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Abstract

In this work, a synchronization scheme for networks of complex systems is presented. The

proposed synchronization scheme uses a control law obtained with some definitions from

graph theory and solving the Model-Matching Problem for complex networks. In particular,

Rössler, Chen, Lorenz and Lü chaotic systems are used as complex chaotic systems into

complex networks. Particular cases with regular and irregular networks of six identical cha-

otic systems are implemented, with some well-known topologies as star and ring small-

world, and tree topologies. Highlighting, the obtained control law is applied to synchronize

an irregular network of six different chaotic systems in a tree topology. The usefulness and

advantages of the proposed synchronization scheme are highlighted performing numerical

simulations of the chaotic complex networks.

Introduction

The field of synchronization of networks of complex systems has received a lot of attention in

the last three decades, due to the potential applications in engineering, the proliferation of

computer networks, communications networks as the internet, wireless communications as

cellular telephony and many others [1, 2]. Different methods and topologies have been pro-

posed for network synchronization. For example, the authors in [3–6] introduced schemes for

the synchronization in small-world dynamical networks. Serrano and co-workers made a con-

tribution on chaotic synchronization in star coupled neural networks [7]. Model-Matching

Control (MMC) has been used as a solution for some open problems. It has been recently used

for output synchronization of heterogeneous and nonlinear multi-agent systems [8, 9]. In

other work, the authors consider the model matching problem for a class of multiple-input

systems whose inputs involve different delays [10]. In chaos synchronization area, MMC has

been used in the last years, but only to synchronize pairs of identical and nonidentical chaotic

oscillators [11–13]. Chaotic synchronization of regular and irregular complex networks with

fractional order oscillators has been presented in [14]. Nevertheless, most of the authors show
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results in synchronization for only structurally identical complex systems, whereas for syn-

chronization of nonidentical complex systems, the results are only a few. Synchronization, out-

put-synchronization, partial-synchronization or phase-synchronization of nonidentical

complex systems would have implication to understand different areas. For example in neural

networks, the interaction between pre-synaptic and post-synaptic neurons, where the pre-syn-

aptic neurons output activates the nucleus cells in post-synaptic neurons to achieve some kind

of synchronization between two different neurons [15]. In communications systems, some-

times the network topology has different complex systems and it is required to synchronize at

least the nodes outputs. This is necessary to encryption/decryption and transmission of infor-

mation [16].

The aim of this work is also devoted to demonstrate the effectiveness of the MMC for syn-

chronizing networks of complex/chaotic systems in continuous-time. This objective is achieved

by using the model-matching approach from nonlinear control theory [17, 18] and extending

the results in [11, 12]. The main contribution is the generalization of a MMC for network syn-

chronization and highlight that the proposed scheme has the following advantages:

• It is a systematic procedure to be used as guideline or a kind of recipe that anyone can

reproduce.

• It can be useful to synchronize networks of identical and nonidentical complex/chaotic

systems.

• It can be used in unidirectional and bidirectional coupling between master and slave

systems.

• It can be used to synchronizing chaotic and hyperchaotic systems [19].

• Any node can be chosen as a master node.

• There may be more than one master node.

The proposed MMC is tested to synchronize networks of different chaotic systems, like:

Rössler, Chen, Lorenz and Lü chaotic oscillators. Two classic regular network topologies are

taken as cases of study, namely a star topology with an isolated node, and a ring topology. In

the same way, two irregular topologies are considered, such as:: a small-world topology and a

tree topology. All topologies use six chaotic systems as nodes. The election of using six nodes

can be extended to larger networks. Nevertheless, it is well known that if the number of the

nodes is big enough, then complete synchronization could be guaranteed only for some topol-

ogies [20]. Readers interested in pattern formation in complex networks and some new results

see [21–24].

This work is organized as follows: Section 2 states the problem formulation for synchroniz-

ing a network of chaotic systems. The model-matching problem from nonlinear control theory

applied to network synchronization is presented in Section 3. In Section 4, this approach is

applied to synchronize networks of identical and nonidentical chaotic systems based on Röss-

ler, Lorenz, Lü and Chen systems, with different topologies. Finally, Section 5 summarizes the

concluding remarks.

Problem statement

Consider a network of complex dynamical systems described by state equations of the form:

Pi :
_xi ¼ f ðxiÞ þ gðxiÞui;

yi ¼ hðxiÞ;

(

ð1Þ
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where the states xi ðtÞ 2 R
n; the inputs ui ðtÞ 2 R; and the outputs yi ðtÞ 2 R, being f (xi) and

g (xi) smooth and analytical functions and with i = 1, 2, . . ., N, where N is the number of nodes

in the network. In addition, consider another nonlinear system described by:

M :
_xM ¼ fMðxMÞ þ gMðxMÞuM;

yM ¼ hMðxMÞ;

(

ð2Þ

where the state xM ðtÞ 2 R
nM ; the input uM ðtÞ 2 R; and the output yM ðtÞ 2 R, being fM (xM)

and gM (xM) also smooth and analytical functions. Assume that x�i are equilibrium

points of systems described in (1), i.e., f ðx�i Þ ¼ 0. Similarly, x�M is an equilibrium point of

system (2). Assume that the dynamical systems of (1) and (2) under certain conditions

have chaotic behavior. Then, the chaotic system (1) synchronizes with the chaotic system (2),

if:

lim
t!1
jyiðtÞ � yMðtÞj ¼ 0; ð3Þ

no matter which initial conditions xi (0) and xM (0) have, and for each node i = 1, 2, . . ., N
and suitable input signals ui (t) and uM (t).

Note that, it is mainly considering output synchronization problem between a network of

chaotic systems (1) and (2). Moreover, no matter if the chaotic systems (1) and (2) are identical

or nonidentical. In the next section, it will be described how to satisfy the output synchroniza-

tion condition (3) from the perspective of the model-matching problem and graph theory.

Model-matching for networks

Let us consider the dynamical systems (1) like plants Pi, and (2) like amodel M, respectively.

The objective is to generalize a feedback control law u (t) for several plants Pi which, irrespec-

tively of the initial states of Pi andM, makes the outputs yi (t) converge asymptotically to the

output yM (t) produced byM under an arbitrary input uM (t). This problem is the called

asymptoticmodel-matching problem from nonlinear control theory, and it was solved for syn-

chronizing only a pair of chaotic systems in [11, 12]. Previously, different approaches to solve

the model-matching problem have been proposed in the literature, see e.g. [17, 18]. In this

work, the solution proposed in [11, 12] is extended to synchronize several chaotic plants with

one chaotic model. In the design of the MMC we considered the possibility of using more than

one chaotic model into a network of complex chaotic systems. Then, for network synchroniza-

tion purpose, N auxiliary systems are defined by the following equation:

Ei :

(
_xEi ¼ fEðxEiÞ þ ĝðxEiÞui þ ĝMðxEiÞuM;

yEi ¼ hEðxEiÞ;
ð4Þ

with state xEi ¼ ðxi; xMÞ
>
2 RnþnM , inputs u (t) and uM (t), and

fEðxEiÞ ¼
f ðxiÞ

fMðxMÞ

 !

; ĝðxEiÞ ¼
gðxiÞ

0

 !

;

ĝMðxEiÞ ¼
0

gMðxMÞ

 !

; hEðxEiÞ ¼ hðxiÞ � hMðxMÞ:

Note that the output yEi = hE (xEi) of the auxiliary system (4) is the difference between the
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output of the plant Pi [yi = h(xi) of Eq (1)] and the output of systemM [yM = hM (xM) of Eq

(2)]. The control objective of the model-matching problem is contained in the following

definition:

Definition 1 (Model-matching problem): Given the plants Pi and the model M around
their respective equilibrium points x�i and x

�

M; and points x
�

Ei. The model-matching problem con-
sists of finding feedback control laws uiðtÞ 2 R for the auxiliary system Ei (4) such that, the out-
put yEi (t)! 0 as t!1.

The equilibrium points in Definition 1, are stated in the following Definition:

Definition 2 (Relative degree adapted from [18]): The single-input single-output nonlinear
system (1), is said to have relative degree ri at points x

�

i if:

1. LgLkf hðxiÞ ¼ 0 for all xi in a neighborhood of x
�

i and for all k< ri − 1,

2. LgL
ri � 1

f hðx�i Þ 6¼ 0.

In Definition 2, Lf h xið Þ ¼
@hðxiÞ
@xi

f xið Þ and LgLkf h xið Þ ¼
@ðLkf hðxiÞÞ

@xi
g xið Þ. A similar definition can

be given for the relative degree of model (2), rM near x�M . It is important to mention that the

model matching problem is locally solvable if, and only if [18]:

ri � rM: ð5Þ

Now, let the auxiliary system Ei Eq (4) be in a different coordinate frame. From definition of

relative degrees ri and rM; h ðxiÞ; . . . ; Ln� 1
f h ðxiÞ; and hM ðxMÞ; . . . ; Ln� 1

fM
hM ðxMÞ are sets of inde-

pendent functions from Pi andM, and can be chosen as new coordinates xq ðxiÞ ¼ L
q� 1

f h ðxiÞ
and xMq ðxMÞ ¼ L

q� 1

fM
hM ðxMÞ with q = 1, . . ., n, around x�i and x�M , respectively. Consider now

the auxiliary system Ei and the new coordinates [18]:

ðzðxEiÞ; xMÞ ¼ �ðxEiÞ ¼ �ðxi; xMÞ;

where z (xEi) = (z1,i (xEi), . . ., zn,i (xEi))>, and zq;i ðxEiÞ ¼ L
q� 1

fEi
hEi ðxEiÞ ¼ xq;i ðxiÞ � xMq ðxMÞ;

q = 1, . . ., n.

Thus, the closed-loop auxiliary system Ei, using the following feedback control law

ui ¼
1

LgLn� 1
f hðxiÞ

vi � L
n
f h xið Þ þ L

n
fM
hM xMð Þ þ LgML

n� 1

fM
hM xMð ÞuM

� �
; ð6Þ

takes the form:

_zq;i ¼ zqþ1;i; q ¼ 1; . . . ; n � 1; i ¼ 1; . . . ;N;

_zn;i ¼ vi ¼ � c0;i z1;i � . . . � cn;i zn;i;

_xM ¼ fMðxMÞ þ gMðxMÞuM;

yEi ¼ z1;i:

ð7Þ

Two subsystems can be identified in the closed-loop system (7), namely:

1. The subsystem described by:

_xM ¼ fMðxMÞ þ gMðxMÞuM;

which represents the dynamics ofM, and
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2. The subsystem described by:

_zi ¼ A�i zi;

with

A�i ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

� c0;i � c1;i � c2;i . . . � cn� 1;i

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

;

which represents the dynamics of yEi (t). The matrix A�i can be a single constant matrix

choosing i = 1 or it can define different matrix, specially when they are used for synchroni-

zation of non-identical chaotic systems into a complex network.

ModelM is stable by assumption, since it is proposed, and the control law vi (t) can be

selected such that eigenvalues of matrix A� have a negative real part. Then the closed-loop sys-

tem will be exponentially stable, and output synchronization condition (3) holds.

Complex networks and model-matching

From a mathematical point of view, a complex network is defined as an interconnected set of a

nodes (two or more) and can be represented by a graph, where two nodes (vertices or points)

joined by a connection (edges or lines) are called adjacent nodes or neighbors. Some of the

most notable features for complex systems are:

• They consist of many interacting parts (nodes).

• Each part has its own internal structure and is responsible for a specific task.

Topology or coupling mesh is the layout or how the nodes of a network are connected, while

the configuration is the type of connection that determines the flow of information between

nodes. Now, consider the traditional control law for network synchronization [3, 14]

ui1 ¼ c
XN

j¼1

ai;jGxj; i ¼ 1; . . . ;N;

where N denotes the size of the network or the number of nodes, c> 0 represents the

coupling strength, and G 2 Rn�n is a constant matrix linking the state variables. The matrix

A ¼ ðai;jÞ 2 R
n�n is the coupling matrix. If there is a connection between nodes i and j then,

the element ai,j = 1; otherwise ai,j = 0, i 6¼ j. For i = j the diagonal elements of A are defined as:

ai;i ¼ �
XN

j¼1;j6¼i

ai;j ¼ �
XN

j¼1;j6¼i

aj;i; i ¼ 1; . . . ;N:

Then, given the previous result and the above definitions, it is possible to formulate a gen-

eral control law for network synchronization using Model-Matching control, and choosing

Synchronization of complex networks of identical and nonidentical chaotic systems via model-matching control
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ri = rM = r, as:

ui ¼
XN

j¼1

ai;jui;j i ¼ 1; . . . ;N;

This is:

u1 ¼ a1;1u1;1 þ a1;2u1;2 þ � � � þ a1;Nu1;N

u2 ¼ a2;1u2;1 þ a2;2u2;2 þ � � � þ a2;Nu2;N

..

.

uN ¼ aN;1uN;1 þ aN;2uN;2 þ � � � þ aN;NuN;N

and

ui;j ¼
1

LgLr� 1
f hðxiÞ

fvi;j � L
r
f hðxiÞ þ L

r
f hðxjÞ þ LgL

r� 1

f hðxjÞujÞg;

where xi and xj represents the states of the chaotic systems nodes, plants and models, respec-

tively. Notice that with this control law, any node can be chosen as the model system M.

Network synchronization through model-matching control for

identical and nonidentidal systems

In this section, we use the previous material in order to illustrate how network synchronization

of N chaotic systems can be achieved. Two cases of study are considered, using identical and

Fig 1. Block diagram of model-matching control.

https://doi.org/10.1371/journal.pone.0216349.g001

Fig 2. Auxiliary system block diagram.

https://doi.org/10.1371/journal.pone.0216349.g002
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nonidentical chaotic systems like nodes in regular and irregular topologies. The number of

chaotic nodes are limited to N = 6 nodes. Fig 1 shows the block diagram of model-matching

control and Fig 2 presents the auxiliary system block diagram. The model matching control

works as a similar way like previous works from one of the authors, but adapted to network

synchronization [11, 12]. Thus, for identical chaotic systems, complete synchronization is

guaranteed for a relative degree r = n. For nonidentical chaotic systems only output synchroni-

zation is guaranteed.

Table 1 presents the equations of the chaotic systems and the parameter values for Rössler,

Chen, Lorenz and Lü chaotic systems, used to illustrate synchronization using Model-Match-

ing Control. Although the proposed approach can be applied to any chaotic system that holds

(5) and for all plant Pi with a strong relative degree. In Table 1, Rössler systems have complete

strong relative degree r = 3, the rest of the systems have a strong relative degree r = 2. For syn-

chronization of identical systems with relative degree r = 2, stability demonstration is not triv-

ial. But, the first two equations of the auxiliary system become linear and asymptotically stable,

and the last one presents a zero dynamic isolated from the output, depending only from the

third state, obtaining the form _z3 ¼ � bz3, for some positive constant β. Then, the solution

z3 = exp (−βt) is exponentially stable.

Regular networks

Some classic regular networks are used to illustrate the synchronization of networks of chaotic

systems. In particular, Star topology and Ring topology are presented.

Star topology with an isolated node. Consider a network in a Star topology with

six Chen hyperchaotic systems. Fig 3 shows the Star topology for six hyperchaotic systems

Table 1. Chaotic systems and parameter values.

System Equations Parameter Values

Rössler _xi1

_xi2

_xi3

0

B
B
B
B
@

1

C
C
C
C
A
¼

� xi2 � xi3

xi1 þ axi2

aþ xi3ðxi1 � mÞ

0

B
B
B
B
@

1

C
C
C
C
A
þ

0

0

1

0

B
B
B
B
@

1

C
C
C
C
A
u

yi ¼ xi2:

α = 0.2,

μ = 0.7.

Chen _xi1

_xi2

_xi3

0

B
B
B
B
@

1

C
C
C
C
A
¼

y1ðxi2 � xi1Þ

ðy2 � y1Þxi1 � xi1xi3 þ y2xi2

xi1xi2 � y3xi3

0

B
B
B
B
@

1

C
C
C
C
A
þ

0

1

0

0

B
B
B
B
@

1

C
C
C
C
A
u

yi ¼ xi1:

θ1 = 35,

θ2 = 28,

θ3 = 3.

Lorenz _xi1

_xi2

_xi3

0

B
B
B
B
@

1

C
C
C
C
A
¼

sðxi2 � xi1Þ

rxi1 � xi2 � xi1xi3

xi1xi2 � bxi3

0

B
B
B
B
@

1

C
C
C
C
A
þ

0

1

0

0

B
B
B
B
@

1

C
C
C
C
A
u

yi ¼ xi1:

σ = 10,

r = 28,

b = 8/3.

Lü _xi1

_xi2

_xi3

0

B
B
B
B
@

1

C
C
C
C
A
¼

aðxi2 � xi1Þ

� xi1xi3 þ cxi2

xi1xi2 � bxi3

0

B
B
B
B
@

1

C
C
C
C
A
þ

0

1

0

0

B
B
B
B
@

1

C
C
C
C
A
u

yi ¼ xi1:

a = 36,

b = 28,

c = 20.

https://doi.org/10.1371/journal.pone.0216349.t001
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and the associated coupling matrix. The temporal signals of six Chen hyperchaotic systems

synchronizing are illustrated in Fig 4, whereas in Fig 5 the synchronization graphics for

the outputs of six Chen hyperchaotic systems are presented. See [19] for discrete-time

context.

Ring topology. The second case is a Ring topology with six Lorenz systems shown in Fig 6

and its associated coupling matrix. Fig 7 illustrates the temporal signals on the synchronization

of six Lorenz systems in a Ring topology and Fig 8 shows the synchronization graphics for the

outputs of six Lorenz systems.

Irregular networks

One of the most interesting cases is making irregular networks because generate some behav-

iour that is not expected. It could be more complex if the elements of the irregular network are

structurally different. This case is presented within the irregular Small-World topology and

Fig 3. a) Star topology, b) coupling matrix, c) random initial conditions.

https://doi.org/10.1371/journal.pone.0216349.g003

Fig 4. a) Temporal signals for the synchronization of six Chen chaotic systems in a star topology with an isolated node. b) Zoom in window

showing the convergence in time for all xi1 states.

https://doi.org/10.1371/journal.pone.0216349.g004
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Tree topology. The first case is realized with identical chaotic systems and the second one with

different chaotic systems.

Small-world topology. Small-world topology is a very used topology for the effectiveness

to achieve synchronization. Six Rössler chaotic systems are synchronized when they are con-

nected as shown in Fig 9 with the corresponding coupling matrix. Fig 10 shows the temporal

output signals and the synchronization in a small time. Fig 11 presents the synchronization

graphics for six Rössler chaotic systems in a Small-world topology.

Tree topology. In this case, an irregular Tree topology is realized using an array presented

in Fig 12 with its associated coupling matrix. Notice that it uses three different chaotic systems,

two Lorenz systems, two Lü systems and two Chen systems. The main master is labeled as

Lorenz 1 at the node 1. The node 2 contains the Lorenz 2 that is a slave system driven by

Lorenz 1 and is another Master system. For non-identical chaotic systems, output synchroni-

zation if guaranteed in [11]. Then, the expected result is output synchronization. Fig 13 shows

Fig 5. a) Synchronization graphics for six Chen chaotic systems in a star topology with an isolated node. b) Chen chaotic attractor.

https://doi.org/10.1371/journal.pone.0216349.g005

Fig 6. a) Ring topology b) coupling matrix, c) random initial conditions.

https://doi.org/10.1371/journal.pone.0216349.g006
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the temporal series for output synchronization for six nodes using three different chaotic sys-

tems in a Tree topology with two master systems. The output synchronization result is illus-

trated again in Fig 14 with the synchronization graphics. The complete and more interesting

result is shown in Fig 15. All chaotic systems show output synchronization, whereas the other

states show phase synchronization with respect to the main master node 1. Nevertheless, the

states between both Chen systems and both Lü systems show complete synchronization in

other new state in phase with the main master.

Fig 8. a) Synchronization graphics for six Lorenz chaotic systems in a ring topology with an isolated node. b) Lorenz chaotic attractor.

https://doi.org/10.1371/journal.pone.0216349.g008

Fig 7. a) Temporal signal on the synchronization for six Lorenz chaotic systems in a ring topology. b) Zoom in window showing the

convergence in time for all xi1 states.

https://doi.org/10.1371/journal.pone.0216349.g007
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Discussion

The MMC for network synchronization presented in this work is competitive with the most

popular methodology used in [1–7, 14]. In that case, an error feedback between the signals to

be synchronized is used. Synchronization time depends on the coupling gains k. On the other

hand, in this work, synchronization time depends on the poles location. An adequate election

on the poles location can achieve robust synchronization and, at the same time, an unforced

control law. Nevertheless, some limitations were observed in the process: If Initial conditions

are much bigger respect to the maxima amplitude of the temporal chaotic signal, the poles of

the linearized auxiliary system need to be more negative from the complex axis of complex

plane to achieve synchronization. This makes the MMC be increased, generating a forced con-

trol law. Other limitation is considered in Eq (5), where model matching problem is locally

solvable if, and only if ri� rM. Nevertheless, it is possible to obtain output synchronization for

systems with different order, if the systems hold condition (5). The main advantages for

Fig 10. a) Synchronization graphics for six Rössler chaotic systems in a Small-World topology. b) Zoom in window showing the

convergence in time for all xi2 states.

https://doi.org/10.1371/journal.pone.0216349.g010

Fig 9. a) Small-World topology b) coupling matrix, c) random initial conditions.

https://doi.org/10.1371/journal.pone.0216349.g009
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network synchronization using MMC are the following: It is a systematic procedure, it is

robust, can be applied for nonidentical chaotic systems, and the initial conditions rank is big-

ger respect to other methodologies. They could be considered as disadvantages: Mathematical

analysis for computing the control law is complex. When synchronization is more robust, a

more forced control law is obtained. This is not desirable for physical implementation pur-

pose, but it could be solved using hybrid systems (computer + physical implementation) [25].

This could be truth because the MMC does not increase the computation complexity, i.e., the

computer time running the program depends only on the computer hardware and software.

Conclusions

In this work, a synchronization scheme for complex networks of identical and nonidentical

chaotic systems was presented. In particular, model-matching problem from nonlinear control

theory was used. The results show complete synchronization for networks of identical systems

Fig 11. a) Synchronization graphics for six Rössler chaotic systems in a Small-World topology with an isolated node. b) Rössler chaotic attractor.

https://doi.org/10.1371/journal.pone.0216349.g011

Fig 12. a) Tree topology with different chaotic systems, b) coupling matrix, c) random initial conditions.

https://doi.org/10.1371/journal.pone.0216349.g012
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and output synchronization for an irregular network of a class of non-identical systems.

Although for non-identical systems, complete synchronization was achieved between Chen’s

and Lü’s systems. The advantages over other cited approaches to synchronize networks of non-

identical chaotic systems are the following: this approach is a systematic procedure, it could

use unidirectionally and bidirecctionally coupled systems, gains for the controller could be

small, and synchronization network is obtained after a short transient behavior. Moreover, the

Fig 14. Output Synchronization graphics for different chaotic systems in a Tree topology.

https://doi.org/10.1371/journal.pone.0216349.g014

Fig 13. a) Output Synchronization for six nodes using three different chaotic systems in a Tree topology with two master systems. b) Zoom

in window showing the convergence in time for all xi1 states.

https://doi.org/10.1371/journal.pone.0216349.g013
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proposed control law allows to chose any chaotic system as a model and more than one model.

Numerical simulations were done. In future works, network layers and some applications for

neural network communication systems will be studied. At the same time, some studies on the

rank of the initial conditions and poles location could be analyzed.
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Methodology: G. López-Cahuich, C. Posadas-Castillo.

Resources: E. Tlelo-Cuautle.

Software: J. L. Vázquez-Gutiérrez.

Supervision: D. López-Mancilla, C. Posadas-Castillo, J. H. Garcı́a-López, E. Tlelo-Cuautle.
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12. López-Mancilla D., Cruz-Hernández C. “Output synchronization of chaotic systems under nonvanishing

perturbations,” Chaos, Solitons & Fractals, 2008, 37, pp. 1172–1186 https://doi.org/10.1016/j.chaos.

2006.10.020
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