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A B S T R A C T

The rising resistance to fluoroquinolones in Salmonella Typhimurium poses a significant global health challenge. 
This computational research addresses the pressing need for new therapeutic drugs by utilizing various 
computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase 
subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the 
wild-type DNA gyrase A protein was modeled using homology modeling, and followed by in silico mutagenesis to 
create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure. 
The structural stability and integrity of the modeled protein were ensured through rigorous validation. Subse
quently, a high-throughput virtual screening of a curated library of natural compounds was conducted to identify 
potential inhibitors against wild-type and triple-mutant proteins. The selected potent lead molecules compre
hensively evaluated their physicochemical properties, ADME/T properties, and binding affinities via ADME/T 
assessment and molecular docking studies. The safest and most promising ligands were chosen for dynamics 
studies to analyze their dynamic behavior and protein stability before and after the binding of ligands. Our 
results showed that the natural compounds from the ChemDiv database, CID: 0407–0108, N039-0003, 
1080–0568, and 0099–0261 have binding energies ranging from − 4.32 to − 5.69 kcal/mol and exhibit excel
lent physio-chemical properties, affinities, and are stable in their dynamic environments over 100 ns for both 
wild-type and triple mutant DNA gyrase A complexes. These compounds provide a promising alternative 
treatment for fluoroquinolone-resistant Salmonella Typhimurium infections.

1. Introduction

Gastroenteritis and invasive non-typhoidal fever, triggered by the 
gram-negative, enteric pathogen Salmonella enterica serovar Typhimu
rium, pose a significant global health risk in developed and developing 
nations, affecting animals and humans [1]. Salmonella is responsible for 
25 % of all diarrheal diseases, with serovar Typhimurium being the most 
common and a significant contributor to foodborne infection outbreaks 
[2]. The severity of salmonellosis can range from mild to 
life-threatening, depending on various factors such as the severity of 
infestation, the microbial load ingested from contaminated food or other 
environmental sources, and the strength of the host’s immune system 
[3]. The situation is further complicated by the lack of effective vaccines 
and the ongoing development of resistance against multiple first and 
second-generation antibiotic classes due to the acquisition of resistance 
genes and mutations in drug-binding sites. The 2022 outbreak of 
non-typhoidal infection caused by an unusual multidrug-resistant 

Salmonella Typhimurium (S. Typhimurium) strain has raised significant 
public health concerns worldwide [4]. Over the past decade, numerous 
strains of S. Typhimurium have developed resistance to multiple con
ventional antibiotics such as penicillin, fluoroquinolones, cephalospo
rins, carbapenems, and macrolides. This has led to the emergence of 
multi-drug-resistant (MDR) strains in countries like Malaysia, India, 
Vietnam, Indonesia, Thailand, and Pakistan [5–7]. In the late 1980s, 
fluoroquinolone drugs were prescribed for enteric and systemic fever as 
the number of MDR strains of Salmonella serovars, including Typhimu
rium serovar, increased. By the 2010s, subsequent resistance against 
cephalosporins, fluoroquinolones, tetracycline, and sulfamethoxazole 
emerged due to mutations and plasmid-mediated resistance, leading to 
increased resistance among S. Typhimurium strains [8].

Fluoroquinolone antibiotics, recognized for their broad spectrum, 
inhibit the activity of topoisomerase IV and DNA gyrase, thereby pre
venting DNA supercoiling during replication [9]. Although mutations in 
the DNA gyrase subunit B are less frequent compared to subunit A, both 
genes contribute to fluoroquinolone resistance [10]. Specifically, 
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mutations in the serine and aspartic acid residues at positions 83 and 87, 
respectively, within the quinolone binding site in the break reunion 
domain of the gyrA gene encoding DNA gyrase subunit A of S. Typhi
murium are associated with fluoroquinolone resistance [11]. These 
residues are essential for fluoroquinolone binding, forming hydrogen 
bonds with water molecules and the Mg2+ ion complex, thereby hin
dering the resealing of DNA double-strand breaks [12]. Notably, the 
aspartic acid at position 87 of the gyrA gene plays a critical role in active 
binding and interaction with the positively charged nitrogen of fluo
roquinolone antibiotics [13].

Clinical isolates from China have demonstrated double mutations in 
the gyrA gene and additional mutations in the parC gene at position 80 
from serine to arginine. These mutations are significant as they 
considerably increase resistance to fluoroquinolone antibiotics, making 
infections more challenging to treat [14]. Studies from various 
geographical locations reported that the MDR- Salmonella serovars with 
double point mutations in gyrA subunit (SER 83 → PHE/TYR or ASP 87 
→ GLY/ASN) along with a parC single point mutation (SER 80 → ARG) 
exhibited ciprofloxacin resistance with minimum inhibitory concentra
tion ranging > 0.5 mg/L [15–17]. A clinical strain of S. Typhimurium 
with a Minimum Inhibitory Concentration (MIC) of 512 mg/L isolated in 
the Middle East showed increased ciprofloxacin resistance due to a triple 
mutation in the gyrA gene alone (SER83PHE, ASP87GLY, ALA119SER), 
raising concerns about complete resistance to fluoroquinolones [18]. 
Therefore, bacteria’s susceptibility to quinolones varies depending on 
the position of the mutation, the type of mutated amino acid, and the 
number of point mutations, altering the binding affinity of the DNA 
gyrase subunits in forming a complex with quinolone drugs. The prev
alence of mutant strains with high fluoroquinolone resistance has 
notably increased in developing countries such as China, Thailand, 
Japan, India, Vietnam, Pakistan, Spain, and other Middle Eastern 
countries [18–20]. Given the organism’s increasing complexity and 
resistance to multiple conventional drugs, developing new drugs struc
turally distinct from conventional ones is crucial.

Drug-like compounds from natural products have long been instru
mental in discovering and developing drugs against various infectious 
diseases [21]. Secondary metabolites in plants and other natural re
sources, such as polyphenols, flavonoids, tannins, and alkaloids, func
tion as defense mechanisms against microbial infections [22]. Screening 
libraries, like the natural compound library from the ChemDiv database, 
provide unique and novel drug-like compounds derived from natural 
resources. This collection comprises 374 distinct compounds similar to 
physiologically active natural substances. It is intricately associated with 
the Semi-Natural Screening Library of ChemDiv database, which in
cludes over 16,500 substances. Consequently, rather than screening the 

16,500 compounds, we focused only on the 374 compounds that exhibit 
superior similarity and biological activity. This accelerates the drug 
discovery process and assists in developing effective drugs against 
resistant pathogens that are less harmful to humans [22,23]. Despite 
numerous studies introducing bio-lead molecules with potential anti
bacterial activity, it is essential to screen these small molecules based on 
their drug-likeness, binding affinity, and dynamic behavior with the 
target protein. This is crucial for formulating novel drugs with enhanced 
efficacy compared to conventional ones.

The in silico study was designed to analyze the impact of the triple 
mutation on the DNA gyrase A protein structure and drug binding af
finity with conventional drugs, which has not yet been explored 
computationally except for its occurrence in fluoroquinolone-resistant S. 
Typhimurium strains.The high-throughput computational screening of 
natural drug-like compounds was conducted to identify novel drug-like 
molecules capable of inhibiting DNA gyrase A wild-type (WT) and triple 
mutant (TM). Various computational tools were employed to study WT 
and TM proteins’ dynamics, mutational stability, and binding affinity 
with novel natural phytochemical drug-like compounds.

2. Materials and methods

2.1. Target protein and ligand retrieval

The amino acid sequence information for the WT DNA gyrase subunit 
A protein of S. Typhimurium was retrieved from the Uniprot database 
(Uniprot ID: P37411) [24]. From the commercially accessible ChemDiv 
Natural compound database, 374 natural small molecules are in SDF 
format. This selection was based on their structural diversity and 
inherent bioactivity, which increases the likelihood of identifying 
effective inhibitors against fluoroquinolone-resistant DNA gyrase A of S. 
Typhimurium. Natural drugs are vital due to their optimized biological 
activity and favorable safety profiles. Furthermore, we obtained the 3D 
conformation of the control drug ciprofloxacin (PubChem ID: 2764) 
from the PubChem database [25].

2.2. Homology modeling and structure validate

Due to the lack of a three-dimensional (3D) crystal structure for DNA 
gyrase subunit A of S. Typhimurium, the breakage reunion domain of 
the DNA gyrase subunit A amino acid sequence from position 17 to 524 
was modeled using the SWISS-MODEL server [26]. We selected a tem
plate structure from the Protein Data Bank (PDB) [27] or Alpha Fold 
[28] based on high GMQE, sequence similarity, and QSQE scores. This 
predicted a 3D protein structure, which served as the template for our 
modeling process [29]. Following this, the Prime module of Schrodinger 
[30] corrects the wrong angles and torsion angles of the modeled WT 
DNA gyrase subunit A protein structure. They optimized it by mini
mizing energy through the loop refinement tool. The resulting protein 
structure was evaluated for stability using MolProbity, confirmed by 
Ramachandran plot analysis.

2.3. Mutagenesis

The mutation information for the DNA gyrase subunit A of S. 
Typhimurium from the public database “DRAGdb: Drug Resistance 
Associated Genes” and relevant scholarly sources [18,31]. The compu
tational method is vital for simulating mutations at specific amino acid 
sites, critical to studying protein mutations and developing drugs tar
geting mutant proteins. To introduce mutations and carry out compu
tational mutagenesis, the Mutagenesis Wizard of the PyMOL molecular 
analysis visualization software was utilized [32].

2.4. Mutational protein stability analysis

The stability of a mutated protein is evaluated using DDMut, a 
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predictive tool specifically designed to analyze the stability of proteins 
that have undergone single or multiple-point mutations. DDMut em
ploys a deep learning pipeline to predict changes in protein stability by 
calculating the Gibbs free energy changes associated with mutations. 
This tool enables quick and accurate assessments of the stabilizing and 
destabilising effects caused by mutations. For this study, DDMut was 
selected due to its strong capability to manage a variety of mutation 
scenarios, providing precise predictions crucial for understanding the 
impact of specific mutations on protein stability. The process involves 
feeding the WT protein structure and the intended mutations into 
DDMut, which then calculates the ΔΔG values to indicate whether a 
mutation stabilizes or destabilizes the protein. This quantitative analysis 
is vital for correlating the impacts of mutations with observed changes in 
the protein’s function or behavior [33].

2.5. High throughput virtual screening

The ligand-receptor binding affinity of the DNA gyrase A protein is 
predicted using Schrodinger Glide software, which provides a broad 
range of applications, including binding mode prediction, virtual 
screening, and 3D molecular designing with an interactive interface 
[30]. Natural small molecules were prepared and assessed for 
drug-likeness and ADME/T properties based on the Lipinski rule using 
the QIKPROP tool in Schrodinger Maestro. This step facilitated filtering 
of active, potent, and inactive compounds [34]. Based on the proteins’ 
geometry and topology, the active binding sites of the target protein 
were predicted using the CASTp 3.0 webserver [35]. A Grid file 
encompassing the protein’s binding site was generated using the Grid 
generation panel in Glide Maestro. Computational screening of natural 
small molecules against the WT and TM proteins of S. Typhimurium was 
performed using the tri-docking mode of the Glide module. These 
include high throughput virtual screening (HTVS), which is the fastest 
and least precise mode; standard precision (SP) docking, offering mod
erate speed and precision; and extra-precision (XP) docking, the slowest 
but most precise docking mode [36]. Initially, HTVS was used to screen a 
large number of compounds swiftly. The top hits from HTVS were then 
subjected to SP docking for more accurate predictions, and the best 
candidates from SP docking were further refined using XP docking to 
obtain the most precise binding affinities and interactions. The top four 
natural drug-like compounds from the XP results, which demonstrated 
the best docking and glide scores, were selected for further analysis and 
visualization. Additionally, the WT and TM proteins were docked with 
the control drug ciprofloxacin using the XP docking mode to obtain 
precise binding energy results for comparison. The interactions of the 
top compounds with their respective target proteins and the control drug 
with the WT/TM proteins were visualized using the Ligand interaction 
tool in Schrodinger Maestro. Moreover, the 3D interactions of the 
docked poses of these complexes were visualized using the ChimeraX 
visualization tool [37].

2.6. Molecular dynamic simulation

The interatomic interactions and dynamics of the top screened 
compounds and the control drug-DNA gyrase WT and TM protein 
complexes were studied over 100ns using GROMACS version 2023 [38]. 
The starting poses for the ligands were taken from the best-docked 
conformations obtained from the preceding docking studies. Input 
files for the GROMACS simulation of DNA gyrase WT/MT protein-ligand 
complexes were prepared using the CHARMM-GUI solution builder 
model in a water-based solvent [39]. The ligand-receptor complexes 
were solvated and neutralized with water molecules and Na+ and Cl−

ions at physiological concentrations of 0.15 M, automatically estimated 
based on the system’s net charge and ion-accessible volume (V). Periodic 
boundary conditions were applied to the rectangular solvation box ac
cording to the dimensions of the complex. The PME method (Particle 
Mesh Ewald) handled long-range electrostatic interactions, and energy 

minimization of the complexes was performed for 50,000 steps to 
eliminate unfavorable contacts. The LINCS algorithm was used for the 
GROMACS inputs. The solvated complexes underwent equilibration 
under default NVT (constant volume and temperature) conditions for 
100 ps, followed by NPT (constant pressure and temperature) conditions 
for another 100 ps [40]. Various standard parameters such as Root Mean 
Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), 
Radius of gyration (Rg), Solvent Accessible Surface Area (SASA), 
Hydrogen bond analysis, Principal component analysis (PCA), Free en
ergy landscape (FEL), and Dynamic Cross Correlation Matrix (DCCM) 
were used to analyze the trajectory of the 100 ns simulation of the 
complexes. Trajectory file outcomes were plotted using QtGrace soft
ware better to understand the dynamics of the protein-ligand complex 
interactions.

2.6.1. Principal component analysis (PCA)
PCA was employed to analyze the collective motions and substantial 

fluctuations at the atomic level in the WT and TM with ligand com
plexes. The eigenvalues, eigenvectors, and their projections were 
assessed to analyze the principal components of the target proteins. The 
principal components 1 (PC1) and 2 (PC2) were selected to examine 
significant atomic motions in the target-ligand complexes. Higher sta
bility of the target protein-ligand complex is indicated by the complex 
occupying less phase than the stable cluster, and vice versa [41].

2.6.2. Free energy landscape (FEL) analysis
The molecular free energy and their biomolecular folding and 

interaction were analyzed and interpreted using the free energy land
scape, which was estimated using the formula; 

ΔGα= -KBT ln
[

P(qα)
Pmax (q)

]

Here, T represents the simulation temperature, KB represents the 
Boltzmann constant, (qα) represents the estimated probability density 
function derived from molecular dynamics histogram data, and Pmax 
(q) represents the probability of the possible state. The 2D free energy 
landscapes were obtained from the combined probability distributions 
of the complex system’s qi and qj reaction coordinates [42].

2.6.3. Dynamic cross-correlation matrix (DCCM)
The DCCM is a widely used trajectory analysis method in dynamic 

simulation, which analyses the multi-correlated motion and behaviors of 
alpha carbon atoms in the target proteins. The coordinates and config
urations of the backbone Cα atoms before and after ligand interaction are 
calculated using the least-square fitting method and then graphically 
visualized [43]. The DDCM analysis is carried out using the following 
technical formula: 

DCCM(i,j) =
〈ΔriXΔrj〉

̅̅̅̅̅̅̅̅̅̅̅̅̅
〈Δri2〉

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅
〈Δrj2〉

√

Here, Δri, j represents the average movement of the proteins’ ith and 
jth atoms. The value of Cij ranges from − 1 to 1, where 1 indicates 
correlated atom movement, while − 1 indicates highly anti-correlated 
movement.

2.7. Molecular mechanics Poisson – Boltzmann surface area (MMPBSA)

The free binding energy between the interacting target and ligand 
was calculated using the g_MMPBSA tool, an open-source drug con
sortium [44]. The calculation was performed with the last 25 ns of every 
simulation of best-docked complexes of ligands with WT and TM DNA 
gyrase subunit A of S. Typhimurium to evaluate the stability of the 
interaction between the target WT and TM proteins and the selected 
ligands. The following mathematical equation is crucial to understand
ing and determining the free binding energies. The difference between 
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the complex free energy (ΔGcomplex) and the sum of target protein free 
energy and ligand-free energy (ΔGprotein + ΔGligand) gives the total free 
binding energy (ΔGbinding) [45]. 

ΔGbinding = ΔGcomplex - (ΔGprotein + ΔGligand)                                       

The mean potential energy of the complexes in vacuum condition 
(ΔEMM) and their entropic involvement at the kelvin temperature T, 
respectively, were determined by the mathematical formula: 

ΔGbinding = ΔEMM - TΔS + TΔSsol                                                        

ΔEMM = ΔEele + ΔEvdw                                                                       

The combined total value of electrostatic and non-electrostatic forces 
gives the solvation energy (Gsolvation), which can be represented as an 
equation: 

Gsolvation = Gpolar + ΔGnonpolar                                                             

The Poisson—Boltzmann linear formula calculates polar solvation 
energy, whereas non-polar solvation energy can be computed using 
solvent-accessible surface area (SASA). 

Gpolar = γSASA + β                                                                             

MM-PBSA analysis aids in estimating each residue’s contribution to 
the complex’s total binding energy.

3. Result

3.1. Homology modeling and protein structure validation

The break reunion domain of DNA gyrase subunit A (position: 17 to 
524) from S. Typhimurium was modeled using the homology of the 
template structure from the AlphaFold model, which had a GMQE score 
of 0.94 and 100 % identity (Template ID: AlphaFold DB model of 
A0A659S2X5_SALET), as per the SWISS-MODEL template prediction 
result. MolProbity, a widely recognized protein structure validation web 
server, was employed to evaluate the stability of the modeled protein 
structure through the Ramachandran Plot. The analysis of the modeled 
WT DNA gyrase subunit A revealed a MolProbity clash score of 0.67, 
with 97.07 % of the residues in the Ramachandran favored region and 
0.20 % of the residues in the outliers, as per the results of the Ram
achandran’s plot depicted in Fig. S1. These results are significant as they 
indicate a highly accurate and stable model, essential for understanding 
the proteins’ function and subsequent applications such as drug design. 
The high percentage of residues in the favored region suggests that the 
protein adopts a plausible and stable conformation akin to experimen
tally determined structures. The low clash score and minimal outliers 
further validate the model’s reliability, providing confidence in using 
this model for further functional and interaction studies. Thus, these 
validations highlight the model’s potential usefulness in biomedical 
studies and therapeutic development targeting S. Typhimurium.

3.2. Mutagenesis and protein stability

Mutation data related to fluoroquinolone resistance in DNA gyrase 
subunit A of S. Typhimurium was gathered from the DRAG database. 
Various literature sources indicated common mutations at position 83 
(serine to phenylalanine), 87 (aspartic acid mutated to glycine), and 119 
(alanine mutated to serine), which contributed to the increased fluo
roquinolone resistance in S. Typhimurium. Using the Mutagenesis 
Wizard of PyMol software, point mutations were simulated at positions 
83, 87, and 119 of DNA gyrase subunit A, including the TM in the target 
WT protein. The resulting TM structure was saved in. pdb format. The 
impact of these mutations on protein stability was then studied using 
DDMut. The mutational protein stability analysis of the TM protein 
revealed a destabilization with a ΔΔG value of − 0.22 kcal/mol. 

Individual point mutations in the WT protein showed that the mutations 
at position 87 (aspartic acid to glycine) and 119 (alanine to serine) 
destabilized the protein with ΔΔG values of − 0.55 and − 0.15 kcal/mol, 
respectively. In contrast, the mutation at position 83 (serine to phenyl
alanine) stabilized the protein with an ΔΔG value of 0.03 kcal/mol. 
Table 1 represents the flexibility and stability of the mutated TM protein 
analysis by DDMut.

3.3. Virtual screening analysis

High throughput computational screening of natural drug-like small 
molecules was performed using the Glide suite of Schrodinger software. 
The process involved filtering the top natural compounds based on 
ADME/T and Lipinski rule criteria, followed by high-throughput and 
standard precision docking. Compounds with the best-docked and high 
glide scores were selected for further in silico analysis. After thorough 
scrutiny and filtration, the top four natural compounds with the best hit 
on WT and TM protein were chosen. The binding energies and in
teractions of the top-docked compounds with the WT protein are sum
marized as follows: Complex WT_0407–0108 exhibited a binding energy 
of − 5.17 kcal/mol, interacting with ASP20, ARG30, ARG31, ASP131, 
ASP141 amino acid residues, forming five conventional polar H-bonds. 
Complex WT_N039-0003 exhibited a binding energy of − 5.11 kcal/mol, 
interacting with HIS322 and GLU344, forming two conventional polar 
H-bonds. Complex WT_1080–0568 exhibited a binding energy of − 4.44 
kcal/mol, interacting with ARG349 and GLU353, forming four con
ventional polar H-bonds. The control drug complex, WT_Ciprofloxacin, 
exhibited a binding energy of − 3.65 kcal/mol, interacting with LYS113 
and ASP499, forming one conventional polar H-bond. Comparing the 
binding energies of the WT protein with the control drug and screened 
natural compounds, the top three docked natural compounds show 
higher potency in inhibiting the DNA gyrase activity of fluoroquinolone- 
sensitive S. Typhimurium strains. The binding energies and interactions 
of the top docked compounds with the TM protein were as follows: 
Complex TM_0407–0108 exhibited a binding energy of − 5.69 kcal/mol, 
interacting with ASP66, ALA101 amino acid residues, forming four 
conventional polar H-bonds. Complex TM_N039-0003 exhibited a 
binding energy of − 5.42 kcal/mol, interacting with HIS322 and GLU344 
amino acid residues, forming two conventional polar H-bonds. Complex 
TM_ 0099–0261 exhibited a binding energy of − 4.32 kcal/mol, inter
acting with ARG75, ASN149, and SER156, forming three conventional 
polar H-bonds. The control drug complex TM_Ciprofloxacin, exhibited a 
binding energy of − 3.67 kcal/mol, interacting with LYS113 and ASP499 
amino acid residue, forming two conventional polar H-bonds. 
Comparing the binding energies of the TM protein with the control drug 
and the screened natural compounds, the top three docked natural 
compounds appear to be more potent in inhibiting the DNA gyrase ac
tivity of fluoroquinolone-resistant S. Typhimurium strains. The 2D and 
3D interaction of the WT and TM with their respective ligand small 
molecules were visualized using the Ligand interaction tool of the 
Maestro suite (Fig. 1) and ChimeraX visualization tool (Figs. 2 and 3). 
Table 2 comprehensively summarizes the docking results of WT and TM 
DNA gyrase subunit A protein of S. Typhimurium with the top screened 
drug-like natural compounds.

Table 1 
Analysis of flexibility, and protein stability of the mutated triple mutant DNA 
Gyrase subunit A protein of Salmonella Typhimurium using DDMut.

DDMut

Mutant delta G value (kcal/mol) Stability of protein

SER83PHE 0.03 Stabilizing
ASP87GLY − 0.55 Destabilising
ALA119SER − 0.15 Destabilising
Triple Mutant − 0.22 Destabilising

S. Haryini and G.P. Doss C                                                                                                                                                                                                                   Biochemistry and Biophysics Reports 41 (2025) 101901 

4 



3.4. ADME/T and physio-chemical properties of screened compounds

The pharmacokinetics, drug-likeness, and physicochemical proper
ties of the chosen ligands were examined using the QIKPROP tool in 
Schrodinger Maestro. The ligands displayed a molecular weight ranging 
from 162.14 g/mol to 349.55 g/mol, with the ability to donate 1 to 5 H- 
bonds and accept 2 to 7 H-bonds each. Moreover, the topological polar 
surface area of the top four screened compounds ranged from 32.34 Å2 

to 127.45 Å2. Table 3 provides a summary of the physicochemical 
properties of the top four drug-like compounds 0407–0108, N039-0003, 
1080–0568, and 0099–0261, offering insights into their ADME/T 

properties, including BBB (blood-brain barrier) and absorption charac
teristics. Lipophilicity, a crucial drug discovery and development 
parameter, was evaluated by calculating the partition coefficient be
tween water and n-octanol (log Po/w). The hydrophobicity, lipophilicity 
(QPlogPC16, QPlogPoct), polarizability (QPpolrz), skin permeability 
(QPlog Kp), absorption and distribution (QPlogPw, QPlogPo/w, and 
QPlogS) of the selected ligands were analyzed using the QIKPROP tool of 
Schrodinger. All the chosen natural drug-like compounds successfully 
passed the ADME/T assessment, meeting the strict standard limits of 
QPpolz (13–70), QPlogPC16 (4–18), QPlogPoct (8–43), QPlogPw 
(5–48), QPlogPo/w (− 2 to 6), QPlogS (− 6 to 0.5) and Qplog Kp (− 8 to 

Fig. 1. 2D interaction of best-docked natural compounds and control drug with wild-type (WT) and triple mutant (TM) DNA gyrase A protein. 2D interactions of A) 
WT with ligand 0407–0108, B) WT with ligand N039–0003, C) WT with ligand 1080–0568, D) WT with ciprofloxacin, E) TM with ligand 0407–0108, F) TM with 
ligand N039-0003, G) TM with ligand 0099–0261, H) TM with ligand ciprofloxacin.

Fig. 2. 3D interaction of best-docked natural compounds and control drugs with wild-type (WT) DNA gyrase A protein. A) WT with ligand 0407–0108, B) WT with 
ligand N039–0003, C) WT with ligand 1080–0568, D) WT with ciprofloxacin.
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− 1). Table 4 represents the ADME/T properties of these selected novel 
natural drug-like compounds. Therefore, based on the collective ADME/ 
T property data of the selected compounds, we can infer that these 
proposed compounds are potentially safe and effective drug molecules 

against the target proteins.

Fig. 3. 3D interaction of best-docked natural compounds and control drug with triple mutant (TM) DNA gyrase A protein. E) TM with ligand 0407–0108, F) TM with 
ligand N039–0003, G) TM with ligand 0099–0261, H) TM with ligand ciprofloxacin.

Table 2 
It gives the docking, glide score outcomes and the interactive sites of natural compounds and control drug ciprofloxacin against the wild type and triple mutant protein 
of DNA gyrase subunit A of Salmonella Typhimurium respectively.

Target Protein Compound Name/ID Docking Score (kcal/mol) Glide G-score Glide E-model XP G-Score Interactive sites

Wild type 0407–0108 − 5.17 − 5.21 − 51.60 − 5.21 ASP20, ASP141, ARG30, ARG31, ASP131
N039-0003 − 5.11 − 5.22 − 45.10 − 5.22 HIS322, GLU344
1080–0568 − 4.44 − 4.45 − 44.671 − 4.45 ARG349, GLU353
Control drug- Ciprofloxacin − 3.65 − 3.76 − 43.58 − 3.76 LYS113, ASP499

Triple mutant 0407–0108 − 5.69 − 5.73 − 43.11 − 5.73 ASP66, ALA101
N039-0003 − 5.42 − 5.53 − 44.82 − 5.53 HIS322, GLU344
0099–0261 − 4.32 − 4.33 − 34.175 − 4.33 ARG75, SER156, ASN149
Control drug- Ciprofloxacin − 3.67 − 3.78 − 43.37 − 3.78 LYS 113, ASP499

Table 3 
Physio-chemical properties of top 4 screened drug-like compounds of extra precision docking outcome.

Natural compounds Structure X logP Molecular weight (g/mol) H-bond donors H-bond acceptors Tpsa (Å2) Rotatable bonds

0407–0108 0.95 304.25 5 7 127.45 1

N039-0003 1.98 292.37 1 2 32.34 1

1080–0568 4.60 349.55 3 3 52.49 4

0099–0261 1.58 162.14 1 3 50.44 0
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3.5. Dynamic trajectory analysis

3.5.1. Root Mean Square Deviation (RMSD)
RMSD trajectories provide valuable insights into the flexibility and 

stability of the protein-ligand complex during MDS. Fig. 4 depicts the 
structural deviation of the WT and TM protein-ligand complexes 
throughout 100 ns. The RMSD graph of WT_0407–0108 and 
TM_0407–0108 complex (Fig. 4A) displays an initial convergent fluc
tuation from 0.1 nm to approximately 0.35 nm until 35 ns, after which 
they stabilize. The average RMSD values of WT_0407–0108 and 
TM_0407–0108 complexes were 0.252 ± 0.035 nm and 0.225 ± 0.034 
nm, respectively. RMSD graph of WT_N039-0003 and TM_N039-0003 
complex (Fig. 4B) exhibited a gradual increase in fluctuation until 12 
ns, ranging from 0.1 nm to around 0.3 nm, followed by stabilization 
until 50 ns. Beyond 50 ns, there is a notable fluctuation in WT_N039- 
0003 from 0.2 nm to approximately 0.45 nm compared to TM_N039- 
0003 until 75 ns, after which both complexes stabilize. The average 
RMSD values of WT_N039-0003 and TM_N039-0003 complexes were 
0.258 ± 0.066 nm and 0.225 ± 0.041 nm, respectively. Examining the 
comparative RMSD graph of the ciprofloxacin control drug in complex 
with WT and TM protein (Fig. 4C), minimal fluctuation from 0.2 nm to 
around 0.35 nm is observed throughout the simulation. However, after 
75 ns, there is a sudden drop in the RMSD value of the TM_Ciprofloxacin 
complex from 0.25 nm to 0.15 nm, followed by an increase to 0.30 nm. 
The mean RMSD values of WT_Ciprofloxacin and TM_Ciprofloxacin were 
0.240 ± 0.039 nm and 0.220 ± 0.042 nm, respectively. Fig. 4D displays 

the RMSD graph of complexes WT_1080–0568 and TM_0099–0261, 
respectively. Both complexes fluctuated from 0.150 nm to 0.38 nm, with 
consistent protein stabilization observed. The mean RMSD values of 
WT_1080–0568 and TM_0099–0261 were 0.225 ± 0.032 nm and 0.208 
± 0.038 nm, respectively.

3.5.2. Root Mean Square Fluctuation (RMSF)
RMSF measures the average deviation of each amino acid residue in a 

protein over a 100 ns simulation period from its reference position, 
thereby corroborating the RMSD results. Fig. 5A illustrates the RMSF 
profile of the Cα backbone for the WT_0407–0108 and TM_0407–0108 
complexes, revealing variable RMSF values across different residues. A 
pronounced fluctuation peak around the 100th residue, particularly in 
the WT protein, suggests increased flexibility. Significant peaks are 
observed around residues 237, 260–300, 360–400, and a notable peak 
near residue 500 in the TM complex. The average RMSF for the 
WT_0407–0108 and TM_0407–0108 complexes are 0.146 ± 0.089 nm 
and 0.139 ± 0.084 nm, respectively. In the comparative RMSF graph for 
the WT_N039-0003 and TM_N039-0003 complexes (Fig. 5B), a signifi
cant peak at the 100th residue is noted in the TM_N039-0003 complex 
but not in the WT_N039-0003. Similar to the WT_0407–0108 and 
TM_0407–0108 complexes, peaks are observed around residues 237, 
260–300, 360–400, and near residue 500. The average RMSF values for 
WT_N039-0003 and TM_N039-0003 are 0.148 ± 0.094 nm and 0.141 ±
0.089 nm, respectively. The RMSF graph for WT_Ciprofloxacin and 
TM_Ciprofloxacin (Fig. 5C) shows similar fluctuating peaks at residues 

Table 4 
Absorption and distribution properties with standard limits of the top 4 hit compounds obtained from the docking analysis.

Natural compounds QP polrz (13–70) QPlogPC16 (4–18) QPlogPoct (8-43) QPlogPw (5-48) QPlogPo/w (− 2 to 6) QPlogS (− 6 to 0.5) Qplog Kp (− 8 to − 1)

0407–0108 27.83 10.709 19.372 15.42 0.116 − 2.731 − 5.407
N039-0003 32.344 8.863 12.297 5.393 3.08 − 3.059 − 4.326
1080–0568 37.11 10.453 18.13 8.77 3.517 − 3.789 − 4.575
0099–0261 16.837 6.032 9.997 7.343 0.719 − 1.434 − 2.997

Fig. 4. RMSD analysis of all complexes. A) Comparative RMSD graph of WT and TM in complex with ligand 0407–0108, B) Comparative RMSD graph of WT and TM 
in complex with ligand N039–0003, C) Comparative RMSD graph of WT and TM in complex with Ciprofloxacin, D) Comparative RMSD graph of complex WT with 
ligand 1080–0568 and TM with ligand 0099–0261.
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237, 260–300, 360–400, and near residue 500, but no significant fluc
tuation at the 100th residue. The mean RMSF values for WT_Cipro
floxacin and TM_Ciprofloxacin are 0.136 ± 0.074 nm and 0.143 ±
0.095 nm, respectively. Conversely, the RMSF graph for the 

WT_1080–0568 and TM_0099–0261 complexes (Fig. 5D) displays 
similar significant peaks at the same positions, except at the 100th res
idue, where a notable peak is observed only in the WT_1080–0568 
complex, akin to the WT_0407–0108 and TM_N039-0003 graphs. The 

Fig. 5. RMSF analysis of all complexes. A) Comparative RMSF graph of WT and TM in complex with ligand 0407–0108, B) Comparative RMSF graph of WT and TM 
in complex with ligand N039–0003, C) Comparative RMSF graph of WT and TM in complex with Ciprofloxacin, D) Comparative RMSF graph of complex WT with 
ligand 1080–0568 and TM with ligand 0099–0261.

Fig. 6. Rg analysis of all complexes. A) Comparative Rg graph of WT and TM in complex with ligand 0407–0108, B) Comparative Rg graph of WT and TM in complex 
with ligand N039–0003, C) Comparative Rg graph of WT and TM in complex with Ciprofloxacin, D) Comparative Rg graph of complex WT with ligand 1080–0568 
and TM with ligand 0099-0261.

S. Haryini and G.P. Doss C                                                                                                                                                                                                                   Biochemistry and Biophysics Reports 41 (2025) 101901 

8 



average RMSF values for WT_1080–0568 and TM_0099–0261 are 0.136 
± 0.074 nm and 0.141 ± 0.077 nm, respectively.

3.5.3. Radius of gyration (Rg)
The Rg is essential for evaluating protein-ligand complexes’ 

compactness and structural integrity during simulations. Fig. 6 illus
trates the Rg values for all complexes, highlighting the compactness of 
wild-type (WT) and mutant (TM) proteins when bound to various li
gands. The Rg values range from approximately 3.05 nm–3.2 nm, 
indicating minor variations in compactness across different complexes. 
The average Rg values for the WT_0407–0108 and TM_0407–0108 
complexes were 3.126 ± 0.021 nm and 3.128 ± 0.019 nm, respectively. 
These similar values suggest that WT and TM proteins maintain com
parable compactness when interacting with ligands 0407–0108. Slightly 
higher average Rg values were observed for the WT_N039-003 (3.14 ±
0.020 nm) and TM_N039-0003 (3.13 ± 0.020 nm) complexes, indicating 
a marginally less compact structure compared to the 0407–0108 com
plexes, though the difference is minimal. The average Rg values for the 
control drug ciprofloxacin were 3.11 ± 0.019 nm for WT_Ciprofloxacin 
and 3.12 ± 0.019 nm for TM_Ciprofloxacin. These values fall within the 
typical range observed for other complexes, suggesting that ciproflox
acin does not significantly alter the compactness of the protein-ligand 
complexes. The average Rg values for the WT_1080–0568 and 
TM_0099–0261 complexes were 3.136 ± 0.02 nm and 3.118 ± 0.02 nm, 
respectively. These results demonstrate a consistent pattern of 
compactness, reinforcing the structural stability of both WT and TM 
proteins across different ligand interactions. The Rg analysis indicates 
that WT and TM proteins exhibit similar compactness when bound to 
various ligands, with only minor variations observed. This consistency 
suggests that the mutations present in TM proteins do not significantly 
impact the overall compactness and stability of the protein-ligand 
complexes.

3.5.4. Solvent accessible surface area (SASA)
The SASA quantifies the protein surface area exposed to a solvent, 

such as water, providing insights into the hydrophobic and hydrophilic 
characteristics of the complex. Fig. 7 displays the SASA trajectory 
analysis for all complexes. The average SASA values for the 
WT_0407–0108 and TM_0407–0108 complexes were 260.10 ± 3.502 
nm2 and 258.88 ± 2.716 nm2, respectively. For the WT_N039-0003 and 
TM_N039-0003 complexes, the average SASA values were 261.14 ±
2.99 nm2 and 261.79 ± 3.149 nm2, respectively. The WT_Ciprofloxacin 
and TM_Ciprofloxacin complexes had mean SASA values of 258.55 ±
3.05 nm2 and 260.97 ± 3.32 nm2, respectively. Additionally, the 
average SASA values for the WT_1080–0568 and TM_0099–0261 com
plexes were 261.84 ± 3.09 nm2 and 263.18 ± 3.676 nm2, respectively. 
These SASA values provide a comprehensive understanding of the sur
face exposure and interaction dynamics of the protein-ligand complexes, 
highlighting the subtle differences in hydrophobic and hydrophilic 
behavior across various complexes.

3.5.5. Hydrogen bond (H-bond) analysis
The evaluation of protein-ligand interactions, specifically their 

strength and stability, is conducted through H-bond analysis. The Y-axis 
quantifies the number of H-bonds formed between wild-type (WT) and 
mutant (TM) proteins with their respective ligands. The X-axis repre
sents the simulation duration, set at 100 ns. Fig. 8 illustrates the H-bond 
analysis across all complexes. During the 100 ns simulation, 
WT_0407–0108 and TM_0407–0108 complexes formed four H-bonds. 
Conversely, the WT_N039-0003 and TM_N039-0003 complexes exhibi
ted the formation of only two and one H-bonds, respectively. The 
WT_Ciprofloxacin and TM_Ciprofloxacin complexes formed four and 
three H-bonds, respectively. Additionally, the WT_1080–0568 complex 
formed three H-bonds, while the TM_0099–0261 complex formed two H- 
bonds.

3.5.6. Principal component analysis (PCA)
PCA was employed to evaluate the coordinated dynamic movements 

of the alpha carbon in both wild-type (WT) and mutant (TM) proteins 
when complexed with their respective ligands. This analysis utilized two 

Fig. 7. SASA analysis of all complexes. A) Comparative SASA graph of WT and TM in complex with ligand 0407–0108, B) Comparative SASA graph of WT and TM in 
complex with ligand N039–0003, C) Comparative SASA graph of WT and TM in complex with Ciprofloxacin, D) Comparative SASA graph of complex WT with ligand 
1080–0568 and TM with ligand 0099–0261.
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principal components (PC1 and PC2) and eigenvectors to determine the 
direction of variations. The 2-D trajectory projections of all complexes 
were plotted, with eigenvector one on the x-axis and eigenvector two on 
the y-axis, as shown in Fig. 9. Comparative analysis of the PCA plots for 

the complexes WT_0407–0108 with TM_0407–0108, WT_N039-0003 
with TM_N039-0003, and WT_Ciprofloxacin with TM_Ciprofloxacin 
revealed that these complexes occupy significantly less space, indicating 
enhanced protein stability. The ligand binding contributes to the 

Fig. 8. Hydrogen bond analysis of all complexes. A) Comparative hydrogen bond analysis of WT and TM with ligand 0407–0108, B) Comparative hydrogen bond 
analysis of WT and TM with ligand N039–0003, C) Comparative hydrogen bond analysis of WT and TM with Ciprofloxacin, D) WT with ligand 1080–0568 and TM 
with ligand 0099–0261.

Fig. 9. PCA analysis of all complexes. A) Comparative PCA graph of WT and TM with ligand 0407–0108, B) Comparative PCA graph of WT and TM with ligand 
N039–0003, C) Comparative PCA graph of WT and TM with Ciprofloxacin, D) Comparative PCA graph of WT with ligand 1080–0568 and TM with ligand 0099–0261.
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stability of both WT and TM proteins. Similarly, the complexes 
WT_1080–0568 and TM_0099–0261 also exhibited confined projections, 
occupying less space in the trajectory plot, which further indicates 
increased stability.

3.5.7. Free energy landscape (FEL) analysis
The FEL analysis is crucial for examining the protein’s transition, 

stability, and conformation following ligand binding. A lower transition 
state and minimum global energy signify enhanced protein stability 
upon ligand binding. Fig. 10 illustrates the FEL analysis for all com
plexes. The trajectory analysis of the WT_0407–0108 complex reveals 
multiple transition states with several global energy minima, including 
one with a minimum global energy and another with an intermediate 
global energy. In contrast, the FEL analysis of the TM_0407–0108 
complex shows a single transition state with a minimum global energy. 
For the WT_N039-0003 complex, multiple transition states were 
observed, with global energies ranging from minimum to intermediate. 
Conversely, the TM_N039-0003 complex exhibited a clustered energy 
landscape with a single transition state and minimum global energy. The 
global energy landscape of the WT_Ciprofloxacin complex displayed a 
clustered single transition state with global energies ranging from 
minimum to intermediate. In contrast, the TM_Ciprofloxacin complex 
showed multiple transition states with global energies ranging from 
minimum to intermediate. The FEL analysis of the WT_0108–0568 
complex exhibited a clustered energy landscape with a single transition 
state and global energies ranging from minimum to intermediate. 
Similarly, the TM_0099–0261 complex showed a single transition state 
with global energies ranging from minimum to intermediate.

3.5.8. Dynamic cross-correlation matrix (DCCM)
The DCCM provides insights into the time-correlated movements of 

amino acid residues after ligand binding. Bright colors (red-green) with 
minimal deviation in residue motion indicate a positive correlation, 
while the opposite suggests a negative correlation. The DCCM analysis of 
WT_0407–0108, TM_0407–0108, WT_N039-0003, TM_N039-0003, 
WT_Ciprofloxacin, and TM_Ciprofloxacin showed positive correlation 

and self-correlation, with slight motion deviations ranging from 0 (red) 
to 0.75 nm (green) at residue indices 50–100, 260–300, and 400–500. 
This indicates consistent and synchronized movements among the 
amino acid residues. Similarly, the DCCM analysis of complexes 
WT_1080–0568 and TM_0099–0261 also exhibited self-positive corre
lation, with minimal motion deviations in the same residue index ranges 
(50–100, 260–300, and 400–500), showing distances of 0–0.75 nm. 
These findings are illustrated in Fig. 11, depicting the DCCM analysis of 
all complexes.

3.6. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) 
analysis

MMPBSA is a sophisticated computational technique used to esti
mate the total binding free energy, encompassing the covalent in
teractions between proteins and ligands in solution. The MMPBSA 
analysis of the complexes WT_0407–0108, WT_N039-0003, 
WT_1080–0568, WT_Ciprofloxacin, TM_0407–0108, TM_N039-0003, 
TM_0099–0261, and TM_Ciprofloxacin provides deeper insights into 
their binding specificities, affinities, and covalent interactions. A 
comparative MMPBSA analysis of the WT_0407–0108 and 
TM_0407–0108 complexes revealed total binding energies of 7.547 ±
10.308 kJ/mol and − 40.809 ± 11.733 kJ/mol, respectively. Similarly, 
the total binding energies for the WT_N039-0003 and TM_N039-0003 
complexes were − 125.773 ± 73.415 kJ/mol and − 95.386 ± 128.887 
kJ/mol, respectively. The WT_Ciprofloxacin and TM_Ciprofloxacin 
complexes exhibited total binding energies of 15.785 ± 44.616 kJ/mol 
and − 102.903 ± 17.168 kJ/mol, respectively. Furthermore, the MM- 
PBSA analysis of the WT-1080-0568 and TM-0099-0261 complexes 
showed total binding free energies of − 221.437 ± 112.074 kJ/mol and 
14.427 ± 79.492 kJ/mol, respectively. Table 5 presents the MMPBSA 
results, detailing the contributions of various energy components to the 
total binding free energy of all complexes.

Fig. 10. Free energy landscape analysis of all complexes. Gibbs energy landscape of A) WT with ligand 0407–0108, B) TM with ligand 0407–0108, C) WT with ligand 
N039-0003, D) TM with ligand N039-0003, E) WT with Ciprofloxacin, F) TM with Ciprofloxacin, G) WT with ligand 1080–0568 and H) TM with ligand 0099–0261.
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4. Discussion

In many developing and industrialized nations, the escalating drug 
resistance in S. Typhimurium has emerged as a significant health 
concern due to its high worldwide morbidity rate. A multitude of studies 
have highlighted the rise of Multi-Drug Resistant (MDR) strains of S. 
Typhimurium, primarily attributed to the extended and indiscriminate 
use of antibiotics. From 1969 to 2006, research documented the path
ogen’s resistance to several first-generation antibiotics, including 
ampicillin, trimethoprim, tetracycline, and chloramphenicol. Fluo
roquinolones were initially the antibiotics of choice for severe gastro
enteritis and bacteremia caused by S. Typhimurium, owing to their 
efficacy in treating such infections [46]. However, it is now advised to 
refrain from prescribing third-generation or fluoroquinolone antibiotics 
for Salmonella-related gastroenteritis unless the disease is severe or ex
acerbates the patient’s condition, as most cases are self-limiting [47]. 
Fluoroquinolones work by inhibiting DNA synthesis and disrupting the 
activity of DNA gyrase and topoisomerase IV, thereby limiting Salmo
nella’s survival. The mid-2000s and 2010s saw the emergence of second 
and third-generation antibiotics like sulphonamides, cefotaxime, cip
rofloxacin, and nalidixic acid due to increased and unregulated anti
biotic use even for mild Salmonella infection [5]. Reports of 
chromosomal and plasmid-associated resistance development against 

fluoroquinolone in S. Typhimurium emerged primarily due to mutations 
in the active binding site of DNA gyrase and topoisomerase IV. Globally, 
mutations at positions 83 and 87 of the gyrA gene in S. Typhimurium 
isolates were observed, resulting in amino acid changes such as 
SER83PHE and ASP87GLY/ASN. Other DNA gyrase and topoisomerase 
IV subunits, such as gyrB, parC, and parE, also exhibited mutations or 
remained unchanged, depending on geographical origin and host. The 
selective antibiotic pressure on the DNA gyrase led to acquisition of 
single point mutation at 83 of gyrA, expressing low resistance to cipro
floxacin of MIC 0.25 mg/L. Additionally the acquisition of second mu
tation in parC at 80 from serine to isoleucine exhibited intermediate 
ciprofloxacin resistance with MIC ranging from 4 mg/L to 256 mg/L 
with no futher mutational gain in other subunits of DNA gyrase [48]. 
Meanwhile the TM in gyrA of middle eastern strain showed high cipro
floxacin resistance with MIC of 512 mg/L with no additional mutation in 
other subunits of DNA gyrase [18].

A recent study by Kakatkar et al. (2021) explored the development of 
antibiotic resistance in S. Typhimurium due to extended exposure to 
high ciprofloxacin doses. The study identified approximately 40,513 
mutations through whole genome analysis, including point mutations in 
critical genes like gyrA and changes in metabolic pathways due to 
antibiotic pressure. While additional mutations in genes such as gyrB, 
parC, parE, rpoB, and iron, coupled with extensive metabolic pathway 

Fig. 11. Dynamic cross-correlation matrix analysis of all complexes. The correlation matrix of A) WT with ligand 0407–0108, B) TM with ligand 0407–0108, C) WT 
with ligand N039-0003, D) TM with ligand N039-0003, E) WT with Ciprofloxacin, F) TM with Ciprofloxacin, G) WT with ligand 1080–0568 and H) TM with 
ligand 0099–0261.

Table 5 
Overview of MM-PBSA analysis of top 4 natural compounds and ciprofloxacin in complex with wild type and triple mutant DNA Gyrase A protein of Salmonella 
typhimurium.

Targeted 
protein

Natural 
compounds

Van der Waal Energy (kJ/ 
mol)

Electrostatic Energy (kJ/ 
mol)

Polar Solvation Energy 
(kJ/mol)

SASA Energy (kJ/ 
mol)

Total Binding Energy (kJ/ 
mol)

Wild type 0407–0108 − 83.121±9.857 − 84.888±15.569 189.074±17.694 − 13.517±0.492 7.547±10.308
N039-0003 − 0.168±0.248 − 168.188±53.552 42.729±59.031 − 0.147±1.390 − 125.773±73.415
1080–0568 − 58.733±12.731 − 250.318±139.655 96.330±102.955 − 8.716±1.475 − 221.437±112.074
Ciprofloxacin − 3.070±4.740 2.853±32.383 18.223±63.794 − 2.221±2.050 15.785±44.616

Triple mutant 0407–0108 − 92.267±7.367 − 52.057±17.343 115.472±30.463 − 11.956±0.400 − 40.809±11.733
N039-0003 − 0.017±0.018 − 105.977±32.427 11.312± 27.285 − 0.703±1.403 − 95.386±128.887
0099–0261 − 0.003±0.001 − 0.712±1.311 15.731±79.915 − 0.590±0.805 14.427±79.492
Ciprofloxacin − 85.490±9.401 − 264.768±67.171 258.434±75.498 − 11.079±1.367 − 102.903±17.168
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changes, did not directly contribute to fluoroquinolone resistance, they 
did assist in maintaining homeostasis [49]. The presence of a TM solely 
in the DNA gyrase subunit A suggests that strains with these mutations 
can readily adapt, even by intermediate or fluoroquinolone-sensitive 
strains, as no further mutations are required in other subunits to stabi
lize the DNA gyrase A subunit protein and maintain homeostasis. In our 
study, mutational analysis of the TM DNA gyrase A subunit in Salmonella 
Typhimurium using DDMut revealed that only the Ser83Phe point mu
tation stabilized the protein.

Conversely, other point mutations led to protein destabilization. This 
indicates that the DNA gyrase A subunit protein unfolded and became 
more flexible due to the triple mutation. Understanding the combined 
effect of these mutations on the protein is crucial, as it likely caused a 
significant conformational change in the TM protein, potentially 
increasing its resistance to fluoroquinolones. The spread of gyrA TM 
Salmonella Typhimurium strains could pose a severe threat in the future, 
underscoring the importance of finding a potent natural compound 
capable of inhibiting both WT and TM GyrA protein in S. Typhimurium.

In recent years, the utilization of natural compounds derived from 
drug-like small molecules has surged due to their structural and chem
ical diversity. When combined with advanced computational ap
proaches such as virtual screening and molecular dynamics, drug 
discovery becomes more efficient, accurate, and rapid in screening and 
optimizing these compounds [50,51]. The computational approach in 
drug discovery offers the advantage of early toxicity prediction using 
cutting-edge, data-driven machine learning models and algorithms, 
including neural networks and mathematical modeling, to predict the 
pharmacodynamics and pharmacokinetics of the screened molecules 
precisely. This enables the identification of harmful effects of com
pounds at the initial stages of drug discovery, making the process 
cost-effective and efficient [52–54].

Consequently, these computational techniques have emerged as a 
promising strategy for identifying unique lead molecules with high 
therapeutic potential against bacterial pathogens like Salmonella. Our 
advanced computational virtual screening and docking studies identi
fied four natural compounds from the ChemDiv database: CID: 
0407–0108, N039-0003, 1080–0568, and 0099–0261. These com
pounds exhibited exceptional physicochemical properties and docking 
scores higher than the control drug ciprofloxacin with WT and TM DNA 
gyrase subunit A. Trajectory analyses of simulated complexes provide 
deeper insights into the dynamic behavior of the protein-ligand complex 
and the impact of ligand binding to the protein [55]. RMSD assesses the 
deviation of proteins, protein-ligand complexes, or ligands from their 
primary reference structure [56]. RMSD analysis of the protein-ligand 
complexes showed that the average RMSD values of all WT complexes 
were higher than those for the TM complexes, indicating better drug 
binding and structural stability. RMSF analysis revealed significant 
flexibility and fluctuations [57] in residues near the 237th, 260th-300th 
positions, as well as from the 360th-400th and around the 500th posi
tion. Although certain complexes (WT_0407–0108, TM_N039-0003, and 
WT_1080–0568) showed high fluctuation around the 100th residue, it 
was minor in others. This variation could be attributed to the presence or 
absence of TM near the 100th position combined with the effect of 
ligand binding on nearby residues. The roles of these residues are crucial 
as they may influence protein structure and function, potentially 
impacting drug resistance mechanisms. Determining the Rg values in 
protein-ligand complexes is essential for understanding conformational 
flexibility and the dynamics of protein folding and unfolding [58]. 
Further determination of the Rg values indicated that TM with top-hit 
ligands exhibited tighter binding and higher stability than WT with 
top-hit ligands. SASA analysis assesses the contribution of protein active 
sites to solvent effects in the environment [59]. SASA analysis indicated 
greater surface area accessibility and solvent interaction for WT and TM 
proteins when complexed with their respective ligands. TM with top 
ligands showed marginally higher SASA values.

H-bond analysis is crucial for evaluating the structural stability and 

interaction dynamics [60] between WT and TM proteins with their 
respective ligands. The analysis revealed that ciprofloxacin formed a 
greater number of H-bonds with both WT and TM proteins compared to 
other ligands. However, its binding energy and affinity were signifi
cantly lower than those of the potent lead molecules identified in this 
study. PCA was employed to calculate the variances in variables derived 
from fundamental components [61], aiding in the comprehension of the 
dynamic motion complexity in protein-ligand complexes, which is 
related to protein folding and stability. The thermodynamic aspects of 
ligand binding at the atomic level were examined using FEL analysis 
[55]. Both PCA and FEL analyses confirmed the stability of TM when 
complexed with top-hit ligands, suggesting that these ligands are more 
feasible and spontaneous for binding. DCCM analysis, which is based on 
time correlation and covariance from simulated target proteins, graph
ically depicted the collective fluctuations in residue motions [62]. This 
analysis revealed positive correlations in all complexes, indicating 
effective ligand binding to both WT and TM proteins. MM-PBSA analysis 
was utilized to calculate the contributions of various energy compo
nents, such as van der Waals and electrostatic interactions, to the total 
binding free energy of the ligand towards the protein [63]. The 
MM-PBSA analysis indicated that ligand N039-0003 exhibited high total 
binding energy towards both WT and TM proteins, identifying it as a 
potent lead compound. A limitation of this study is its reliance on 
computational methods, necessitating validation of the results through 
in vitro and in vivo experiments. Further research is required to investi
gate the pharmacokinetics, toxicity, and efficacy of the identified com
pounds in clinical settings.

5. Conclusion

Fluoroquinolone-resistant S. Typhimurium, especially with a triple 
mutation in DNA gyrase A, poses a serious global health threat. Our 
mutational stability analysis revealed that the triple mutation in DNA 
gyrase A of S. Typhimurium led to a conformational protein change, 
developing high resistance to fluoroquinolone drugs. Our study findings 
unveiled that natural compounds from the ChemDiv database, such as 
0407–0108, N039-0003, 1080–0568, and 0099–0261, were identified to 
be potent DNA gyrase A inhibitors based on virtual screening, ADME/T 
studies, and dynamics studies. These compounds exhibited higher af
finity and binding energy towards WT and TM DNA gyrase A than the 
conventional fluoroquinolone drug ciprofloxacin, laying the ground
work for future drug development and therapeutic strategies.
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