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ABSTRACT Microscaled proteogenomics was deployed to probe the molecular basis for dif-
ferential response to neoadjuvant carboplatin and docetaxel combination chemo-

therapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies 
uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty 
acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed 
that sensitivity was marked by elevation of DNA repair, E2F targets, G2–M checkpoint, interferon-
gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-
number aberrations identified a resistance-associated 19q13.31–33 deletion where LIG1, POLD1, 
and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA 
expression levels were associated with lack of pathologic complete response, higher chromosomal 
instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC 
preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in 
other cancer types, demonstrating broader clinical implications.

SIGNIFICANCE: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape 
of chemotherapy response associations, including a 19q13.31–33 somatic deletion encoding genes 
serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic 
response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN.
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INTRODUCTION
Ten percent to 15% of breast cancers are designated triple-

negative breast cancers (TNBC) because of low expression 
of HER2, the estrogen receptor (ER), and the progester-
one receptor. TNBC exhibits high mortality and frequent 
chemotherapy resistance (1). A minority of TNBC cases are 
linked to hereditary homologous recombination defects 
(HRD), most commonly in the BRCA1 gene, and are treat-
able with PARP inhibitors (2). However, the majority of 
TNBC cases do not have an obvious hereditary explanation, 
and therefore the underlying DNA repair defects are more 
obscure (3). Cytotoxic chemotherapy is standard of care but 
is only partially effective; hence, lack of pathologic complete 
response (pCR) after neoadjuvant chemotherapy is frequent 
and associated with poor survival (4). Post non-pCR, salvage 
therapy with adjuvant capecitabine has modest efficacy (5). 
The programmed cell death receptor (PD1)–targeting anti-
body pembrolizumab is also approved for neoadjuvant TNBC 
treatment based on the results of the KEYNOTE-522 trial (6). 

In combination with neoadjuvant chemotherapy, pembroli-
zumab significantly prolongs event-free survival versus neo-
adjuvant chemotherapy alone (7). In contrast to metastatic 
TNBC, outcome improvements are not predicted by PD-L1 
IHC in primary disease (8). Carboplatin also has efficacy in 
TNBC. The BrighTNess trial enrolled patients with stage 
II or III operable TNBC and randomized patient treatment 
to one of three arms prior to doxorubicin and cyclophos-
phamide: paclitaxel/carboplatin/veliparib (arm A), paclitaxel/
carboplatin (arm B), or paclitaxel alone (arm C). Carboplatin-
containing arms A and B showed significantly improved pCR 
compared with paclitaxel alone (53% and 58%, respectively, vs. 
31%; ref. 9). The efficacy of carboplatin addition is supported 
by two other randomized neoadjuvant trials: CALGB 40603 
(Alliance; ref. 10) and GeparSixto (11). Thus, in the absence 
of predictive markers for individual components of each 
regimen, the neoadjuvant treatment for TNBC involves up to 
seven different drugs.

Herein we describe the first study to deploy microscaled 
proteogenomics (12) to discover neoadjuvant chemotherapy 
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response biomarkers in TNBC. Snap-frozen, optimal cutting 
temperature compound (OCT)–embedded core needle biop-
sies were accrued from patients enrolled in two clinical tri-
als that investigated a simplified carboplatin and docetaxel 
regimen designed to be less toxic by omitting doxorubicin 
and cyclophosphamide (NCT02547987 and NCT02124902; 
ref. 13). This dataset included germline-matched tumor whole-
exome DNA sequencing (WES), RNA sequencing (RNA-seq), 
and tandem mass tag (TMT)–based proteomics and phos-
phoproteomics. Analyses focused on the identification of bio-
marker associations with pCR, with the goal of identifying 
patients who would be better served with investigational drugs 
at diagnosis rather than suffer an ineffective standard of care. 
Multiple independent datasets were used to validate find-
ings in the discovery analysis, including mRNA profiles of 
other TNBC clinical trials, IHC, preclinical therapeutic studies 
in patient-derived TNBC xenografts (PDX), and pan-cancer 
analysis using data from The Cancer Genome Atlas (TCGA).

RESULTS
Overview of the Proteogenomic Analysis Approach

OCT-embedded, snap-frozen core needle biopsies were 
accrued from consented patients with clinical stage 2 or 3 
TNBC (70% Caucasian, 27% African American, and 3% other 
racial categories). Patients were subsequently treated with six 
cycles of neoadjuvant carboplatin and docetaxel combination 
chemotherapy (NCT02547987 and NCT02124902). Pretreat-
ment samples from 59 patients had >25% tumor content (TC) 
and were ultimately analyzed. For 16 patients, an additional 
sample was obtained 48 to 72 hours after initiating chemother-
apy. A Reporting Recommendations for Tumor Marker Prog-
nostic Studies (REMARK) diagram demonstrates sample flow 
into different analytical pipelines (Fig.  1A). Using previously 
described BioTEXT sample processing and microscaled prote-
ogenomics methods (12), frozen core biopsies were processed 
on a cryotome to produce 50-μm sections for analyte extraction 
interspersed with 5-μm sections to document TC. Alternating 
50-μm sections were distributed into three different analyte 
preparation approaches to ensure even representation of ana-
lytes from different layers in the biopsy. Multianalyte extrac-
tion allowed for paired normal/tumor DNA exome sequencing 
(100×), RNA-seq, and quantitative, multiplexed (TMT) mass 
spectrometry (MS)–based proteomics and phosphoproteomics 
(Fig. 1B; Supplementary Tables S1–S3).

Sample-level mRNA to protein correlations deteriorated in 
seven samples with an average TC below 45% (Supplementary 
Fig. S1A). Based on this cutoff, a total of nine samples with 
proteomics data (including one sample that lacked RNA and 
one sample that lacked both RNA and protein) were there-
fore excluded from further bioinformatic analyses. TMT11 
multiplexes were linked using a pooled sample common 
reference to serve as a denominator for calculating peptide 
and phosphosite ratios (12). The common reference samples 
showed very strong correlations across multiplexes, indicat-
ing consistent data quality (Supplementary Fig.  S1B). For 
each qualified sample, DNA, RNA, and protein level informa-
tion was available for an average of 10,500 genes (Fig. 1C) and 
phosphoproteomic analysis quantified  ∼27,000 phospho-
rylation sites in  ∼5,000 distinct phosphoproteins (Fig.  1C). 

Comparable with previous Clinical Proteomic Tumor Analy-
sis Consortium (CPTAC) proteogenomic analyses, median 
per gene mRNA to protein correlation was 0.37 (ref. 14; Sup-
plementary Fig. S1C). Genes with significant positive RNA–
protein correlations were enriched for Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways involved in cellular 
respiration as well as amino acid and lipid metabolism. Genes 
with lower correlations were enriched in pathways containing 
large protein complexes serving the spliceosome, replication, 
transcription, and pyrimidine metabolism (Supplementary 
Fig.  S1C). Consistent with previous observations, protein 
data significantly outperformed RNA data for coexpression-
based gene function predictions (Supplementary Fig.  S1D; 
refs. 12, 15–17).

A pairwise analysis was also conducted using 14 cases with 
baseline high TC (out of 16 pairs) matched to a second high 
TC specimen collected 48 to 72 hours after treatment (only 
13 pairs had RNA data; Fig.  1B). Whereas immune-related 
pathways were downregulated upon treatment at both the 
RNA and protein level, cell-cycle and metabolic pathways 
(except glycolysis) were significantly upregulated specifically 
at the protein level (Fig. 1D; Supplementary Table S4). Induc-
tion of DNA replication and repair pathways linked to the 
cell cycle was observed, likely in response to genotoxic stress 
triggered by chemotherapy exposure (18). This observation 
was also present in the phosphorylation site data (Supple-
mentary Fig. S1E). Sets of phosphosites induced by treatment 
overlapped with those established to be induced by noco-
dazole and ionizing radiation treatment, which is logical in 
the setting of docetaxel and carboplatin exposure. Increases 
in phosphorylation were also detected for targets of the cell 
cycle and DNA damage kinases CDK1, CDK2, and ATM 
(Supplementary Fig. S1E).

Exploration of Proteogenomic Pathway Signatures 
and Response to Chemotherapy

Primary study endpoints were pCR and residual cancer 
burden (RCB) in the surgical specimen where 0 indicates 
pCR and I to III indicate increasing levels of residual disease 
(19). PAM50 intrinsic subtype (20), TNBC type (21), and 
racial categories lacked association with pCR, as did other 
cohort-specific clinical metadata (Supplementary Fig.  S1F). 
Expected associations for pCR with germline mutations in 
the homologous recombination genes BRCA1/2 and PALB2 
(22) or with homologous recombination deficiency–associ-
ated Catalogue of Somatic Mutations in Cancer (COSMIC) 
signature 3 were also not observed (23, 24). These negative 
findings emphasize the limitations of our study in terms of 
sample size. However, an elevated COSMIC signature 6 score, 
indicating a mismatch repair defect (23, 24), was associated 
with high RCB (II or III; P = 0.03; Supplementary Fig. S1G). 
Gene set enrichment analysis (GSEA) of proteogenomic fea-
tures (Supplementary Table S5) that differed by pCR status 
indicated upregulation of the Molecular Signatures Database 
(MSigDB) Hallmark metabolic pathways, including oxidative 
phosphorylation, fatty acid metabolism, and adipogenesis 
in samples without pCR. These associations were observed 
in the proteomic data but not at the mRNA level (Fig.  1E; 
Supplementary Table  S6). In contrast, immune signaling 
(interferon alpha and gamma response) and cell cycle (G2–M 



Proteogenomic Markers of Chemotherapy Resistance in TNBC RESEARCH ARTICLE

 NOVEMBER  2022 CANCER DISCOVERY | 2589 

Figure 1.  TNBC patient sample overview. A, REMARK diagram showing pre- and on-treatment sample accrual schema from patients with TNBC 
enrolled in two clinical trials [NCT02544987 (BCM) and NCT201404107 (WashU)] and treated with carboplatin and docetaxel in the neoadjuvant set-
ting. *, <45% samples were later excluded from the analysis based on evidence from data quality control. B, Overview of available omics datasets from 
59 patients (22 tumors with pCR and 37 tumors without pCR). Pathogenic BRCA1/2 and PALB2 mutation status, RCB, and patient race are indicated 
via color-coded annotation tracks. C, Venn diagram showing the overlap of gene IDs detected across multiple analytes and omics data profiled. SCNA, 
somatic copy-number alteration. D, Hallmark metabolism pathways are induced by chemotherapy exclusively at the protein level. Scatter plot shows 
signed −log10 FDR from GSEA using the signed (by direction of change) −log10 P values from paired Wilcoxon signed rank tests comparing RNA (x-axis) 
and protein levels (y-axis) for on-treatment (cycle 1, day 3) samples to matching baseline samples (n = 14). (continued on next page)
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checkpoint and E2F and MYC target) pathways were elevated 
in pCR cases in both the proteomic and transcriptomic data-
sets (Fig.  1E). Enrichment analysis of differential phospho-
rylation sites [posttranslational modification-set enrichment 
analysis (PTM-SEA); ref. 25] logically demonstrated elevated 
phosphoproteome-driven signatures in samples from pCR 
cases for treatment with inhibitors that generate DNA dam-
age (etoposide, hydroxyurea, and ionizing radiation; Fig. 1F). 
Elevated MARK2 target sites were enriched in non-pCR 

tumors (Fig.  1F), corroborating prior evidence for higher 
MARK2 levels in cisplatin resistance in other cancer types (26, 
27). Consistent with significantly elevated cell-cycle pathways 
observed in pCR samples in the RNA and protein data, CDK1, 
2, and 7 and CDC7 target phosphosites were also significantly 
higher in pCR samples (Fig. 1F). Further sample-wise inves-
tigation of cell-cycle proteogenomic features revealed that 
multigene proliferation scores (MGPS), single-sample GSEA 
(ssGSEA) scores, and PTM-SEA scores for cell cycle–related 
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pathways and cyclin-dependent kinases were higher in pCR 
but were variable in non-pCR (Supplementary Fig.  S2A). 
Of note, a subset of non-pCR samples had elevated CDK4 
activity and Rb phosphorylation (highlighted in the box in 
Supplementary Fig. S2A), and Rb phosphorylation was mar-
ginally higher in non-pCR tumors (Supplementary Fig. S2B). 
To study the therapeutic significance of these findings, TNBC 
cell lines from the DepMap resource were explored (www.dep-
map.org). In this database, higher Rb protein was associated 

with reduced carboplatin response but enhanced CDK4/6 
inhibitor response (Supplementary Fig. S2C).

Immune Pathways and Response to Chemotherapy
Because interferon alpha and gamma response signatures 

were elevated in samples from pCR cases, signals from the 
immune microenvironment were further explored (Fig. 2A). 
Protein-derived immune stimulatory scores, previously found 
to be well correlated with immune infiltration (14), as well as 
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PD-L1 RNA, protein, and phosphorylation levels, were sig-
nificantly higher in pCR-associated samples (Fig. 2A and B). 
Nonsynonymous mutation load was associated with neither 
pCR (Wilcoxon rank sum P  =  0.57, median for pCR  =  77, 
median for non-pCR  =  78) nor immune scores (Spearman 
rho  =  −0.17, P  =  0.25), suggesting increased mutation bur-
den was not a strong determinant of immune infiltration in 
this TNBC dataset. Rather, immune scores were significantly 
anticorrelated with chromosomal instability index (CIN; 
Spearman Rho  =  −0.61, P  =  6.2e−6; Fig.  2C). Both PD-L1 
protein and phosphoprotein levels significantly correlated 
with PD-L1 IHC (Fig.  2D and E). Similar correlations were 

also observed between PD-L1 RNA and IHC (Supplemen-
tary Fig. S2D). Representative IHC images for high and low 
PD-L1 staining are shown in Supplementary Fig.  S2E and 
S2F, respectively.

Metabolic Pathway Analysis and Response to 
Chemotherapy

As noted above, (Fig. 1D and E) metabolic pathway enrich-
ment appeared specific to proteomic data (with FDR cor-
rection). Both GSEA (Fig.  1E) and ssGSEA showed that 
differential metabolic pathways, including oxidative phos-
phorylation, adipogenesis, and fatty acid metabolism, as 

Figure 2.  Proteogenomic features associated with the immune microenvironment are elevated in pCR tumors relative to non-pCR tumors. A, Heat map 
shows protein-based Hallmark ssGSEA scores, protein-based immune modulator scores, RNA-based immune profiles, and proteogenomic features for 
immune-checkpoint genes that are targets of FDA-approved inhibitors. Within each group (pCR and non-pCR), samples are ordered by increasing immune 
stimulatory score. *, P < 0.05 by the Wilcoxon rank sum test comparing non-pCR with pCR tumors. NA, not available. B, The protein-based immune stimu-
latory score is significantly higher in pCR tumors than in non-pCR tumors (P = 0.01, Wilcoxon rank sum test). Box plots show interquartile range (IQR) with 
the median marked in the center. Whiskers indicate 1.5× IQR. C, The immune stimulatory score is negatively correlated to CIN (Spearman rho = −0.612, 
P = 6.2e−6). The scatter plot shows immune stimulatory score on the x-axis and CIN on the y-axis. (continued on next page)
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well as glycolysis, were significantly higher in pretreatment 
tumors without subsequent pCR (Fig. 3A). Further analyses 
of the individual protein levels identified many chemother-
apy resistance–associated metabolic proteins, such as those 
directly involved in the tricarboxylic acid cycle (ACO2, FH, 
MDH2, SUCLG1, SUCLG2, PDP1, and DLAT), the electron 
transport chain (SDHC and UQCR10), fatty acid metabolism 
(CRAT, ACADS, ACAT1, DECR1, ECHS1, and HADHB), 
and amino acid catabolism (ALDH6A1, HMGCL, DBT, and  
BCKDHB; Fig. 3B). Although pCR-associated metabolic pathway 
scores were more robust at the proteomic data level than 
transcriptomic data, this did not equate to lack of mRNA 
and protein correlation for all metabolism gene products 
associated with non-pCR. A subset (29 of 43) from the 
relevant Hallmark metabolic pathways showed sufficient 
protein–mRNA correlation to allow independent validation 
of metabolic gene expression associations with pCR at the 
mRNA level (Fig.  3B) in the BrighTNess trial dataset (9). 
In this study, patients in arms A and B received combina-
tion treatment with carboplatin and paclitaxel plus/minus 
veliparib (addition of which did not affect outcomes), as 
well as subsequent treatment with doxorubicin and cyclo-
phosphamide (9). Baseline RNA expression data for the 
subset of metabolism-associated resistance genes with high 
mRNA–protein correlation were used for association with 
pCR status on data from both arms A and B combined. 
Geometric mean metabolic scores were significantly higher 
for non-pCR cases as compared with pCR cases (Wilcoxon 
rank sum test, P =  0.003; N =  359; Supplementary Fig.  S3). 
Additionally, increasing metabolic scores were observed as 
the RCB category increased (Kruskal–Wallis test, P = 0.0024;  
Fig. 3C).

Proteogenomic Analyses of Copy-Number 
Alteration Reveal Novel Chemotherapy  
Response Biomarkers

The somatic landscape of TNBC is dominated by recur-
rent copy-number alterations (CNA; ref.  28); however, the 

significance of many recurrent CNA events remains unclear, 
because typically many genes are involved in larger scale chro-
mosomal deletions and rearrangements (29). A typical pattern 
of CNA for TNBC was observed in this dataset (Supplemen-
tary Fig.  S4A). To explore whether chemotherapy response 
correlates with the expression of genes located at specific 
chromosomal locations (cytobands), GSEA was run against 
the cytoband database (Fig.  4A). Individual gene expression 
ranks derived from the non-pCR versus pCR sample compari-
son using a signed −log10 P value derived from the Wilcoxon 
test were used as the input for this analysis. This unbiased 
prioritization demonstrated that expression of gene products 
from the 8q21.3 (amplified) and 19q13.31–33 (deleted) cyto-
bands was elevated and suppressed, respectively, in non-pCR 
versus pCR tumors (Fig.  4B). Four genes located at 8q21.3, 
RMDN1, CPNE3, DECR1, and OTUD6B, showed higher mRNA 
and protein expression in non-pCR tumors (Supplementary 
Fig. S4B). In addition, RIPK2, which may mediate metastasis 
in advanced breast cancer (28), also located on 8q21.3, was 
significantly higher in non-pCR tumors but only at the pro-
tein level. Similarly, four genes located on 19q13.31–33, LIG1, 
PPP5C, BCL3, and NOSIP, showed lower mRNA and protein 
expression in non-pCR tumors (Fig.  4C). Both mRNA and 
protein level expression from these coordinately downregu-
lated genes were confirmed to be suppressed in association 
with single-copy LIG1 loss (GISTIC = −1) status in a subset of 
non-pCR–associated samples (Supplementary Fig. S4C). Hall-
mark pathway GSEA of the genes on cytoband 19q13.31–33 
showed enrichment in the DNA damage repair (DDR) path-
way, with LIG1, XRCC1, POLD1, and ERCC2 comprising the 
leading-edge genes (Fig. 4D). LIG1 showed the strongest asso-
ciation with treatment response at the protein level, followed 
by POLD1 (Fig. 4D).

To determine whether these observations were repro-
ducible in other datasets, the association of LIG1, XRCC1, 
POLD1, and ERCC2 mRNA with pCR and RCB was evaluated 
at the mRNA level in the BrighTNess trial. For this analysis, 
the two carboplatin- and paclitaxel-containing arms were 

Figure 2. (Continued) D and E, Scatter plots showing the Pearson correlation between PD-L1 IHC levels with PD-L1 protein (D) and phosphoprotein 
levels (E). pCR cases are shown in green and non-pCR in orange.
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Figure 3.  Proteogenomic features associated with the lack 
of pCR in TNBC tumors. A, Heat map showing ssGSEA normal-
ized enrichment score for metabolic Hallmark pathways that are 
significantly higher in non-pCR cases, arranged by RCB 0 (pCR) 
and RCB I/II/III (non-pCR). Shown are the four pathways that 
showed significant enrichment at either the RNA or protein level in 
Fig. 1E. Single-sample pathway enrichment scores were assessed 
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(red). The Wilcoxon rank sum test was used to compare scores for 
non-pCR vs. pCR scores; *, P < 0.05. NA, not available. B, Member-
ship of differentially regulated proteins to pathways highlighted 
in A. Proteins (rows) belonging to a given pathway (columns) are 
shown in light green. The differential expression (DE) at protein 
and mRNA levels for each gene along with mRNA–protein cor-
relation scores are shown as signed −log10 P value (signedp). 
C, A multiomics metabolic gene signature derived for genes that are 
correlated at mRNA and protein levels was further investigated in 
patients treated with carboplatin and paclitaxel in the BrighTNess 
clinical trial (treatment arms A and B) for which RNA-seq data were 
available. The mean mRNA expression score for this signature was 
significantly higher in higher RCB tumors.
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bands within the chromosome, GSEA was used to identify regions from chromosomal location databases enriched with differential genes [GSEA input 
was ranked expression list (signed −log10 P value) from Wilcoxon rank sum tests]. Overrepresented cytobands that were either enriched or depleted 
using differentially expressed mRNA and protein are indicated in B, and the overlapping sets were used for further analysis. B, Plot showing significantly 
enriched or depleted cytobands obtained by running differential mRNA and protein ranked lists through GSEA. NES, normalized enrichment score. Genes 
downregulated in non-pCR samples corresponding to cytoband 19q13.31–33 are indicated in C. C, Venn diagram showing differential (non-pCR vs. pCR) 
mRNA and proteins located on cytoband 19q13.3. (continued on following page)



Proteogenomic Markers of Chemotherapy Resistance in TNBC RESEARCH ARTICLE

 NOVEMBER  2022 CANCER DISCOVERY | 2595 

F 

LIG1

POLD1

XRCC1

ERCC2

1.938

1.3134

1.984

1.2392

0.01

0.3

0.01

0.4

1 1.5 2 2.5 3 3.5
Hazard ratio

Gene HR P

Wilcoxon, P = 0.00085

2

3

4

5

pCR RD

LI
G

1

Wilcoxon, P = 0.00014

2

3

4

5

pCR RD

P
O

LD
1

Wilcoxon, P = 0.11

2.0

2.5

3.0

3.5

4.0

pCR RD

X
R

C
C

1

Wilcoxon, P = 0.15

2

3

4

pCR RD

E
R

C
C

2

Response category
(pCR n =196; RD n = 163)

E BrighTNess (treatment arms A and B)

Hatzis dataset

D

0
0.5 1
1.5 2
2.5 3
3.5 4

Enrichment ratio

−3 −2.5 −2 −1.5 −1 −0.5 0

ERCC2

XRCC1

POLD1

LIG1

Protein mRNA 

Signed –log (P value) [non-pCR vs. pCR]

P < 0.05

19q13.33

19q13.33

19q13.31

19q13.32

UV response up

MYC targets, variant 2

TNFA signaling via NF_B

Protein secretion

DNA repair G
en

e
C

yt
ob

an
d

Figure 4. (Continued)  D, Overrepresenta-
tion analysis (ORA) shows that differential 
19q13.31–33 genes are enriched with Hallmark 
DNA repair pathway genes. Downregulation 
of these DNA repair genes at the mRNA and 
protein levels in non-pCR cases is shown in the 
bar chart on the right as signed −log10 P values 
from Wilcoxon rank sum tests. E, Box plot 
comparing RNA expression of DNA repair genes 
located on 19q13.31–33 in the previously 
published BrighTNess clinical trial (treatment 
arms A and B), in which patients were treated 
with carboplatin and paclitaxel. The Wilcoxon 
rank sum test was used to compare residual 
disease (RD) cases with pCR cases. F, Forest 
plot showing hazard ratios (HR) and P values for 
metastasis-free survival associated with LIG1, 
POLD1, XRCC1, and ERCC2. HR is based on 
categorizing samples using a median expression 
cutoff for each gene in the Hatzis dataset.

combined to parallel the docetaxel and carboplatin treat-
ment in this study (9). LIG1 and POLD1 were confirmed to 
be significantly downregulated in baseline tumor samples 
from patients who experienced residual disease (Fig.  4E). 
Similar differences were not observed in the paclitaxel-only 
arm, although the sample size was smaller (treatment arm C, 
P > 0.05; Supplementary Fig. S4D). Low RNA expression levels 
for LIG1 and XRCC1 were also significantly associated with 
poor metastasis-free survival in the TNBC subset of another 
neoadjuvant chemotherapy–treated patient cohort (ref.  30; 
Fig.  4F; Supplementary Fig.  S4E). Finally, a trial where a 
modest number of patients were treated with single-agent cis-
platin neoadjuvant therapy was interrogated (31). Consistent 
with the other datasets, LIG1 mRNA levels were significantly 
lower in samples associated with stable or progressive disease 
(SD + PD) as opposed to samples associated with a complete 
or partial response (CR  +  PR; Supplementary Fig.  S4F). Of 
the four DDR genes located within 19q13.31–33, LIG1 was the 
most consistently associated with chemotherapy resistance 

and poor metastasis-free survival across datasets (Fig. 4E and 
F; Supplementary Fig. S4E and S4F).

Molecular Features of TNBCs  
Harboring LIG1 Deletion

The associations between LIG1 deletion and/or reduced 
expression with tumor pathophysiologic features were fur-
ther investigated in the discovery set. Low LIG1 copy-number 
levels (GISTIC  =  −1) were observed in 8 of the 31 (∼26%) 
tumors without pCR (Fig.  5). LIG1 copy-number log ratios 
were strongly and positively correlated with the level of 
both LIG1 mRNA (Pearson, R = 0.67, P = 2.8e−06) and LIG1 
protein (R  =  0.55, P  =  8.2e−05; Supplementary Fig.  S5A 
and S5B). At the genomic level, COSMIC HRD signature 3 
was lower in tumors with LIG1 loss (t test, P = 0.01; Fig. 5). 
In contrast, tumors harboring LIG1 loss exhibited signifi-
cantly higher CIN (t test, P  =  0.0003; Fig.  5). Although no 
significant differences were observed in immune stimula-
tory scores when LIG1 loss tumors were compared other 
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tumors, tumors with LIG1 loss had lower immune stimula-
tory scores when compared with tumors that were associated 
with pCR (P  =  0.01; Supplementary Fig.  S5C). At the level 
of phosphosite expression-based PTM-SEA (25) analysis, 
the IL33 pathway was significantly downregulated in LIG1-
loss tumors (Supplementary Fig.  S5D and S5E). Tumors 
with LIG1 loss also had significantly higher protein-based 
proliferation scores (p-MGPS; Wilcoxon P  =  0.004; Fig.  5) 
as well as upregulation of CDK1/2 activity (Supplementary 
Fig. S5D) in PTM-SEA analysis of differential phosphosites 
(25), supporting increased cell-cycle activity (FDR P < 0.05). 
Collectively, these results suggest that the loss of LIG1 is 
associated with a constellation of poor prognosis features 
including higher proliferation rates, a less active immune 
microenvironment, and higher copy-number instability. Fur-
thermore, when the phosphoproteomic data were examined, 
signatures of EGFR (gefitinib) and PI3K (wortmannin) per-
turbations were significantly enriched in LIG1-loss tumors 
but in a negative direction (Supplementary Fig.  S5D and 
S5E). Because LIG1-loss tumors have suppressed EGFR and 

PI3K signaling, they may be less responsive to EGFR, PI3K, 
or AKT inhibition.

LIG1 and Chemotherapy Response in 
Model Systems

When chemotherapy-resistance biomarkers are identified, 
the question arises as to whether the biomarker relation-
ship is drug selective. Model systems can be useful in this 
regard because patients almost always receive multiple drugs. 
Another concern is whether a biomarker is associated with 
intrinsic resistance, acquired resistance, or both. Patient data 
suggested a higher frequency of LIG1 copy loss in metastatic 
disease (Supplementary Fig. S6A). Patterns of 19q13.31–33 loss 
during malignant progression were therefore explored using 
three orthotopic PDX models generated from a single patient 
on the discovery trial NCT02544987. WHIM68 grew from the 
pretreated breast primary tumor, WHIM74 from a surgical 
sample accrued after 5 months of neoadjuvant carboplatin and 
docetaxel, and WHIM75 from a liver metastasis that appeared 
1 year after treatment initiation. Proteogenomic analysis 
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revealed a progressive loss of LIG1 at the copy-number, mRNA, 
and protein levels as the tumor progressed to a chemother-
apy-resistant state (Fig.  6A). Progressive loss of LIG1 protein 
was confirmed by Western blotting (Fig.  6A; Supplementary 
Fig. S6B) along with similar reductions of POLD1 and XRCC1 
protein expression. Consistent with the progressive loss of 
chemotherapy sensitivity observed clinically, WHIM68, which 
expressed the highest LIG1 level, was sensitive to carboplatin, 
whereas WHIM74 and 75 were progressively and remarkably 
less sensitive (Fig. 6B; Supplementary Table S7). Interestingly, 
this relationship was not as marked with docetaxel treatment 
(Supplementary Fig. S6C; Supplementary Table S7). Of note, 
a BRCA2 loss-of-function somatic mutation was present in 

the baseline PDX (WHIM68) but was undetectable in the 
two PDXs derived from patient tumors after treatment. This 
suggests a treatment-induced clonal selection—that is, as the 
patient was treated, the BRCA2-mutant clone regressed, and a 
LIG1-deleted clone expanded. To further assess the potential 
association between LIG1 loss and selective carboplatin insen-
sitivity, a large TNBC PDX cohort from the NCI PDXNet pro-
gram was examined (32). LIG1 mRNA levels were significantly 
lower in PDXs that failed to demonstrate a CR to carboplatin 
(Fig.  6C), and this relationship was not significant for doc-
etaxel treatment (Supplementary Fig.  S6D). A second inde-
pendent TNBC PDX sample with short-term in vitro treatment 
with multiple different oncology drugs was also examined 

Figure 6.  LIG1 association with advanced TNBC disease in preclinical models. A, Proteogenomic status of LIG1, POLD1, and XRCC1 in three PDX models 
derived from longitudinal biopsies from the same patient with TNBC prior to any treatment (WHIM68), at the time of surgery after completing 5 months of 
neoadjuvant carboplatin and docetaxel (WHIM74), and from a liver metastasis 1 year after treatment initiation (WHIM75). Mutation and copy-number data 
were derived from WES and RNA from RNA-seq, and protein data were obtained from TMT proteomics generated by this current study. Bottom, representa-
tive Western blots from three biological repeats for LIG1, POLD1, and XRCC1 protein levels. GAPDH was used as a loading control. WT, wild-type. *, stop 
codon. B, Tumor volume was measured in three PDX models. Black and red lines indicate changes in tumor volume in PDXs treated with vehicle and carbopl-
atin, respectively. WHIM68, with the highest LIG1 protein levels, was most sensitive to carboplatin, whereas WHIM74 and 75, which displayed progressive 
LIG1 loss at the copy-number, mRNA, and protein levels, were insensitive to carboplatin treatment. P values derived from a general linear model within each 
PDX were computed using estimated mean log2 fold changes in tumor volume at day 28 versus day 0 for each treatment arm. (continued on next page)
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Figure 6. (Continued) C, Box plots showing LIG1 
mRNA levels in TNBC PDXs categorized into CR 
and non-CR groups. After 4 weeks of carboplatin 
treatment, CR was defined as PDXs with nonpalpa-
ble tumors, and non-CR was defined as PDXs with 
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highlighted in red.
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[ref.  33; Breast Cancer PDTX Encyclopaedia (BCaPE) data-
base]. This dataset demonstrated that LIG1 copy-number loss 
was uniquely correlated with carboplatin resistance among 
over 100 drugs tested (Fig. 6D).

LIG1 Copy-Number Loss Is Associated with Poor 
Progression-Free Survival and CIN across Multiple 
Cancer Types

Gene copy-number analysis of tumors characterized by 
TCGA demonstrated that LIG1 single-copy loss is present 
in other cancer types. In the TCGA pan-cancer dataset, LIG1 
heterozygous loss was associated with poor progression-free 
survival (PFS; Fig. 7A; P < 0.0001), significantly higher fraction 
genome altered (Fig. 7B), and lower signature 3 scores (suggest-
ing proficient homologous recombination; Fig.  7C). Cancer 
types driving these relationships include endometrial carci-
noma (hazard ratio = 2.23, P = 0.02), head and neck squamous 
cell carcinoma (hazard ratio = 1.46, P = 0.03 ), prostate adeno-
carcinoma (hazard ratio  =  2.07, P  =  0.02), colon adenocarci-
noma (hazard ratio = 1.75, P = 0.03), and most convincingly 
renal papillary cell carcinoma (hazard ratio  =  4, P  =  0.0001; 
Fig.  7D). Despite a marginal association between PFS and 
LIG1 loss in testicular germ cell tumors, the seminoma sub-
type, which demonstrates exquisite sensitivity to carboplatin 
(34), displayed no cases of LIG1 loss (Supplementary Fig. S7A). 
Higher genomic instability was observed with LIG1 loss in sev-
eral other cancers (Fig. 7E, fraction genome altered in TCGA 
cohorts; Supplementary Fig. S7B, CIN in CPTAC cohorts).

DISCUSSION
The absence of a baseline pCR predictor is a persistent 

unmet need for the precision treatment of TNBC. Patients 
without pCR suffer prolonged exposures to toxic and inef-
fective treatment and therefore do not receive alternative 
treatment soon enough. Additionally, PD-L1 IHC assays have 
failed to predict the benefit of immune-checkpoint blockade 
in TNBC (35). Thus, alternative biomarkers for antitumor 
immunity are required. This study suggests that integrated 
proteogenomic characterization provides more extensive 
information on the immune microenvironment that could be 
used to complement PD-L1 IHC. Although a TMT-based pro-
teomic assay for PD-L1 would not be practical, targeted pro-
teomic assays optimized for quantitative measurement using 
heavy isotope–labeled peptides for multiple immune response 
components are an efficient and cost-efficient approach that 
could complement IHC (36). Secondly, we observed a novel 
association for baseline oxidative phosphorylation and fatty 
acid metabolism gene products with chemoresistance in 
TNBC. These findings are supported by functional studies in 
TNBC model systems demonstrating a role for oxidative phos-
phorylation and fatty acid metabolism as drivers of TNBC 
chemoresistance (37, 38). In fact, fatty acid synthase inhibition 
using the proton pump inhibitor omeprazole in combination 
with neoadjuvant chemotherapy in patients with TNBC is 
currently being evaluated in a phase II trial (NCT02595372). 
pCR prediction models could therefore be strengthened by 
the inclusion of protein level analysis of these pathways. The 
cellular origin of these resistance-associated metabolic signals 
is unresolved. An additional possibility is immunosuppressive 

tumor-associated macrophages with high lipid content (39). A 
third class of potential pCR predictors are G2–M checkpoint 
components, E2F regulators, and MYC target pathways. For 
example, TNBC tumors with high/intact Rb protein and 
phosphorylation levels have lower pCR rates and lower levels 
of proliferation and E2F target gene expression than tumors 
with the loss of Rb protein (14). CDK4/6 or CDK2 inhibi-
tors could therefore be an alternative treatment for RB intact 
TNBC. Finally, the proteomic analysis clearly assists in the 
prioritization of genomic chromosomal alterations associated 
with pCR status, exemplified herein by the identification of 
LIG1 as a TNBC chemotherapy-resistance and multicancer-
type poor prognosis marker. The finding from preclinical 
models that LIG1 loss is a selective biomarker for carboplatin 
resistance is provocative. The use of carboplatin adds toxicity 
to an already toxic anthracycline-based regimen and could 
potentially be avoided in LIG1-depleted tumors.

Regarding LIG1 loss as a potential pathogenetic event in 
TNBC, there are already mechanistic studies of LIG1 loss that 
support this hypothesis. LIG1 encodes an ATP-dependent 
DNA ligase that seals DNA nicks during replication, recom-
bination, and a variety of DNA damage responses (40). Of 
the three DNA ligases in the human genome (LIG1, 3, and 
4), LIG1 is the main enzyme responsible for ligating Okazaki 
fragments during lagging-strand synthesis at the replication 
fork during S-phase (41–43). LIG1 also ligates single-stranded 
or double-stranded DNA breaks in various DDR pathways, 
including long-patch base-excision repair, nucleotide-excision 
repair, and alternative nonhomologous end-joining repair 
(44, 45). A phenotype for LIG1 deficiency in humans was first 
identified in an immunodeficient patient with homozygous 
germline hypomorphic LIG1 alleles causing impaired Okazaki 
fragment ligation (46). Insufficient LIG1 activity results in the 
accumulation of replication intermediates that cause single-
stranded and double-stranded breaks (DSB; refs. 47, 48), 
ultimately leading to reduced genome integrity. In transgenic 
mice, hypomorphic LIG1 alleles were associated with high sus-
ceptibility to cancer formation (49). However, the relevance of 
these observations can be challenged in the setting of TNBC, 
because single-copy LIG1 loss observed in our studies may not 
produce sufficient functional deficiency to generate a phe-
notype. However, codeletion of LIG1, POLD1, and XRCC1 on 
19q13.31–33 may produce a hemizygous compound deficiency 
phenotype because all three genes serve lagging-strand syn-
thesis. XRCC1 is particularly noteworthy because LIG3/XRCC1 
provides a backup pathway for LIG1-mediated DNA ligation 
during DNA repair and lagging-strand DNA synthesis (50).

The presence of LIG1 loss was found to be orthogonal 
to the HRD mutational signature 3. Consequently, LIG1-
deficient cells may be required to be proficient in DSB repair, 
that is, HRD and LIG1 loss are orthogonal routes to TNBC 
pathogenesis, and this potentially could explain the correla-
tion with carboplatin insensitivity. The PDX study (Fig.  6) 
hints at this, as the model derived from the pretreatment 
sample (WHIM68) had a BRCA2 frameshift mutation and 
no LIG1 loss, and the subsequent carboplatin-resistant lines 
(WHIM74 and 75) had lost the BRCA2 mutation and gained 
a LIG1 hemizygous deletion. It remains unclear why LIG1 loss 
is so strongly associated with chromosomal instability across 
cancer types, and mechanistic studies connecting these events 
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Figure 7.  Pan-cancer analysis of LIG1 loss. A, Kaplan–Meier curve showing significantly reduced (log-rank P value) PFS for tumors with single-copy loss of 
LIG1 (HETLOSS, GISTIC ≤−1, indicated in orange) in the TCGA pan-cancer cohort. B, Box plot showing higher fraction genome altered (FGA) in tumors with LIG1 
copy-number-loss tumors (shown in teal) relative to tumors that were LIG1 wild-type or displayed LIG1 gain (shown in orange). C, Violin plot showing significantly 
lower (Wilcoxon rank sum test) COSMIC signature 3 scores in LIG1-loss tumors (shown in teal). D, Forest plot showing the impact of LIG1 copy-number loss 
on PFS by cancer type along with LIG1 wild-type (WT)/gain/loss frequency, HR, and corresponding P value. BLCA, bladder urothelial carcinoma; BRCA, breast 
invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; 
GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, 
liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, 
testicular germ cell tumors; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma. E, Box plot showing significantly higher (by Wilcoxon rank 
sum test) FGA (representing chromosomal instability) in tumors that had LIG1 copy-number loss versus tumors with either wild-type LIG1 or LIG1 copy-number 
gain. Shown are the only five cancers (HNSC, UCEC, COAD, PRAD, and KIRP) that displayed a significant association between LIG1 loss and adverse prognosis.
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are an important next step. However, it can be hypothesized 
that cells that enter mitosis with unrepaired lagging strands 
are at risk for chromosomal breakage, illicit chromosomal 
fusion events, and aneuploidy.

In conclusion, our findings emphasize the potential of 
microscaled proteogenomic approaches for the investiga-
tion of cancer treatment resistance. Follow-up mechanistic 
studies are clearly warranted, not just for LIG1-related biol-
ogy but also, for example, the role of lipid-related metabolic 
signatures in chemotherapy resistance. However, the lack of 
complete mechanistic insight does not diminish the clinical 
importance of novel chemotherapy drug-selective predictive 
biomarkers in a setting where a genomic approach or tran-
scriptomic analyses have yet to produce actionable models.

METHODS
Clinical Sample Collection

Eligible patients for the two clinical trials (NCT02547987 and 
NCT02124902) included pre- or postmenopausal women at least 18 
years old with clinical stages II/III ER-negative and HER2-negative 
(0 or 1+ by IHC or FISH negative) invasive breast cancer. The study 
was approved by the Institutional Review Board at both participat-
ing sites, WashU and BCM, and written informed consent from the 
patients was obtained. The studies were conducted in accordance 
with recognized ethical guidelines and followed the Declaration of 
Helsinki and Good Clinical Practice guidelines. All patients were 
uniformly treated (without randomization or blinding) with neo-
adjuvant intravenous docetaxel 75 mg/m2 and carboplatin every 21 
days for 6 cycles with granulocyte colony-stimulating factor support 
(13). Research tumor biopsies for correlative studies were obtained at 
baseline prior to chemotherapy and on cycle 1, day 3. On-treatment 
biopsy on cycle 1, day 3 and biopsy at the time of relapse were 
optional. Details of the clinical cohort have recently been published 
(13). Treatment response information was provided by clinical teams 
associated with these trials and RCB was calculated using the RCB 
calculator (http://www3.mdanderson.org/app/medcalc/index.cfm? 
pagename=jsconvert3).

IHC
For IHC, cut tissue sections (5 mm) on charged glass slides were 

baked for 10 to 12 hours at 58°C in a dry slide incubator, deparaffi-
nized in xylene, and rehydrated via an ethanol step gradient. The 
IHC slides were stained for CD3 and PD-L1. Pathology slide scoring 
was performed using established professional guidelines for TNBC 
when appropriate. All IHC results were evaluated against positive 
and negative tissue controls. See Supplementary Data and Methods 
for more details.

Genomic Analysis
WES. Tumor DNA was extracted from fresh-frozen biopsies and 

matched leukocyte germline DNA from blood samples. WES data 
were generated for 59 unique baseline DNA samples using the 
Illumina platform. For this, paired-end libraries were constructed 
as described previously (51) with the modifications described in 
the Supplementary Data and Methods “Whole exome sequencing 
(WES)” section.

RNA-seq Data. Transcriptome data were generated for 60 sam-
ples in this study. For this, strand-specific, poly-A+ RNA-seq libraries 
for sequencing on the Illumina platform were prepared as previously 
described (52). See the Supplementary Data and Methods “RNA-Seq 
data” section for additional details. Between 59.96 and 112.62M 

total reads were generated for these 60 samples. The average strand 
specificity and rRNA rate were 97.04% and 1.79%, respectively. The 
transcripts for 22,868 to 27,856 genes were detected in these samples.

The paired-end reads were mapped to the human genome version 
GRCh38.d1.vd1 (from Genomic Data Commons) using STAR-2.7.1a. 
Gene expression estimation was performed using RSEM-1.3.1, and 
expected counts from RNA-seq by expectation-maximization (RSEM) 
and fragments per kilobase per million mapped reads (FPKM) val-
ues were upper-quartile normalized. Unless otherwise noted, gene 
median-centered log2-transformed RSEM values were used for the 
analyses presented here.

Somatic and Copy-Number Variant Calling. Somatic variants were 
called using paired tumor and blood normal from WES data. Tools 
used for somatic variant calling were Strelka2, Mutect2, CARNAC, and 
Pindel (v 0.2.5b9). Filtering steps are described in the Supplementary 
Data and Methods “Somatic and copy number variant calling” section. 
Similarly, germline mutations were called by comparing normal WES 
against the reference genome. Hg19.UCSC.add_miR.140312.refgene 
was used to map the copy-number information to genes. COSMIC 
mutational signature scores for every sample were estimated using 
deconstructSigs (53).

For somatic CNA analysis, bam files were processed by the Copy-
writeR package (54) to derive log2 tumor-to-normal copy-number 
ratios, and the circular binary segmentation algorithm (55) imple-
mented in the CopywriteR package was used for the copy-number 
segmentation with the default parameters.

CIN for each chromosome in each sample was inferred from the seg-
mentation data using a weighted-sum approach in which the absolute 
values of the log2 ratios of all segments within a chromosome were 
weighted by the segment length and summed up (16). The genome-
wide chromosome instability index (CIN) was derived by adding up the 
instability scores for all 22 autosomes in each sample. MSIsensor (56) 
was used to calculate somatic microsatellite instability (MSI) counts.

GISTIC2 (57) was used to retrieve gene-level copy-number values and 
call significant CNAs in the cohort. A threshold of ±0.3 was applied to 
log2 copy-number ratio to identify gene-wise gain or loss of copy num-
ber, respectively. Each gene of every sample was assigned a thresholded 
copy-number level that reflected the magnitude of its deletion or ampli-
fication. These are integer values ranging from −2 to 2, where 0 means 
no amplification or deletion of magnitude greater than the threshold 
parameters described above. Amplifications are represented by positive 
numbers: 1 means amplification above the amplification threshold; 2 
means amplification larger than the arm-level amplifications observed 
in the sample. Deletions are represented by negative numbers: −1 means 
deletion beyond the threshold;  −2 means deletions greater than the 
minimum arm-level copy number observed in the sample.

For the pan-cancer analysis, GISTIC value  ±2 exceeds the high-
level thresholds for amplifications/deep deletions, and that with ±1 
exceeds the low-level thresholds but not the high-level thresholds. 
The low-level thresholds are just the “ampthresh” and “delthresh” 
noise threshold input values to GISTIC (typically 0.1 or 0.3) and are 
the same for every threshold.

Proteomics Data Generation and Analysis
Proteomic Sample Preparation. Samples were prepared for prot-

eomic analysis as described in a previous microscaled proteogenomic 
study (12) with minimal alterations. The details are described in the 
Supplementary Data and Methods “Proteomic sample preparation” 
section. For TMT labeling, a total of 30  μg peptides in 100  μL 50 
mmol/L HEPES, pH 8.5, were labeled with 240 μg TMT reagent for an 
8:1 TMT:peptide ratio and incubated at 25°C for 1 hour. Excess TMT 
reagent was quenched by incubating with 5  μL 5% hydroxylamine 
(Sigma) for 15 minutes. Samples within each plex were combined 
according to the ratios determined to achieve sample representa-
tion within ±15% error margin to all other samples. The combined 

http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3
http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3
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peptides were desalted on a 100-mg tC18 Sep-Pak (Waters), eluted 
with 50% acetonitrile/0.1% FA, and dried in a vacuum centrifuge.

Experimental Design for Proteomics and Phosphoproteomics. Sam-
ples were analyzed in a TMT11 format as described above. To meas-
ure relative protein and phosphosite expression, common references 
were constructed. The first core common reference consisted of 
peptide material from all clinical core samples, such that an even 
proportion was contributed for each of the 60 patients. The second 
common reference (“prospective BRCA CR”) was from a previous 
large cohort breast cancer proteomics study (14). Protein and phos-
phosite expression was reported as the TMT intensity ratio between 
each sample and the core common references within each plex. For 
analysis of clinical core samples, eight TMT 11-plexes each contained 
peptides from nine core needle biopsies in the first nine channels. If 
available, paired pre- and posttreatment tumor samples from a patient 
were grouped within the same 11-plex. As a quality control measure, we 
obtained protein and phosphopeptide ratios between the prospective 
BRCA CR and the core common reference, and the results are shown 
in Supplementary Fig. S1C.

Basic Reverse-Phase Fractionation and 
Phosphoenrichment

For basic reverse-phase fractionation,  ∼330  μg of peptides were 
dissolved in 500  μL of 5 mmol/L ammonium formate and 5% ace-
tonitrile using an offline Agilent 1260 LC with a 30-cm long, 2.1-mm 
inner diameter C18 column, running at 200 μL per minute in a total 
of 72 fractions, and further concatenated into 18 fractions for pro-
teome analysis and 6 fractions for Fe3+ immobilized metal affinity 
chromatography-based phosphoproteomics analysis. The details of 
this method have been described (12) and appear in the Supple-
mentary Data and Methods “Basic reverse phase fractionation and 
phosphoenrichment” section.

Proteomic Data Acquisition and Processing
Proteome and phosphoproteome data acquisition was performed 

with a Proxeon nLC-1200 coupled to Thermo Lumos instrumenta-
tion with parameters described in the Supplementary Data and 
Methods “Proteomic data acquisition and processing” section.

Raw files were searched against the human (clinical cores) or 
humanRefSeq protein databases complemented with 553 small open 
reading frames (smORF) and common contaminants (Human:  
RefSeq.20171003_Human_ucsc_hg38_cpdb_mito_259contamsnr_ 
553smORFS.fasta) using Spectrum Mill (Broad Institute) and param-
eters described in the Supplementary Data and Methods “Proteomic 
data acquisition and processing” section.

Quantification, Normalization, and Filtering of  
Proteomics Data

Before the calculation of protein and phosphopeptide ratios, 
reporter ion signals were corrected for isotopic impurities. Relative 
abundances of proteins and phosphosites were selected as the median 
of TMT reporter ion intensity ratios from all peptide spectral matches 
(PSM) matching to the protein or phosphosite. PSMs were excluded if 
they lacked a TMT label, had a precursor ion purity <50%, or had a neg-
ative delta forward-reverse score. To normalize across 11-plex experi-
ments, TMT intensities were divided by the common reference for each 
protein and phosphosite. Log2 TMT ratios were further normalized by 
median centering and median absolute deviation scaling. Proteins and 
phosphosites quantified in fewer than 30% of samples (i.e., missing 
in >70% of samples) were removed from the respective datasets.

PDX Proteomics Data Generation and Analysis
For the PDX experiment, cryopulverized PDX tumor tissues were 

lysed and digested as described above. Peptides (50 μg) were dissolved 

in 200 μL 50 mmol/L HEPES, pH 8.5, and labeled with 400 μg of the 
TMT reagent. TMT sample generation, basic reverse fractionation, 
and proteomic analysis were performed identically to that of clinical 
core biopsies. Raw files were searched against the human and mouse 
(PDX samples) UniProt protein databases complemented with 553 
smORFs and common contaminants (human and mouse: UniProt.
human.mouse.20171228.RIsnrNF.553smORFs.264contams.fasta) 
using the Spectrum Mill subgroup-specific option described in the 
Supplementary Data and Methods “PDX proteomics data generation 
and analysis” section.

Data Quality Control and Differential Expression and 
Pathway Enrichment Analysis

Samples with estimated TC below 45% were entirely removed from 
the dataset due to a lack of RNA-to-protein correlation in these 
samples (Supplementary Fig. S1B). The Wilcoxon rank sum test in R 
was used to identify genes (RNA), proteins, phosphosites, and phos-
phoproteins (mean of all sites on a given protein) that were differen-
tial between samples from pCR and non-pCR cases (Supplementary 
Table  S5) and between samples with LIG1 loss (GISTIC  =  −1) and 
those without a loss (LIG1 wild-type/gain GISTIC ≥0). WebGestaltR 
(58) and PTM-SEA (25) were used to identify MSigDB Hallmark 
pathways (gene-level data) and posttranslational modification (PTM) 
signature sets (phosphosite-level data), respectively, that show enrich-
ment in pCR or non-pCR tumors by applying the GSEA/PTM-SEA 
algorithms to signed (by direction of change) log10 P values from the 
differential expression analysis (Supplementary Table S6). Addition-
ally, the ssGSEA R package (59, 60) was applied to RNA, protein, 
and phosphoprotein data, and scores for Hallmark pathways were 
obtained for individual samples (Supplementary Table S6). Normal-
ized enrichment scores (NES) were utilized for visualization purposes. 
The Wilcoxon signed rank test in R was used for paired differential 
analysis of on-treatment to baseline measurements for RNA, protein, 
phosphosite, and phosphoprotein data for 14 patients with matched 
on-treatment and baseline biopsies (only 13 had matched RNA data). 
GSEA using WebGestaltR and PTM-SEA was applied to signed log10-
transformed P values from this analysis. PTM-SEA was also applied 
to phosphosite log2 TMT ratios for each baseline sample to obtain 
single-sample kinase activity scores (NES for kinase target PTM sets).

Functional Prediction Based on Gene Coexpression
Coexpression network construction using mRNA and protein 

expression data and network-based gene function prediction for 
KEGG pathways were performed as previously described (15) using 
OmicsEV (https://github.com/bzhanglab/OmicsEV).

Multigene Proliferation and Immune Profiling Scores
RNA-based MGPS were calculated as described previously (14, 61) 

by averaging the gene median-centered log2 RSEM data for all genes 
previously characterized as cycle-regulated (62) in each sample. Pro-
tein-based MGPS were generated for each sample by averaging log2 
TMT ratios for all proteins that showed significant correlation with 
the RNA-based MGPS (Pearson correlation, P < 0.01 after Benjamini–
Hochberg FDR correction). Immune profile and microenvironment 
scores were inferred from the FPKM version of the RNA-seq data 
using ESTIMATE (63), Cibersort (ref. 64; run in absolute mode), and 
xCell (65). Protein-based immune modulator scores were calculated 
as described previously (14) by averaging log2 TMT ratios for expert-
curated sets of immune modulators belonging to three categories: 
immune stimulatory, immune inhibitory, and HLA (66).

Immunoblotting
Fresh-frozen WHIM68, WHIM74, and WHIM75 tumors were cry-

opulverized (Covaris CP02) and then lysed in RIPA buffer. Lysates were 
blotted for LIG1 (cat. #18051-1-AP, ProteinTech, 1:1,000), POLD1 
(cat. #15656-1-AP, ProteinTech, 1:1,000), or XRCC1 (cat. #ab134056, 

https://github.com/bzhanglab/OmicsEV
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Abcam, 1:1,000). GAPDH (cat. #sc-47724, Santa Cruz Biotechnology, 
1:4,000) was used as a loading control. Details are described in the 
Supplementary Data and Methods “Immunoblotting” section).

Validation Using DepMap
Global TMT measurements for RB1 and response profiles to 

approved drugs from the Cancer Therapeutics Response Portal, 
Genomics of Drug-Sensitivity in Cancer, and Profiling Relative Inhi-
bition Simultaneously in Mixtures (PRISM) drug response data-
sets for cancer cell lines were retrieved from the DepMap resource 
(www.depmap.org). TNBC cell lines were selected based on ERneg_
HER2neg lineage_sub_subtype for breast lineages from sample 
information provided by DepMap. For TNBC cell lines, Pearson cor-
relation was calculated between RB1 protein abundance (log2 TMT 
ratio) and drug responses (AUC). P values  <  0.05 were considered 
statistically significant.

Data Availability
The genomics and transcriptomics data have been deposited in the 

database of Genotypes and Phenotypes (dbGAP) under the accession 
code phs002505.v1, and the proteomics data are accessible through 
the NCI Proteomics Data Commons (https://pdc.cancer.gov/pdc/) 
with the accession identifiers PDC000408 (TNBC biopsies proteome 
raw files), PDC000409 (TNBC biopsies phosphoproteome raw files), 
and PDC000410 (TNBC PDX proteome raw files). MS raw files can 
also be accessed via MassIVE (https://massive.ucsd.edu/) with the 
accession identifier MSV000089758.
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