease and
information spreading in real-world complex systems.

Here we pay attention to epidemic spreading processes, for
which various approaches have been proposed, such as pair
approximation [13], the branching process approach [14], the
moment closure method [15], and message passing [16]. We
study the simplest model, the susceptible-infected (SI) model,
to investigate thoroughly the statistical fluctuations appearing
in the temporal pattern of spreading and provide the theory
for an alternative reliable measure. To quantify fluctuation,
the distribution of the number of infected nodes I at a given
time t is measured, which turns out to be so broad that the
mean 〈I〉t loses its representativeness in the intermediate-time
regime on heterogeneous networks. We show analytically that
the asymptotic behavior of the distribution is derived from
the dependence of the epidemic size I on the time when a
hub, defined here as a node with a degree larger than 30%
of the maximum degree, is first infected. In contrast, the
distribution of the time t taken to infect a given number
I of nodes is well concentrated at its mean. This suggests
that the mean infection time 〈t〉I can be a measure for the
reliable description of the spreading phenomena. We construct
a theory to evaluate the mean infection time, which leads us to
discover, for strongly heterogeneous networks, the algebraic
relation between 〈t〉I and I in the intermediate stage con-
trasted with the well-known exponential spreading in the early
stage. The origin of the algebraic-spreading phase is inves-
tigated, which helps us understand the temporal complexity
derived from the structural heterogeneity in various complex
systems.

In Sec. II, the SI model and the model networks are de-
scribed along with their numerical implementation. We com-
pare and analyze the fluctuations of the number of infected
nodes and the infection time in Sec. III. Our theory for the
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mean infection time is presented in Sec. IV. We summarize
and discuss the results in Sec. V.

II. MODEL

We consider the SI model on scale-free (SF) networks
of N nodes and L undirected links, displaying a power-law
degree distribution Pdegree(k) ∼ k−γ for large k, with γ being
the degree exponent. In simulations, we use the uncorrelated
configuration model [17] to construct the SF networks, in
which each node is assigned k link stubs with degree k
selected as described below such that its distribution takes a
prescribed power-law form, and then those stubs are randomly
paired until no single or pair of stubs is left. Finally, an
unpaired stub, multiple links, and self-loops are removed,
the numbers of which are negligible in all the considered
cases. For given N, L, and γ , the degree ki of node i is given
by the integer part of a real-valued random number r from
a distribution p(r) = p1r−γ for r0 < r <

√
N + 1, with p1

being a normalization constant and r0 determined such that the
resultant mean degree 〈k〉 = N−1 ∑

i ki is equal to 2L/N [18].
The degree cannot be larger than

√
N , a constraint imposed to

remove the degree-degree correlation of neighboring nodes,
and actually, the maximum degree kmax behaves as kmax �√

N for 2 < γ < 3 and kmax ∼ N
1

γ−1 [17].
In the SI model, the state xi of node i is either susceptible

(xi = 0) or infected (xi = 1). A susceptible node becomes
infected with rate λ by each of its infected neighbors, while
the transition from infected to susceptible is disallowed. We
run the simulation of the SI model by asynchronous updating
[19] as follows. (i) At the initial stage (t = 0), a randomly
selected node is infected. (ii) At each time t , we count the
number B of links having a susceptible node at one end and
an infected node at the other end. And we select randomly one
such link and infect the susceptible node with probability λ.
This is repeated B times to move to the next time step t + 1.
(iii) Repeat step (ii) until all the nodes are infected.

III. LARGE FLUCTUATION OF THE NUMBER
OF INFECTED NODES AND ITS ORIGIN

Simulation data for the number of infected nodes I =∑N
i=1 δxi,1 are scattered in the (t, I ) plane to an extent varying

with γ except for quite small or large t . See Fig. 1 for γ =
2.75. See also Fig. 8 in Appendix C for other γ .

To quantify such a fluctuation, we measure the number of
infected nodes at time t , which is found in the intermediate-
time regime to follow a power law

Pt (I ) ∼ I−η (1)

over a wide range of I with the exponent η � 1 [Fig. 2(a)].
The standard deviation is mostly not smaller than the mean
〈I〉t = ∑

I IPt (I ), scaling almost linearly in the time period
showing 1 � 〈I〉t � N , which we refer to as the intermediate-
time regime. With such a large fluctuation, 〈I〉t cannot be
a representative value of I . For instance, the probability to
observe I larger than 〈I〉t is only 0.15 at t = 104 [see Figs. 1
and 2(a)].

In striking contrast, the distribution PI (t ) of the time t
taken to infect I nodes is well concentrated at its mean,

100

101

102

103

104

105

106

100 101 102 103 104 105 106

I

t

〈I〉t
〈t〉I

fastest
slowest

10-4

10-3

10-2

10-1

100

FIG. 1. Fluctuation in the spreading of infection on SF networks.
The fraction of simulation runs of the SI model yielding I infected
nodes at time t is color-coded. The SI model with infection rate
λ = 10−4 is simulated 100 times in each of 200 SF networks of
N = 106 nodes, L = 2 × 106 links (the mean degree 〈k〉 = 4), and
degree exponent γ = 2.75. Shown are 〈I〉t , 〈t〉I , and the fastest and
slowest spreading, taking the shortest and longest time to infect
I0 = 100 nodes, respectively.

〈t〉I = ∫
dt t PI (t ) [Fig. 2(b)]. The standard deviation remains

far smaller than the mean unless I is too small, demonstrating
that 〈t〉I is a well-defined measure (see Appendix A). Note that
the line representing 〈t〉I is in the middle of the region showing
high probability in the (t, I ) plane (Fig. 1), supporting its
representativeness. Therefore, one should refer to how long
it will take to infect a given number of nodes, rather than
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FIG. 2. Statistics of the infection spreading in the SI model on
SF networks with γ = 2.75. (a) The probability distribution Pt (I ) of
I at time t for the network of N = 106. σI;t is its standard deviation.
The dashed line y = 0.003x−1 is shown as a guide. Inset: σI;t versus
the mean 〈I〉t for different N . The lines y = x (solid) and y = 30x4/5

(dashed) are shown. (b) The distribution PI (t ) of the time t taken to
infect I nodes. 〈t〉I and σt ;I are its mean and standard deviation. Inset:
σt ;I versus 〈t〉I . The line y = x (solid) is shown as a guide.
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FIG. 3. Role of infecting hubs in infection spreading on a SF
network with γ = 2.75. The cluster of the first 80 infected nodes
appears (a) at the observation time t = 550 (fastest spreading) or
(b) at t = 110870 (slowest spreading). Node size and color represent
the degree and the infection order of each node. (c) Plot of I versus
the difference between t and the hub-infection time thub. The mean
and the standard deviation are shown, along with a solid line fitting
Eq. (2) to the data.

how many will be infected at a given time, in describing and
predicting the pattern of spreading over heterogeneous contact
networks. The difference between the two mean values grows
with N in SF networks (see Appendix B).

Before addressing the theory for the mean infection time,
let us consider why Pt (I ) decays so slow in Eq. (1). Hubs are
abundant in SF networks, and their infection should play a
role in speeding up or slowing down spreading [11]. As seen
in Figs. 3(a) and 3(b), the cluster of the first 80 infected nodes
in the fastest spreading has many hub nodes infected very
early, while that from the slowest spreading has only small-
degree nodes infected early and hub nodes infected late. This
suggests that whether and when hubs are infected determine
the growth of the infected cluster. To check this, we measure
the hub-infection time thub, the earliest time when any hub is
infected. Using different criteria for hubs does not change the
results qualitatively. When I is plotted as a function of t − thub

[Fig. 3(c)], its statistical fluctuation is significantly reduced
in comparison to the large fluctuation for given t shown in
Fig. 1. Moreover, I grows abruptly for 0 � t − thub � �, with
� being a constant. For example, � � 5000 for γ = 2.75
and N = 106. This demonstrates that the global spreading can
occur when hubs are infected. The number of infected nodes
at time t satisfies the relation

〈ln I〉 � a0 + a1 (t − thub) (2)

for 0 � t − thub � �, with a0 and a1 being positive constants.
Given the small fluctuation of ln I with respect to its mean
in Eq. (2) for given t and thub and the observation that

the probability distribution P(thub) is almost constant P0 for
|thub − t | � � (see Appendix C), we obtain Pt (I ) from Eq. (2)
as

Pt (I ) ∼ P0

∣∣∣∣dthub

d I

∣∣∣∣ ∼ P0/a1

I
, (3)

which agrees with Eq. (1). This finding provides a guideline
for the epidemic-size distribution; Pt (I ) different from Eq. (1)
implies a relation other than Eq. (2). thub is expected to depend
on the network characteristics of the initially infected node
(seed) [11] and also on the specific realization of spreading
in the early stage. We find both the degree of the seed and its
shortest distance to a hub significantly correlated with thub (see
Fig. 9 in Appendix C). In practically controlling the epidemic
spreading, various factors can be influential, such as the k
core [20], and should be considered when designing efficient
intervention strategies [21] and identifying superspreaders
and superblockers [22,23].

IV. ANALYTIC APPROACH TO THE MEAN
INFECTION TIME

According to the conventional mean-field theory applied to
heterogeneous networks [10,24], the probability of a suscep-
tible node to be infected per unit time interval is proportional
to its degree and the probability of encountering an infected
neighbor. The latter probability is assumed to be a function
of time and is solved in a self-consistent way to reveal expo-
nential growth and saturation of the number of infected nodes
in the early- and late-time regimes, respectively [3,10,11,25].
However, in the intermediate-time regime, large fluctuations
prevent us from referring to time-dependent functions.

To construct a theory for the mean infection time, let us
first consider the time τ taken to newly infect a susceptible
node, the average of which will be identified with d〈t〉I

dI . As
infection spreads along the links connecting an infected node
and a susceptible node, the total number B of such links,
which is counted during the simulation of the SI model as in
Sec. II and we call boundary links, essentially determines τ .
The boundary links were also used to formulate the uniform
mean-field framework for time-dependent quantities in [26].
If a cluster of infected nodes has B boundary links, a newly
infected node will first appear at a time between τ and τ + dτ

with probability PB(τ )dτ = λ dτ Be−λτB. Given I infected
nodes, the fluctuation of B is insignificant unless I is too small
(see Fig. 10 in Appendix D), allowing us to use the mean 〈B〉I .
Therefore, we evaluate the mean time 〈τ 〉I taken to infect one
more node given I infected ones as

d〈t〉I

dI
= 〈τ 〉I �

∫ ∞

0
dτP〈B〉I

(τ ) τ

= 1

λ 〈B〉I
= 1

λ(〈V〉I − 〈C〉I )
, (4)

where we introduced

〈V〉I ≡
∑
i, j

Ai j〈δxi,1〉I =
∑

i

ki〈δxi,1〉I =
I−1∑
I ′=0

〈knew〉I ′ ,

〈C〉I ≡
∑
i, j

Ai j〈δxi,1δx j ,1〉I , (5)
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FIG. 4. The volume of the infected cluster and the mean infection
time 〈t〉I for N = 106. (a) The internal volume 〈C〉I versus I . The
approximation in Eq. (6) is shown as a guide. (b) The degree 〈knew〉I

of the newly infected node given I infected nodes. Its cumulative
sum gives the whole volume 〈V〉I as in Eq. (10). The lines represent
〈knn〉(I )/〈knn〉 computed using Eq. (8) with Pdegree(k) from the simu-
lations used. (c) Plots of I versus 〈t〉I from simulations (points) and
from the solutions (lines) to Eq. (4) with Eqs. (6) and (10) and the
initial condition I0 = 100 and t0 = 〈t〉I0 .

with A being the adjacency matrix, which is symmetric, and
〈knew〉I being the expected degree of the newly infected node
given I infected nodes or, equivalently, the (I + 1)th infected
node. V and C are the link-based volumes of the whole and
the internal part of the infected cluster; V (C) is the sum of the
number of all (infected) neighbors of all infected nodes. In this
sense, B = ∑

i, j Ai jδxi,1δx j ,0 = V − C can be considered the
boundary area of the cluster. A similar link-based approach
was taken in establishing nonlinear differential equations for
time-dependent variables [12,27].

To complete and solve Eq. (4), the I dependence of 〈V〉I
and 〈C〉I should be known. When a node 	 is newly infected,
C is increased by twice the number of its previously infected
neighbors, 2

∑
j A	 jδx j ,1. When I is not so large, the node

	 is very likely to have just one infected neighbor, without
forming a loop in the infected cluster as supported by its tree
structure, as seen in Figs. 3(a) and 3(b) [28]. C is increased by
2 whenever a newly infected node appears, resulting in

〈C〉I � 2I. (6)

It is valid for a wide range of I [Fig. 4(a)], except for the large-
I region where a newly infected node can have more than one
infected neighbor, forming loops in the infected cluster.

Next, we consider the degree of the (I + 1)th infected
node. Before its infection, the node was susceptible and
connected to one of the I previously infected nodes. Let
us assume that every link from the susceptible nodes is
equally likely to be heading to one of the infected nodes.
Then the probability rI (k) that a susceptible neighbor of
the I infected nodes has degree k can be approximated as
rI (k) � kn(k|I )/

∑
k′ k′n(k′|I ) � kn(k|I )/(2L), where n(k|I )

is the expected number of susceptible nodes with degree k

given I infected nodes. We also assumed 〈V〉I � 2L in the
relation

∑
k′ k′n(k′|I ) = 2L − 〈V〉I � 2L, which is valid in the

intermediate stage. The decrease in the number of susceptible
nodes of degree k, n(k|I ) − n(k|I + 1), is equal to rI (k),
giving

n(k|I + 1) �
(

1 − k

2L

)
n(k|I ). (7)

Here 1 − k/(2L) is the probability that any link of a sus-
ceptible node of degree k is not used to transmit infection
when a newly infected node appears. From Eq. (7), one
obtains n(k|I ) � n(k|I = 0)e− kI

2L . The expected degree of the
(I + 1)th infected node 〈knew〉I = ∑

k krI (k) is evaluated as

〈knew〉I � 〈knn〉(I ) ≡
∑kmax

k=1 k2Pdegree(k)e− k I
2L∑kmax

k=1 kPdegree(k)e− k I
2L

, (8)

where we defined 〈knn〉(I ), which is reduced to the
mean degree of a node’s neighboring node 〈knn〉 =∑

k k2Pdegree(k)/
∑

k kPdegree(k) for I = 0. Notice that 〈knn〉(I )
is computed by using the degree distribution of the underlying
network.

Simulations support the agreement between 〈knew〉I and
〈knn〉(I ) [Fig. 4(b)]. 〈knew〉I is constant for small I but de-
creases with I for large I , particularly in SF networks with
small γ . A similar decrease in the degree of newly infected
nodes with time was noted in [11]. However, its functional be-
havior remains unknown, which should be understood for the
theory of the mean infection time. The exponential term e− kI

2L

in Eq. (8) is the key. When I is so small that kmax I/(2L) � 1
or I � Ic, with

Ic ≡ 2L

kmax
, (9)

the exponential term is close to 1 for all k � kmax, and
thus, 〈knew〉(I ) � 〈knn〉(I = 0) = 〈knn〉. If I � Ic, e− kI

2L will be
quite small for k � k̃(I ) ≡ 2L/I , meaning that susceptible
nodes with a degree larger than k̃(I ) are rarely seen, as
they are already infected, causing 〈knn〉(I ) to decrease with
I . In the configuration-model SF networks [17], kmax ∼ N

1
2

for 2 < γ < 3, and kmax ∼ N
1

(γ−1) for γ > 3. Therefore, the
intermediate stage of infection is divided into two regimes:
1 � I � Ic and Ic � I � N . The decay of 〈knn〉(I ) with I
for I � Ic is significant in SF networks with 2 < γ < 3, for
which 〈knn〉(I ) diverges with min{kmax, k̃(I )}. As N → ∞,
〈knn〉(I ) � 〈knn〉 ∼ k3−γ

max for I � Ic, and 〈knn〉(I ) ∼ k̃(I )3−γ ∼
I−(3−γ ) for I � Ic (see Appendix E).

Solving Eq. (4) by using the approximation for 〈V〉I ,

〈V〉I �
I−1∑
I ′=0

〈knn〉(I ′), (10)

which behaves as 〈knn〉I for I � Ic and I γ−2 for I � Ic, and
using Eq. (6) for 〈C〉I , one obtains 〈t〉I from Pdegree(k) of the
substrate networks. In Fig. 4(c), the simulation data agree with
this solution in the intermediate stage.

The analytic solution to 〈t〉I reveals a crossover around
Ic from the exponential- to algebraic-spreading phase in SF
networks of 2 < γ < 3. For 1 � I � Ic, 〈knn〉(I ) is fixed at
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〈knn〉, yielding the exponential spreading

I � I0 e(〈knn〉−2)λ (〈t〉I −t0 ), (11)

where I0 is a constant larger than 1 but much smaller than Ic

and t0 = 〈t〉I0 . In SF networks with γ > 3, 〈knew〉I decreases
very weakly with I for Ic � I � N , and therefore, Eq. (11)
is valid approximately for 1 � I � N . On the contrary, in SF
networks with 2 < γ < 3, the sublinear growth of 〈V〉I for
I � Ic leads to

I � N a (λ〈t〉I )1/(3−γ ), (12)

with the coefficient a ≡ 〈k〉[(〈knn〉/k3−γ
max )(3 − γ )
(4 −

γ )/(γ − 2)]1/(3−γ ) (see Appendix E). This means that
infection spreads with time algebraically, slower than an
exponential spreading. The polynomial t dependence of 〈I〉t

has been studied using the branching process approach [14].
It reflects the inequivalent chances of infection for nodes of
different degrees; most hub nodes are infected for I � Ic, and
only the small-degree nodes are left susceptible for I � Ic.
Knowing such crossover in the spreading speed can be helpful
for designing and executing in a timely fashion an efficient
strategy to intervene in the spreading process.

V. CONCLUSION

To conclude, we have shown that the infection time is
well defined as a function of the number of infected nodes,
enabling the reliable description and prediction of the tempo-
ral pattern of spreading in heterogeneous networks. The link-
based volume and boundary area of the infected cluster were
investigated as a function of its size, which allowed us to see
how the node degree affects the order of infection and under-
stand the temporal complexity characterized by the algebraic
spreading in the nonstationary state. In more complex spread-
ing dynamics such as the susceptible-infected-susceptible and
susceptible-infected-recovered models, the infected cluster
may shrink in the bulk due to recovery as well as grow at
the boundary, which could deepen our understanding of the
spreading phenomena. The perspective and method presented
in this work can be used in practical applications as well as
in the study of various model dynamics on heterogeneous
networks.
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APPENDIX A: FLUCTUATIONS OF THE NUMBER
OF INFECTED NODES AND THE INFECTION TIME

For a random variable, its standard deviation should be
smaller than the mean if the mean is to be used as a represen-
tative value. We present the relative fluctuation, the ratio of
the standard deviation to the mean, of the number of infected
nodes at each given time and of the time taken to infect a given
number of nodes in Figs. 5(a) and 5(b). In SF networks with
γ = 2.75 and N = 106, the mean number of infected nodes
at a given time 〈I〉t is a good measure only in the early-time
regime, t � 500, or in the late-time regime, t � 20 000. In
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FIG. 5. Relative fluctuations of the number of infected nodes and
the infection time in the SI model on SF networks with γ = 2.75 and
different numbers of nodes N . (a) The ratio of the standard deviation
σI;t to the mean 〈I〉t of the number of infected nodes at time t . (b) The
ratio of the standard deviation σt ;I to the mean 〈t〉I of the time to
infect I nodes in the same networks as in (a). (c) The region where
σt ;I < 〈t〉I and σI;t > 〈I〉t is shaded in the (t, I ) plane.

the intermediate-time regime, 500 � t � 20 000, the standard
deviation σI;t is not smaller than the mean 〈I〉t . On the other
hand, the mean infection time 〈t〉I is well defined as long as
I � 3. One can see a broad region in the (t, I ) plane where
only the mean infection time 〈t〉I is well defined in Fig. 5(c).

APPENDIX B: DIFFERENCE BETWEEN 〈I〉t AND 〈t〉I

The difference between the mean number of infected nodes
and the mean infection time plotted in the (t, I ) plane in Fig. 1
appears particularly large in the intermediate-time regime. To
see whether this difference remains significant in the limit
N → ∞, we plot the ratio of 〈I〉t to the value of I at which
〈t〉I = t versus t for SF networks and Erdős-Rényi (ER) net-
works in Figs. 6(a)–6(c). We find that the ratio is significantly
larger than 1 in the range 0.1 � t/tc � 2, where tc = 〈t〉Ic is
the mean time to infect Ic nodes with Ic in Eq. (9). In Fig. 6(d),
the largest value of the ratio is shown to increase quickly with
N in SF networks with γ = 2.75, contrary to a relatively weak
or no increase in weakly heterogeneous networks. Therefore,
the difference in the two approaches relying on 〈I〉t and 〈t〉I

cannot be neglected for strongly heterogeneous networks.
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FIG. 6. Ratio of the mean number of infected nodes 〈I〉t at time
t to the value of I at which 〈t〉I = t , denoted by I〈t〉I =t . Time t in
the horizontal axis is scaled by tc ≡ 〈t〉Ic with Ic in Eq. (9). (a) The
ratio 〈I〉t/I〈t〉I =t in the SF networks with γ = 2.75 and different
numbers of nodes N . (b) The ratio in the SF networks with γ = 3.6.
(c) The ratio in the ER networks. (d) The maximum of the ratio
maxt (〈I〉t/I〈t〉I =t ) versus system size N .

APPENDIX C: DERIVATION OF EQUATION (3)

We can decompose Pt (I ) as

Pt (I ) =
∫

d thubP(thub) Pt,thub (I ), (C1)

where P(thub) is the probability distribution of the time thub

taken to infect a node with a degree larger than 0.3kmax

and Pt,thub (I ) is the conditional distribution of the number
of infected nodes at time t for a given thub. Our simulation
shows that P(thub) can be fitted to a log-normal distribution as
[Fig. 7(a)]

P(thub) � 1

thub

1√
2πσ 2

ln thub

e
− (ln thub−〈ln thub〉)2

2σ2
ln thub , (C2)

with 〈ln thub〉 and σln thub being the mean and the standard
deviation of ln thub.

The conditional distribution Pt,thub (I ) also takes a log-
normal form,

Pt,thub (I ) � 1

I

1√
2πσ 2

ln I;t,thub

e
− (ln I−〈ln I〉t,thub )2

2σ2
ln I;t,thub

� 1

I

1√
2πσ 2

ln I;t,thub

e− [thub−t̃hub(t,I )]2

2�̃2 , (C3)

where

t̃hub(t, I ) = t − ln I − a0

a1
, �̃ = σln I;t,thub

a1
(C4)

are used, from approximating 〈ln I〉t,thub with Eq. (2), and
σln It,thub

is shown in the inset of Fig. 7(b). Our simulation
results, particularly those in Figs. 3(c) and 7, indicate that

FIG. 7. Statistics of the hub-infection time and the number of
infected nodes for a given hub-infection time. (a) The distributions
P(thub) of the hub-infection time in the SF and ER networks of N =
106. They are fitted to log-normal distributions with mean 〈ln thub〉 =
9.01, 9.74, and 8.12 and standard deviation σln thub = 0.78, 0.41, and
1.22 of ln thub for SF networks with γ = 2.75, 3.6 and the ER
networks, respectively. (b) The conditional probability distribution
Pt,thub (I ) of the number of infected nodes at t for selected hub-
infection times thub in SF networks with γ = 2.75 and N = 106. They
are also fitted to log-normal distributions with the mean and standard
deviation of ln I at time t = 104 for given thub shown in the inset.

�̃ in Eq. (C4) is smaller than the width of P(thub). For γ =
2.75 and N = 106, we have �̃ � 1/a1 � 500 (� �/ ln N ),
while the width w of the probability distribution P(thub) is
approximately w � exp(〈ln thub〉 + σln thub ) − exp(〈ln thub〉) �
104. Here � is the width of the region of t − thub displaying the
abrupt increase in I in Fig. 3(c). Therefore, inserting Eq. (C3)
into (C1), we obtain

Pt (I ) �
∫ t̃hub(t,I )+�̃

t̃hub(t,I )−�̃

d thubP(thub) Pt,thub (I )

� P(t̃hub(t, I ))
∫

d thub
1

I

e− [thub−t̃hub(t,I )]2

2�̃2√
2πσ 2

ln I;t,thub

� P(t̃hub(t, I ))
a1

1

I
. (C5)

Figures 3(c) and 8(d) and 8(h) suggest that for a given t , the
number of infected nodes I abruptly decreases from I2 to I1

with I2 � I1 as thub increases in the region t − � � thub � t .
The variation of t̃hub(t, I ) in the interval I1 � I � I2 for a given
t is not larger than �; t̃hub(t, I1) = t − (ln I1 − a0)/a1 � t ,
and t̃hub(t, I2) = t − (ln I2 − a0)/a1 � t − �. Since the width
w of P(thub) is not smaller than �, with w � 104 and
� � 5000 as an example in the case of γ = 2.75 and N =
106, P(t̃hub(t, I )) is expected to vary only weakly with I
in the interval I1 � I � I2 for a given t , allowing us to
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FIG. 8. Simulation results of the SI model on (a)–(d) SF networks with γ = 3.6 and (e)–(h) ER networks. (a) and (e) The fraction of
simulation runs yielding I infected nodes at time t is color-coded in the (t, I ) plane. (b) and (f) The probability distribution Pt (I ) for N = 106.
Inset: the standard deviation σI;t versus the mean 〈I〉t . (c) and (g) The probability distribution PI (t ) for N = 106. Inset: the standard deviation
σt ;I versus the mean 〈t〉I . (d) and (h) Plot of I versus t − thub. A solid line fitting Eq. (2) is shown.

make the approximation P(t̃hub(t, I )) � P0, with P0 being
a constant depending only on t in Eq. (C5), reproducing
Eq. (3).

Actually, the asymptotic behavior Pt (I ) ∼ I−1 is valid
as long as the conditional probability Pt,thub (I ) is well
concentrated in the logarithmic scale at its mean I∗ = e〈ln I〉t,thub

with width �I , for which we have approximately

1 = ∫
dIPt,thub (I ) � �IPt,thub (I∗) � �I

�thub
|
I=I∗

∫
d t

′
hubPt,t

′
hub

(I∗),

leading to
∫

d thubPt,thub (I ) ∼ | dthub
dI | ∼ I−1 from Eq. (2). In

Fig. 9, the dependence of thub on the network characteristics
of the seed is shown.

APPENDIX D: DERIVATION OF EQUATION (8)

Suppose that there are I infected nodes. Assuming that
every link from the N − I susceptible nodes is connected to
one of the I infected nodes with the same probability q, we
find that a susceptible node reached from an infected node by
a link has degree k with probability

rI (k) = q kn(k|I )∑
k′ qk′n(k′|I )

= k

2L − 〈V〉I
n(k|I ), (D1)

where n(k|I ) is the expected number of susceptible nodes of
degree k given I infected nodes and 2L − 〈V〉I = ∑

k kn(k|I )
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FIG. 9. The dependence of the hub-infection time on the initially
infected node (seed). (a) The hub-infection time thub increases with
the distance dseed,hub of the seed node to the nearest hub node, having
a degree larger than 0.3kmax, in SF networks with γ = 2.75 and
different numbers of nodes N . (b) Plot of thub versus the degree kseed

of the seed node.

is the expected number of links incident to susceptible nodes.
It can be noticed that q = 〈B〉I

2L−〈V〉I
, where 〈B〉I is a well-defined

value as seen in Fig. 10. When a new node is infected to
become the (I + 1)th infected node, the number of susceptible
nodes of degree k will be decreased by one if the newly
infected node has degree k, which occurs with probability
rI (k). Therefore, the decrease in the expected number of
susceptible nodes of degree k, n(k|I ) − n(k|I + 1), is equal
to rI (k) [28]: n(k|I ) − n(k|I + 1) = rI (k) = k

2L−〈V〉I
n(k|I ), or,

equivalently,

n(k|I + 1) =
[

1 − k

2L − 〈V〉I

]
n(k|I ). (D2)

FIG. 10. The ratio of the standard deviation σB;I to the mean 〈B〉I

of the number of boundary links for a given number of infected nodes
I in SF networks with γ = 2.75.

It holds that k
2L−〈V〉I

� 1 for all k in the intermediate stage,
and therefore, n(k|I ) is represented as

n(k|I ) = n(k|0)
I−1∏
I ′=0

(
1 − k

2L − 〈V〉I

)
� NPdegree(k)e− k

k̃(I ) ,

(D3)

with the cutoff degree k̃(I ) depending on the number of
infected nodes I as

k̃(I )−1 ≡
I−1∑
I ′=0

1

2L − 〈V〉I ′
= I

2L

[
1+O

(
I

2L

)min{1,γ−2}]
� I

2L

(D4)

and the initial condition n(k|0) = NPdegree(k). The remainder
in Eq. (D4) can be evaluated by using Eq. (E4) derived below
[28]. Using Eqs. (D3) and (D4), we obtain Eq. (8).

APPENDIX E: ASYMPTOTIC BEHAVIORS OF 〈knn〉(I)

In SF networks with an asymptotic power-law degree
distribution Pdegree(k) � c0k−γ for large k, with c0 being a
constant, the numerator in Eq. (8) may diverge with the
smaller of the maximum degrees kmax and the cutoff k̃(I ) if the
degree exponent γ is smaller than 3. If γ > 3, the contribution
of the summand for large k is negligible and so is the effect
of the exponential term in the whole sum, allowing us to
approximate Eq. (8) as

〈knn〉(I ) �
∑kmax

k=1 k2 Pdegree(k)

〈k〉 = 〈knn〉, (E1)

with 〈k〉 = ∑
k kPdegree(k). If 2 < γ < 3, the slow decay of the

summand for large k causes the divergence of the numerator.
From Eq. (8), we find

〈knn〉(I ) � c0
∑kmax

k=1 k2−γ e−k/k̃(I )

〈k〉

� c0

〈k〉 k̃(I )3−γ

[



(
3 − γ ,

1

k̃(I )

)

−


(
3 − γ ,

kmax

k̃(I )

)]
, (E2)

where we used the Euler-Maclaurin formula and the incom-
plete gamma function 
(s, z) ≡ ∫ ∞

z dk ks−1 e−k . The values
of 〈knn〉(I ) evaluated with Eq. (E2) and by using the numerical
degree distribution in Eq. (8) are in good agreement. The
incomplete gamma function is expanded as [29]


(s, z) �
{


(s) − zs

s + O(zs+1) for z � 1,

zs−1e−z for z � 1,
(E3)

which leads us to find, for 2 < γ < 3 in the limit k̃(I ), kmax →
∞, the small- and large-k̃(I ) behaviors of 〈knn〉(I ), given by

〈knn〉(I ) �
{

c0 k3−γ
max

(3−γ )〈k〉 for k̃(I ) � kmax,

c0 
(3−γ )k̃(I )3−γ

〈k〉 for k̃(I ) � kmax.
(E4)
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Noting that 〈knn〉 for 2 < γ < 3 is evaluated as

〈knn〉 =
∑

k k2Pd (k)

〈k〉 � c0
∑kmax

k=1 k2−γ

〈k〉 � c0 k3−γ
max

(3 − γ )〈k〉 ,

(E5)

and using k̃(I ) = 2L/I as in Eq. (D4), we can rewrite Eq. (E4)
as

〈knn〉(I ) �
{〈knn〉 for I � Ic,

〈knn〉
(4 − γ )
( Ic

I

)3−γ
for I � Ic,

(E6)

as in the main text.
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