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Abstract

Objectives

To determine the diagnostic performance of susceptibility-weighted magnetic resonance

imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conven-

tional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as

a reference standard.

Methods

384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT

scan of the brain between January 2014 and October 2016 were retrospectively evaluated.

346 patients were included in the analysis, of which 214 showed PGC on CT scans. To

assess correlation between imaging modalities, the maximum calcification diameter was

used. Sensitivity and specificity and intra- and interobserver reliability were calculated for

SWMR and conventional MRI sequences.

Results

SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95%

CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity

of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates

for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%,

p<0.001). Diameter measurements between SWMR and CT showed a close correlation

(R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5

mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measure-

ments was excellent on SWMR (ICC = 0.984, p < 0.0001).

Conclusions

Combining SWMR magnitude and phase information enables the accurate detection of

PGC and offers a better diagnostic performance than conventional MRI with CT as a refer-

ence standard.
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Introduction

To the present day, the functions of the pineal gland are not fully understood. Unlike most

parts of the brain, it lies outside the blood-brain barrier and is not separated from the blood-

stream. Current knowledge indicates that by secretion of melatonin, the pineal gland plays an

important role in the regulation of the sleep-wake cycle and of reproductive function (e.g.

onset of puberty) [1], with melatonin also acting as a neuroprotector or antioxidant [2, 3].

Previous studies have suggested a decline of melatonin secretion with age and an association

between melatonin decrease and neurodegenerative diseases such as Alzheimer’s or Parkin-

son’s disease [4–7]. The amount of uncalcified pineal tissue was shown to predict total mela-

tonin excretion with lack of melatonin being hypothesized to result from pineal gland

calcification (PGC) [8, 9]. As a consequence, detection and measurement of PGC might be

of clinical interest by identifying patients with possible melatonin deficits and a risk for the

development of neurodegenerative diseases [8, 9].

Another aspect is, that a wide range of lesions from different entities arises in the pineal

region, which can be classified into tumors of germ cell origin, tumors of pineal cell origin

and other tumors, and makes up for approximately 1% of intracranial tumors [10, 11]. Cal-

cification of pineal region tumors is very common and tumor-specific patterns of calcifica-

tion have been reported [11–13]. In germinomas, pineal calcifications tend to be engulfed

by the tumor, whereas in pineoblastomas calcification is often not central, but “exploded”

to the periphery [12]. As a consequence, the assessment of calcification in the pineal region

might also have a clinical benefit by narrowing differential diagnosis of pineal region

tumors.

PGC, also referred to as “brain sand”, involves the development of hydroxyapatite depos-

its and is very common with a reported prevalence of approximately 68–75% in adults [14–

16]. It is frequently detected on computed tomography (CT) scans. As CT causes substantial

radiation exposure, it would be of advantage to identify PGC with MRI instead. Apart from

the absence of ionizing radiation, MRI provides superior soft-tissue contrast and is the

modality of choice to evaluate the pineal region, as it enables an accurate delineation of

pineal tumors before surgery. However, in the case of calcifications of the pineal gland or

tumor calcifications in the pineal region, conventional MRI sequences do not allow for a

reliable identification and have a poor sensitivity, as calcifications appear hypointense on

T1, T2 and T2�weighted sequences and consequently cannot be reliably differentiated from

e.g. soft tissue artifacts or microbleeds.

Recent advances in MRI imaging have led to the development of novel gradient echo

(GRE) imaging techniques such as SWMR, which is based on magnetic susceptibility and sen-

sitive to materials distorting the local magnetic field. SWMR allows for a reliable differentia-

tion of calcifications from tissue artifacts, hemorrhage and other causes of susceptibility

differences by using T2� weighted magnitude and GRE filtered-phase information to generate

a unique contrast [17–21]. So far, SWMR, has mainly been used in neurovascular imaging, e.g.

to detect and differentiate intracranial haemorrhage from calcifications, to visualize intracra-

nial vessels, to identify intracranial thromboembolism or to evaluate cerebral metastases [19–

24]. In recent studies the use of SWMR was also extended to extra-cranial imaging such as

detection of calcific tendonitis [25] or the assessment of prostatic calcifications [26, 27]. With

regard to intracranial calcifications there have been publications on vascular and tumor-asso-

ciated calcifications, but not on calcifications of the pineal gland.

The purpose of the present study was to assess the diagnostic performance of SWMR for

the evaluation of PGC, comparing it to conventional MRI sequences with CT as the reference

standard.
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Materials and methods

Study population

The local ethics committee approved this retrospective study, including a waiver of informed

consent (approval number: EA1/385/16). Prior to analysis, all data were anonymized and de-

identified. In total, 384 patients, who had received both a 1.5 Tesla MRI with SWMR sequences

and a CT brain scan at the Department of Radiology at Charité University Hospital between

January 2014 and October 2016, were investigated. The following exclusion criteria we defined:

Age under 18 years (n = 22) and an interval of more than three months between CT and MRI

examination (n = 16). CT imaging was performed with 64/128-slice scanners (Toshiba Medical

Systems, Otawara, Japan) and MRI was conducted on 1.5 Tesla scanners (Aera/Avanto, Siemens

Medical Solutions, Erlangen, Germany). In total, 346 patients could be included, of which

61.8% showed a calcification of the pineal gland on unenhanced CT brain scans. The mean age

of the study population was 58.7 ± 17.4 (mean age ± standard deviation) with an age range of

18–95 (173 men with a mean age of 57.8 years ± 16.9, age range 21–88 years and 173 women

with a mean age of 59.6 years ± 17.8, age range 18–95 years; difference in mean age values

between men and women, p = 0.55). 132 patients without PGC were used for comparison and

to evaluate sensitivity and specificity. In this group, the mean age was 55.7 ± 19.3 with an age

range of 18–94 (59 men with a mean age of 56.3 years ± 17.6, age range 21–88 years and 73

women with a mean age of 55.3 years ± 20.7, age range 18–94 years; difference in mean age val-

ues between men and women, p = 0.77). Patients with pineal gland calcifications were signifi-

cantly older than those without (mean age of 60.5 years versus 55.7 years, p = 0.017).

Imaging protocol

CT, which was used as the standard of reference in the present analysis, was performed based on

the following parameters (Toshiba Medical Systems): FOV of 220 x 220 mm, 1.0-mm slice thick-

ness and a1.0 mm increment, 120 kV and 280 mAs. The AIDR 3D reconstruction algorithm was

applied for iterative noise reduction. FC26 (Toshiba Medical Systems) was used as a standard

reconstruction kernel for the head. A bone window was used for the analysis. MRI was performed

with a 1.5 Tesla unit (Aera/Avanto, Siemens Medical Solutions, Erlangen, Germany) provided

with a standard brain coil. According to a MRI protocol routinely used for clinical examinations,

the following conventional sequences were acquired: axial T1-weighted turbo-spin-echo (TSE)

images (field of view (FOV) of 230 × 230 mm, matrix of 256 x 256, repetition time of 550 ms, echo

time of 8.4 ms, 23 slices, 5-mm slice thickness, 2 averages), axial T2-weighted TSE images (FOV of

230 × 230 mm, matrix of 256 x 256, repetition time of 3180 ms, echo time of 86 ms, 23 slices,

5-mm slice thickness, 2 averages), axial T2-weighted fluid-attenuated inversion recovery (FLAIR)

images (FOV of 230 × 230 mm, matrix of 256 x 256, repetition time of 9000 ms, echo time of 89

ms, inversion time 2500 ms, 23 slices, 5-mm slice thickness, 1 average) and a sagittal magnetiza-

tion-prepared rapid gradient-echo (MP-RAGE) sequence (FOV of 260 × 260 mm, matrix of 256 x

256, repetition time of 1940 ms, echo time of 2.91 ms, 192 slices, 1-mm slice thickness, 1 average).

For SWMR, a 3D fast low-angle gradient-echo sequence was performed. The imaging

parameters of SWMR for brain imaging were as follows: FOV of 230 × 230 mm, matrix of 320

x 320, repetition time of 49 ms, echo time of 40 ms, 104 slices, 1.6-mm slice thickness, 1 aver-

age. SWMR images were created by a combination of magnitude and phase information [17,

18, 28]. While the magnitude image is calculated from a velocity-compensated three-dimen-

sional GRE sequence to support detection of lesions with shortening of T�
2

relaxation times

[17, 18], phase images are computed in order to enable a differentiation between calcifications

and other lesions such as tissue artefacts or microbleeds. Even though typical susceptibility
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weighted imaging (SWI) furthermore implies the generation of a phase mask, we found that

for the visualization of larger calcifications and susceptibility changes, such as in the pineal

gland, which is moreover surrounded by CSF, an approach using a combination of separate

inverted magnitude and filtered phase images (SWMR) was better suited.

Imaging analysis

SWMR, MRI and CT images were analyzed using PACS workstations (Centricity Radiology

RA1000, GE Healthcare, United Kingdom). All CT, MRI and SWMR scans were assessed inde-

pendently and in a randomized order by two radiologists with 1 (L.A.) and 4 (S.B) years of

diagnostic experience. To determine calcifications on unenhanced CT scans, they were

assessed based on their specific shape und density, whereby a threshold of 130 Hounsfield

units (HU) was set [29]. Concerning conventional MRI, calcifications were more difficult to

assess, as they appeared as focal hypointense areas in T1 and T2 weighted sequences. On

SWMR sequences, PGCs were identified if they were located in the pineal region within the

quadrigeminal cistern, showed a hyperintense signal intensity on the inverted magnitude

image and a hyperintense signal on the filtered phase image [17, 18]. However, filtered phase

images are more challenging to evaluate with regard to larger amounts of calcifications. Larger

calcifications do not appear homogeneously hyperintense, but can show a hypointense rim or

(central) areas that appear dark as a consequence of aliasing effects when the field is large

enough so that the phase exceeds π radians [17, 30]. Calcification diameters were measured

with electronic calipers on CT scans, MRI T2 weighted sequences and SWMR magnitude by

two radiologists in order to assess interobserver and intermodality correlations. There was a

washout period of two weeks between CT, MRI and SWMR assessment.

Statistical analysis

Statistical analysis was performed using “R” Statistical Software (Version 3.2.2, R Development

Core Team, 2015). Variables were expressed as means ± standard deviations. 95% confidence

intervals were calculated. To determine the p-values for sex-related differences, two-tailored t-

tests were applied. Sensitivities and specificities for the detection of PGC on SWMR and conven-

tional MRI were computed with CT as a standard of reference. A McNemar’s paired-sample test

was conducted to compare the sensitivity and specificity of conventional MRI and SWMR. As

measurements were provided by two independent observers, averages over observers were calcu-

lated and analyses were performed average-based. Bland-Altman plots with prediction intervals

were produced to display the distribution of measurements and the limits of agreement. As mea-

sure outcomes were numeric, the intraclass correlation coefficient (ICC) was used for calculation

of intra- and interobserver reliability. According to the commonly cited cut-offs by Cicchetti

et al. [31], intra- or interobserver reliability was considered poor for ICC values less than 0.40,

fair for values from 0.40 to 0.59, good for values between 0.60 and 0.74 and excellent for values

above this threshold. Linear regression was performed to evaluate the correlation between diam-

eter measurements on SWMR, MRI and CT. To determine the confidence intervals for R2 a

bootstrapping was conducted. A p-value of less than 0.05 was considered statistically significant.

Results

Detection rate, sensitivities and specificities for the detection of pineal

gland calcifications

All investigated patients received both MRI (including SWMR sequences) and CT imaging of

the brain with a time interval of less than three months between the examinations. On CT

Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification
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scans, which were used as the standard of reference for the detection of calcifications, 214

patients showed PGC.

By combining the SWMR magnitude and the phase image it was possible to identify most

of the calcifications (n = 203, 94.9%). Figs 1 and 2 show corresponding examples of PGC and

illustrate the clinical applicability of SWMR for the detection of pineal gland-related calcifica-

tions compared to conventional MRI sequences. In the 11 cases where SWMR failed to detect

calcifications this was due to small lesion size (1.5 ± 1.1 mm) in combination with motion arti-

facts, which caused a poor image quality leading to a false-negative result. Through assessment

of conventional MRI sequences a significantly smaller amount (p = 0.012) of PGC could be dif-

ferentiated from the surrounding tissue (n = 92, 43,0%), as calcifications appear as hypointense

spots both on T1 and T2 weighted images. Calcifications that were not detected on conven-

tional MRI had a diameter range from 1.2 to 10.9 mm (mean 4.5 ± 2.3 mm). By use of conven-

tional MR imaging, 5 lesions were falsely classified as calcifications because of tissue artifacts.

To evaluate the validity of the diagnostic tests performed, sensitivity and specificity were

calculated with respective 95% confidence intervals. Table 1 provides corresponding two-by-

two confusion matrixes for SWMR and conventional MRI. While SWMR reached a sensitivity

of 95% (95% CI: 91% - 97%) and a specificity of 96% (95% CI: 91% - 99), conventional MRI

yielded a sensitivity of only 43.0% (95% CI: 35.0%– 84.1%) and a specificity of 96% (95% CI:

91%– 99%). McNemar’s test confirmed that SWMR showed a sensitivity that was significantly

higher compared to conventional MRI sequences (p<0.001). The difference in specificity

between SWMR and conventional was not significant (p = 1).

Fig 1. Imaging findings of a 63-year-old man with a calcified pineal gland. (A), CT shows a sharply defined oval-shaped pineal calcification with a

diameter of 7 mm. In axial T1-weighted MRI (B) and in axial T2-weighted MRI (C) it is hardly possible to demarcate the calcified area against the surrounding

tissue. In conventional MRI, it is not possible to reliably identify the hypointense foci as calcifications. The inverted SWMR magnitude image (D) and the

phase image (E) show well-defined focal hyperintensities in the pineal region area. While the image information solely derived from the magnitude image is

not superior to conventional MRI sequences, the combination of SWMR magnitude and phase image allows for a clear and reliable identification of

diamagnetic calcifications. Magnified images are provided for (B), (C), (D) and (E). As CT and MRI of the brain have diverged reference lines with the

bicommissural line used as a convenience standard for MRI and the orbitomeatal line used for CT, the slice angles vary slightly.

doi:10.1371/journal.pone.0172764.g001

Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification
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Intra- and interobserver correlation

Intraobserver agreement on calcification diameters in both CT and SWMR was excellent

(ICC = 0.989, p<0.0001 and ICC = 0.984, p<0.0001). Intraobserver agreement for conven-

tional MRI was also excellent (ICC = 0.960, p<0.0001). The visual illustration of intraobserver

agreement is provided by the Bland-Altman-plots in Fig 3. Interobserver agreement for diame-

ter measurements in SWMR was also excellent (ICC = 0.954, p<0.0001). On conventional

MRI, there was a good intraclass agreement (ICC = 0.712, p<0.0001). Linear regression analy-

sis confirmed a strong correlation between SWMR measurements of two readers (R2 = 0.910,

p<0.0001, 95% CI: 0.884, 0.932) and a slightly poorer but still good correlation between the

two reader measurements in conventional MRI (R2 = 0.808, p = 0>0.0001, 95% CI: 0.714,

Fig 2. Imaging findings of a 55-year-old woman with a calcified pineal gland. (A), CT shows a sharply defined oval-shaped pineal calcification with a

diameter of 11 mm. In axial T1-weighted MRI (B) and in axial T2-weighted MRI (C) it is hardly possible to demarcate the calcified area against the

surrounding tissue. In conventional MRI, it is not possible to reliably identify the hypointense foci as calcifications. The inverted SWMR magnitude image (D)

and the phase image (E) show well-defined focal hyperintensities in the pineal region area. While the image information solely derived from the magnitude

image is not superior to conventional MRI sequences, the combination of SWMR magnitude and phase image allows for a clear and reliable identification of

diamagnetic calcifications. Magnified images are provided for (B), (C), (D) and (E). As CT and MRI of the brain have diverged reference lines with the

bicommissural line used as a convenience standard for MRI and the orbitomeatal line used for CT, the slice angles vary accordingly.

doi:10.1371/journal.pone.0172764.g002

Table 1. Two-by-two confusion matrixes for SWMR (A) and conventional MRI (B).

A CT (reference standard) B CT (reference standard)

SWMR + - total Conventional MRI + - total

+ 203 5 208 + 92 5 97

- 11 127 138 - 122 127 249

total 214 132 346 total 214 132 346

doi:10.1371/journal.pone.0172764.t001

Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification
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0.876). Fig 4 provides a linear regression and Bland–Altman plot for the assessment of interob-

server variability in SWMR. Compared to standard T1 and T2 weighted sequences, SWMR

showed a considerably higher intra- and interobserver correlation.

Analysis of calcification diameter

The level of agreement between the imaging modalities SWMR, conventional MRI and CT-

based size measurements was illustrated with Bland-Altman plots and the strength of agree-

ment was interpreted based on the intraclass coefficient. Diameter correlations revealed an

excellent agreement between SWMR and CT (ICC = 0.881, p<0.0001) and a good to excellent

agreement between conventional MRI sequences and CT (ICC = 0.745, p<0.0001). Fig 5 pro-

vides the corresponding Bland-Altman plots and linear regression graphs. Correlation was

measured by use of a linear regression analysis for the association between two variables,

Fig 3. Bland–Altman plots for the assessment of intraobserver variability for diameter measurements of calcifications in meningiomas in

conventional MRI (A) and SWMR (B). The mean ratio was 1.00 for conventional MRI (CI: 0.79 to 1.22) and 1.01 for SWMR magnitude images (CI: 0.82 to

1.19). The mean ratio of the data is illustrated by the central horizontal line. Upper and lower reference lines show the upper and lower limits of agreement

(95% confidence intervals).

doi:10.1371/journal.pone.0172764.g003

Fig 4. Linear regression and Bland–Altman plot for the assessment of interobserver variability for diameter measurements of calcifications in

meningiomas in SWMR. Diameter measurements show an excellent correlation (R2 = 0.91) with a mean ratio of 1.00 (CI: 0.72 to 1.29) between

calcification measurements of the two readers in SWMR magnitude images. The mean ratio of diameter measurements of readers 1 and 2 is illustrated by

the central horizontal line. Upper and lower reference lines show the upper and lower limits of agreement (95% confidence intervals).

doi:10.1371/journal.pone.0172764.g004

Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification
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whereby a strong correlation between SWMR and CT was confirmed (R2 = 0.844, p<0.001).

Correlation between conventional MRI sequences and CT was moderate (R2 = 0.48, p<0.001).

SWMR showed a slight overestimation of calcification diameters, which, however, did not

reach significance level (SWMR: (SWMR: 6.5 ± 2.5 mm; CT: 5.9 ± 2.4 mm, p = 0.02).

Discussion

The present study shows that using a combination of inverted magnitude and phase images

enables the reliable detection of calcifications of the pineal gland without making use of ioniz-

ing radiation. The majority of the calcifications identified on CT as the standard of reference

could be recognized as calcifications by combining magnitude and phase images with excellent

intra- and interobserver reliability and a slight, but not significant, overestimation of diame-

ters. In contrast, conventional MRI sequences did not allow for a reliable identification of cal-

cifications and showed a poor diagnostic performance. Because pineal calcification might lead

to a decrease in melatonin production by calcified glands [32], the radiation-free detection of

pineal calcifications by SWMR may help to identify patients with an increased risk for the

development of neurodegenerative diseases. Furthermore, the assessment of calcifications in

the pineal region might also facilitate narrowing differential diagnosis of pineal region tumors,

as some of the tumors show unique patterns of calcification.

Fig 5. Linear regression and Bland-Altman plot of the difference between diameter measurements of calcifications in CT and SWMR (A) and of

the difference between diameter measurements of calcifications in CT and MRI T1 and T2 weighted images (B). Diameter measurements show a

strong correlation (R2 = 0.85) between SWMR magnitude images and the reference standard CT with a mean difference of 1.13 (CI: 0.73 to 1.53). In

comparison, correlation between MRI T1 and T2 weighted images and CT is only moderate (R2 = 0.49) with a mean difference of 0.92 (CI: 0.53 to 1.30).

The mean difference of the data is illustrated by the central horizontal line. Upper and lower reference lines show the upper and lower limits of agreement

(95% confidence intervals).

doi:10.1371/journal.pone.0172764.g005

Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification
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Current assessment of PGC

With the development of computed tomography technology, it has been possible to accu-

rately detect the localization and extent of intracranial calcifications, such as choroid plexus,

habenular, basal ganglia or pineal gland calcifications, to which many clinical or pathologi-

cal entities have been linked, e.g. Alzheimer’s or Parkinson’s disease [2, 14]. More recent

data from a single retrospective hospital-based study suggested that PGC might also be asso-

ciated with stroke [33]. However, this was challenged in a subsequent study [34]. With

regard to pineal gland calcifications in pediatric patients, one study also found that pineal

calcification in childhood appeared to be associated with the development of pediatric pri-

mary brain tumors [35].

The incidence of PGC reported in the literature varies depending on the age of the popula-

tion, its ethnic and geographical makeup and might also vary depending on the use of com-

puted tomography versus skull radiography, as phantom studies showed that cranial CT is up

to 15 times more sensitive than skull radiography in the detection of intracranial calcifications

[36]. Generally, calcifications of the pineal gland are one of the most common forms of intra-

cranial calcifications with former studies based on computed tomography reporting a preva-

lence between 68.5% and 75.1% [15, 16, 37]. In all population groups, calcification of the

pineal gland was found to increase with age. The findings of the present study regarding the

approximate incidence of PGC and its higher prevalence in older age are consistent with the

literature [14, 16].

The pineal gland is considered central to chronopharmacology with multiple additional

properties such as acting immune-enhancing and cytoprotective [38]. Both the pineal volume

and the circadian rhythm of melatonin excretion show a high interindividual variability.

Recent years have witnessed an increasing interest in studies regarding the impact of PGC on

decreased secretory activity of the gland and on specific pathological entities such as Alzhei-

mer’s disease [2]. Mahlberg et al. suggested, that PGC was significantly higher in patients with

Alzheimer’s disease compared to others types of cognitive impairment and that PGC might

contribute to the pathogenesis of Alzheimer’s disease by reflecting a reduced level of crystalli-

zation inhibitors [2, 4]. With regard to the association between plasma melatonin and uncalci-

fied solid pineal tissue, Liebrich et al. reported that uncalcified pineal functional volume as

derived from MRI was linked to the hormonal function of the pineal gland [32, 39]. On the

other hand, there has also been a study suggesting that the levels of melatonin did not signifi-

cantly differ by presence of cysts or calcification [40]. Consequently, it is not yet fully resolved

whether there is an association between the incidence of PGC and reduced melatonin

excretion.

Pineal region tumors

The pineal region also plays host to several masses or tumors, the most common being

pineal cysts, germinomas or pineocytomas [10]. For pineal mass detection and assessment,

MRI, with its excellent soft-tissue contrast and multiplanar imaging abilities, is the modality

of choice. However, conventional MRI sequences do not allow for a reliable assessment of

calcifications. While pineal tumors can be difficult to differentiate, each of the lesions may

have unique imaging characteristics such as tumor-specific patterns of calcifications [13].

Pineal parenchyma tumors usually show “exploded” calcifications, which are dispersed to

the periphery, whereas pineal germinomas tend to engulf the calcification [12, 13]. As a con-

sequence, the addition of SWMR sequences to the MRI standard protocol might prospec-

tively also be able to facilitate the narrowing of differential diagnosis with regard to pineal

region masses.
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Use of SWMR to evaluate pineal gland calcifications

Advances in MRI techniques for the evaluation of changes in magnetic susceptibility eventu-

ally culminated in the development of SWMR, enabling a reliable detection of calcified lesions

in MRI possible [17, 18, 41]. Magnetic susceptibility is a measure of the magnetic properties

of a material placed in a magnetic field. Diamagnetic (e.g. calcifications), ferromagnetic (e.g.

iron) or paramagnetic (e.g. hemosiderin) substances distort the local magnetic field and cause

a phase alteration of the local tissue, which results in a loss of signal. Paramagnetic compounds

line up with the external magnetic field, whereas diamagnetic substances align in the opposite

direction. The introduction of new filtering techniques has made it possible to differentiate

between calcifications, hemorrhage and other causes of susceptibility changes. While calcifica-

tions cause a negative phase shift with a hyperintensity on phase-filtered images, hemosiderin

or desoxyhemoglobin result in a positive phase shift and a signal loss on phase images, pro-

vided that an appropriate echo time is selected [17, 18, 24, 41].

In the present study, it was possible to reliably identify most PGCs based on SWMR, using

a combination of SWMR magnitude and phase images. Computed tomography was used as a

standard of reference. The reconstruction kernel applied (FC26) is a standard reconstruction

kernel used in the clinical setting for the detection of calcifications. In 11 cases SWMR failed to

accurately detect pineal calcifications. This was due to a combination of poor image quality

resulting from motion artifacts and small size/inhomogeneity of the calcifications. Comparable

findings in different disease entities have been shown in a series of previous studies addressing

the detection of calcification by use of SWMR [25–27], such as, for example, one study which

demonstrated the reliable detection of intratumoral calcifications in oligodendrogliomas [42].

Development of quantitative susceptibility mapping (QSM)

In recent years, there were further developments in magnetic susceptibility imaging regarding

the quantification of signal changes. While typical SWI depends on nonlocal and orientation-

dependent phase signals, making it challenging to quantify susceptibility changes in phase

images, the novel development of quantitative susceptibility mapping is nonlocal and allows

for quantitative measurements of magnetic susceptibility [43]. Compared to magnetic suscep-

tibility imaging, which generates a robust contrast based on phase images, QSM computes the

susceptibility of each voxel in form of a scalar quantity [43]. Although there still is an ongoing

discussion on which algorithms are best suited to achieve a pixel-by-pixel estimate of suscepti-

bility distribution [44], QSM has been shown to have a high sensitivity for the detection and

quantification of iron and to demonstrate superb contrast of brain structures [45]. With regard

to the detection of calcification, several studies suggest that QSM may be superior to conven-

tional SWI in the identification of subtle calcifications and in differentiating microcalcifica-

tions from hemosiderin, at the same time also allowing for a quantification [19, 46]. As a

consequence, there is a multitude of future clinical applications for QSM, such as in the diag-

nosis and longitudinal evaluation of quantitative changes in neurodegenerative diseases [47],

multiple sclerosis [48] or the prognosis of neoplasms such as glioblastomas [46].

Limitations

This study has several potential limitations. Even though pineal calcifications have been linked

to various pathologies such as neurodegenerative diseases, so far, no definite association has

been proven. Further studies are needed to investigate the clinical significance of pineal gland

calcification. Furthermore, it might be argued that we did not use the typical SWI imaging,

where calcifications or other causes of susceptibility changes between tissues are highlighted

as signal voids with a negative contrast, but an approach using a combination of inverted

Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification
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magnitude images and filtered phase images. However, while SWI has been proven to be well

suited for visualization of small susceptibility changes in the cerebrum, we think this approach

might be better suited for visualization of relatively large calcifications surrounded by CSF,

such as pineal gland calcifications. Conclusions from our data are not applicable to patients

with contraindications to MRI.

Future studies

SWMR was performed on a 1.5 Tesla scanner in the present study. The comparatively lower

field strength has the advantage of a higher magnetic field homogeneity and a consecutive

reduction of artifacts. While higher field strengths such as 3 Tesla might cause an increase in

the overestimation of calcification sizes, they provide a superior signal-to-noise- and contrast-

to-noise- ratio with shorter scan times and can consequently further improve detection rates.

As a consequence, comparison of 1.5 versus 3 Tesla scanners for susceptibility-weighted imag-

ing might be addressed in future studies.

Another aspect is, that there have been few studies so far, which directly compared SWI

and QSM to each other. It would be very interesting for future research to compare both meth-

ods to determine their diagnostic performance for various applications.

Conclusion

Combining SWMR magnitude and phase images allows for the accurate detection and assess-

ment of pineal gland calcification, using non-enhanced CT as standard of reference. Com-

pared to conventional MRI, SWMR offers a considerably higher diagnostic performance.
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