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ABSTRACT Objective: Pulmonary cavity lesion is one of the commonly seen lesions in lung caused by a
variety of malignant and non-malignant diseases. Diagnosis of a cavity lesion is commonly based on accurate
recognition of the typical morphological characteristics. A deep learning-based model to automatically
detect, segment, and quantify the region of cavity lesion on CT scans has potential in clinical diagnosis,
monitoring, and treatment efficacy assessment.Methods: A weakly-supervised deep learning-based method
named CSA2-ResNet was proposed to quantitatively characterize cavity lesions in this paper. The lung
parenchyma was firstly segmented using a pretrained 2D segmentation model, and then the output with or
without cavity lesions was fed into the developed deep neural network containing hybrid attention modules.
Next, the visualized lesion was generated from the activation region of the classification network using
gradient-weighted class activation mapping, and image processing was applied for post-processing to obtain
the expected segmentation results of cavity lesions. Finally, the automatic characteristic measurement of
cavity lesions (e.g., area and thickness) was developed and verified.Results: the proposed weakly-supervised
segmentation method achieved an accuracy, precision, specificity, recall, and F1-score of 98.48%, 96.80%,
97.20%, 100%, and 98.36%, respectively. There is a significant improvement (P<0.05) compared to other
methods. Quantitative characterization of morphology also obtained good analysis effects.Conclusions: The
proposed easily-trained and high-performance deep learning model provides a fast and effective way for the
diagnosis and dynamic monitoring of pulmonary cavity lesions in clinic.

INDEX TERMS Pulmonary cavity lesion, weakly-supervised segmentation, CSA2-ResNet, Grad-CAM,
quantitative characterization.
Clinical and Translational Impact Statement—This model used artificial intelligence to achieve the detec-
tion and quantitative analysis of pulmonary cavity lesions in CT scans. The morphological features revealed
in experiments can be utilized as potential indicators for diagnosis and dynamic monitoring of patients with
cavity lesions.

I. INTRODUCTION

PULMONARY cavity is a common type of lesions which
refers to gas-containing space seen as a lucency or

low-attenuation area, within a nodule, mass, or area of
parenchymal consolidation [1]. It is caused by malignancies,
suppurative or caseous infections, and ischemic parenchymal

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

457

https://orcid.org/0000-0001-7170-9488
https://orcid.org/0000-0001-9538-5836
https://orcid.org/0000-0001-6651-4491


W. Xing et al.: Weakly-Supervised Segmentation

necrosis [2]. Pathologically, it mainly results from necrosis
and liquefaction of lung parenchyma, followed by the entry
of air through bronchial drainage [3]. On CT imaging, pul-
monary cavities appear as ring-shaped shadows within the
parenchymal region [1].

In clinical practice, manifestations of pulmonary cavitary
lesions in CT images, such as location, morphology, size,
and margin features are of crucial significance for differ-
encing benign or malignant disease, and inferring etiology
of the lesion. Currently, clinicians use manual measurement
and qualitative morphological features to evaluate cavity
lesions [4], which is time-consuming, subjective, and difficult
to compare between serial CT scans and between different
cases. Therefore, computer aided automatically segmentation
and characteristics quantification of cavity lesions is expected
to provide new opportunities for faster and more accurate
clinical evaluation, which is essential in differential diag-
nosis, treatment efficacy assessment, and prognostication.
Furthermore, it will also facilitate large scale longitudinal
clinical researches and epidemiological investigations to gain
deeper insights into the pathological mechanisms and out-
come patterns.

Previously, supervised deep learning models has been
widely used in CT scan image segmentation tasks. For exam-
ple, Xing et al. [5] designed a novel segmentation model
by combining convolution and multilayer perceptron (MLP)
modules to extract and reconstruct the bilateral parenchyma
in CT scans. Zhao et al. [6] integrated a three-dimensional
V-Net with a shape deformation module implemented using
a spatial transformer network to segment lung parenchyma
in CT scans. Hu et al. [7] proposed a parallel deep learn-
ing algorithm with multi-attention mechanism and densely
connected convolutional networks to segment the tumor in
CT slice images. Chaganti et al. [8] proposed a convolu-
tional neural network (CNN) model based on the pretrained
DenseNet model for the segmentation of CT patterns of viral
pneumonia. Although these methods achieve good segmenta-
tion results, they usually require obtaining mask labels of the
target area in advance for training, which is labor-intensive
and inefficient. What’s more, it is noteworthy that compared
to the relatively simple task of lung parenchyma segmenta-
tion, the edges of pulmonary cavities are complex and diverse
in shape, making it difficult to achieve accurate mask label
extraction through traditional image processing or manual
delineation. Therefore, supervised segmentation models may
not be well-suited for the segmentation task of cavity lesions.

To address such issues, weakly-supervised semantic
segmentation has been proposed [9], [10]. It primarily
relies on image classification and activation map gener-
ation to obtain segmentation results of regions of inter-
est (ROI). Compared to directly obtaining segmentation
labels, using only image-level labels makes the entire task
simpler. It no longer requires pre-obtaining segmentation
labels to achieve target segmentation in complex back-
grounds, significantly improving the efficiency and feasibil-
ity of segmentation tasks, especially for complex objects.

Researchers previously introduced the weakly-supervised
idea in detecting COVID-19 infection lesions, enabling pre-
cise segmentation of the lesions. For example, Li et al. [11]
proposed a classifier-augmented generative adversarial net-
work, which achieved weakly supervised localization of
COVID-19 lung lesion in CT slice images. Yang et al. [12]
proposed a weakly-supervised method based on genera-
tive adversarial network (GAN) with image-level labels
only for COVID-19 lesion localization. Sun et al. [13]
employed a Local Self-Coherence Mechanism to accomplish
label propagation based on lesion area labeling character-
istics and achieved the weakly supervised segmentation of
COVID-19 infection on CT images. Xie et al. [9] pro-
pose a weakly-supervised segmentation method based on
dense regression activation maps with attention neural net-
work module, which achieved lesion segmentation in CT
scans. Lu et al. [14] proposed a novel weakly supervised
inpainting-based learning method, in which only bounding
box labels are required for accurate lesion segmentation.

However, for pulmonary cavity lesions in CT scans,
more effective segmentation methods are required for clin-
ical application. In this paper, considering the current
research status and existing problems, we proposed a
novel weakly-supervised deep learning framework-based
pulmonary cavity lesion automatic segmentation model,
which was composed of ROI extraction, image classification,
and lesion segmentation. Based on this method, we also
proposed automatic characteristic measurement methods and
application scenarios of lesion morphology features. The
main contributions are summarized as follows: (1) the pro-
posed weakly-supervised model only requires image-level
labels, which are easier and efficient to obtain than pixel-level
labels; (2) the CSA2-ResNet classification model employed
a hybrid attention mechanism into ResNet backbone model
to enhance sensitivity and directionality towards lesions,
which was beneficial for subsequent weakly-supervised
lesion localization; (3) the accurate quantitative analysis of
cavitary lesions based on precise segmentation results is
beneficial for clinical diagnosis, assessment, and dynamic
monitoring.

II. METHODS
A. PATIENTS
We retrospectively enrolled 35 adult patients aged
18 ∼ 90 years old and admitted to Zhongshan Hospital
Fudan University from July 2016 to October 2021. These
patients had pulmonary cavitary lesions in chest CT scans,
and the lesions were diagnosed as lung tuberculosis (n = 5),
malignant tumor (n = 10), aspergilloma (n = 5), or bacterial
abscess (n = 5). The patients underwent chest CT scans
at different times points during the disease course. A total
of 64 CT scans were obtained. All CT slice images were
first segmented to isolate the lung parenchyma regions, and
then 523 CT slice images were randomly selected for the
5-fold cross validation experiments. Among these selected
images, 248 of them had cavity lesions, while 275 did not.
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The CT scans were performed in a heat-first posi-
tion at the end of the patient’s inhalation with breath
holding. CT scans were collected using SOMATON Emotion
16 scanner (SIEMENS Healthcare) in spiral scanning mode
and stored in Medical Digital Imaging and Communica-
tion (DICOM) format. No contrast agents were administered
during the scanning process. All patients provided informed
consent and approved by the Ethics Committee of Zhongshan
Hospital (Number: B2021-183R).

B. CAVITY LESION SEGMENTATION
Figure 1 shows the schematic diagram of proposed
weakly-supervised segmentation model for pulmonary cav-
ity lesions. We first segment the lung parenchyma region
using our previously proposed CM-SegNet segmentation
model, and fed it into the self-designed CNN model
(i.e., CSA2-ResNet) to predict the probability of presence of
cavity lesion. Then the lesion was localized by the activation
region of the classification network, which is generated by
Gradient-weighted Class Activation Mapping (Grad-CAM)
algorithm. Finally, by a simple post-processing, the expected
automatic segmentation results of cavity lesions are obtained.

FIGURE 1. Schematic diagram of weakly-supervised segmentation model
for cavity lesions.

1) ROI EXTRACTION
As the pulmonary cavity lesions are located within the
pulmonary parenchyma, the key to the weakly supervised
segmentation is ensure the accuracy of determining presence
of cavity lesions in pulmonary parenchyma. Accurate seg-
mentation of the pulmonary parenchyma in CT images is
of paramount importance. Previously, we proposed a deep
learning-based automatic segmentation approach namedCM-
SegNet [5] for 2D medical images by combining convolution
and multilayer perceptron, which have good performance
in CT image segmentation. In this study, before analyzing
pulmonary cavity lesions, a pre-trained CM-SegNet model

was used to preprocess the input CT images to obtain the lung
parenchyma ROI region. This preprocess step is to reduce the
complexity of subsequent research and improve accuracy of
lesion segmentation.

2) SUPERVISED DEEP LEARNING-BASED
IMAGE CLASSIFICATION
As a classic convolutional neural network model, ResNet
effectively alleviates the problem of gradient vanishing in
deep networks by introducing residual connections, which
improves the classification performance and plays an impor-
tant role in computer vision tasks. However, based on CNN
structures, ResNet is a local feature extraction method which
only included the correlation between pixels of long distance
is overlooked in ResNet model. In the task of recogniz-
ing cavity lesions, such long-distance correlations are of
great importance because the morphology of one lesion is
closely related with other lesions within a certain patient.
Additionally, traditional residual structures usually fail to
highlight the importance of certain crucial channels and pre-
vent the model from focusing on the hollow lesion region
due to the same weight allocated to different channels.
To address these issues, a new hybrid-attention ResNet clas-
sification model referred to convolutional block attention
module (CBAM) [18] and called CSA2-ResNet (Figure 2),
was proposed by integrating channel and spatial attention
modules to the classic ResNet model, achieving accurate
identification of cavity lesions in lung parenchyma.

① ResNet-style base network
ResNet model is a typical CNN architecture composed of

Identity and Conv residual modules, which utilizes recursive
convolution operations to down-sample the input images,
increase channel dimensions, and achieve high-dimensional
feature extraction.

②Hybrid-attention-based ResNet-style network
To improve the performance of the base CNN models,

hybrid channel and spatial attention modules were utilized in
our proposed CSA2-ResNet classification model, as shown
in Figure 2. The hybrid attention modules increase the direc-
tionality of feature analysis and improve the representation of
interests.

Channel attention module was composed of squeeze and
excitation [15]. Assuming the input feature map is U ∈

RH×W×C , U ={u1, u2, u3, . . . , uc}, where ui ∈ RH×W

represents a single channel, and H , W , and C represent the
dimensions of the feature map in terms of height, width, and
channels, respectively. The squeeze operation [Eq. (1)] uti-
lizes global average-pooling in both theH andW dimensions
to compress the feature maps of each channel. This encodes
the spatial features of the entire space on a single channel
into global features, resulting in 1 × 1×C outputs used for
channel-wise weight learning.

Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j

uc(i, j) (1)
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FIGURE 2. Schematic diagram of CSA2-ResNet classification model. GAP: global average pooling, FR: feature recalibration, DT: dimension
transformation, CSM: correlation strength matrix.

In order to better capture the global feature informa-
tion extracted by the squeeze operation, the model employs
excitation operations to analyze the dependencies between
channels. Two fully connected layers are primarily used to
learn the non-linear cross-correlation between channels and
the weights for each channel. The learned channel weights are
then normalized using Sigmoid function, as shown in Eq. (2),
to ensure that the weights range from 0 to 1 and sum up to 1.
Finally, the weights of each channel learned through the exci-
tation operation are multiplied with the original channels of
the input feature map, achieving channel-wise feature recali-
bration (FR) of the original features. The resulting output of
this operation serves as input for the next layer.

Fex(z,W ) = σ (W2δ(W1zc)) (2)

where W1 and W2 represent fully connected layers.
δ and σ represent ReLU and Sigmoid activation function,
respectively. Zc represents the global spatial information
extracted by squeeze operation.

Spatial attention module captures the long-range depen-
dencies of spatial information and plays a crucial role in
focusing the model on the target region [16]. The process is
shown in Eq. (3).

yi =
1∑

∀j f (xi, xj)

∑
∀j
f (xi, xj)g(xj) (3)

where x and y represent the input and output, respectively.
i and j represent the spatial positions of the input feature
map. xi is a feature vector with the same dimension as
the input x. f(·) is a function that computes the similarity
between i and j. g(·) represents the representation of the
feature map at position j. The output y is obtained after
normalization.

For the detailed calculation process of spatial attention,
we firstly introduced a convolution layer with kernel size
of 1 × 1 × 1 to linearly map the input feature map
and reduce its dimension, resulting in three features: F1,
F2, and F3. Next, the dimensions of the three features,

in terms of height and width, are merged using a dimen-
sion transformation (DT) operation into (HW)×C . Then we
used matrix multiplication operation to obtain the corre-
lation strength matrix (CSM) between any two points in
F1 and F2, with a size of (HW)×(HW), and normalized
the results using a SoftMax function to obtain attention
coefficients of each pixel with respect to other pixels. The
higher the similarity between two-point features, the larger
the response coefficient. The attention coefficients are used
to perform weighted fusion with the F3 feature matrix and
the results were dimensionally transformed into a feature
map with size of H × W × C . After a residual operation
with the input feature map, the spatially fused feature map
is obtained, which serves as the input for the next layer of the
model.

Finally, we used a Global Average Pooling (GAP) layer to
extract the global feature fGlo from the output of the convo-
lution layers. Identification of the presence of lung cavitary
lesions were then achieved by employing fully connected
layers and a SoftMax classifier.

3) WEAKLY-SUPERVISED SEGMENTATION
To improve the accuracy of cavity lesion segmentation,
we introduced a weakly-supervised algorithm based on Grad-
CAM [17]. Firstly, we calculated the weights of each channel
in the final convolution layer with respect to the image cat-
egory. Then the weight vector was linearly weighted with
the corresponding channel of the feature map to obtain
a 2D activation map. Finally, a heatmap that is signif-
icantly positively correlated with the cavity lesion was
outputted through the ReLU activation function, resulting in
a visualization effect like attention mechanism. This enables
discrimination of the location of cavity lesion in CT slice
images.

After obtaining the visualized activation feature map of
cavity lesions, the image processing algorithm (i.e.,adaptive
threshold binarization, hole filling, and the connected-
domain labeling) are employed to further eliminate other
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surrounding infected lesions and achieve accurate extraction
of the binary mask for cavity lesions.

C. CHARACTERISTICS ANALYSIS OF CAVITY LESIONS
Quantitative feature analysis of cavity lesions can help
clinical observation of dynamic changes and identify the
benign and malignant. To address the problems of objec-
tively, inaccuracy, and low efficiency in manual comparison,
we proposed an automated characteristic analysis method
based on weakly-supervised precise segmentation for analyz-
ing the lesion features in CT images [1], [18], such as area,
thickness, etc.

1) MEASUREMENT OF THE AREA OF CAVITY LESION
The hole filling in morphological reconstruction and the
connected-domain labeling are used to extract the binary
mask of the entire lesion region (ELR) and the single cavity
region (SCR). Additionally, automated calculations of area
and proportion are implemented as shown in Eq. (4). Based
on the above results, it is possible to automatically capture the
largest lesion slice and dynamically observe the development
of cavity lesions over different time periods, as illustrated
in Figure 3.

RELR =
SELR
SP

,RSCR =
SSCR
SELR

(4)

where SELR, SSCR, and SP represent the area of the
entire lesion region, single hole region, and unilateral lung
parenchymal region where the lesion is located, respectively.
RELR and RSCR represents the proportion of entire lesions
in the parenchyma and single hole in the entire lesion,
respectively.

FIGURE 3. Schematic diagram of area and proportion measurement of
cavity lesions.

2) MEASUREMENT OF THE THICKNESS OF THE HOLE WALL
The centroid (O) of separate hole was firstly obtained in the
entire cavity lesion. With the centroid as the vertex, we make

outward spreading rays that will intersect with the edge of
the cavity lesion at two points (i.e., P1 and P2), and the
distance (Ln) between P1 and P2 is the thickness of the cavity
lesion’ wall in a single direction. After then, using a rotation
angle of 1 degree and performing the same measurement
operation, after 360 rounds (i.e., N= 360), the wall thickness
of the cavity lesion in each direction can be obtained [Eq. (5)].
Based on the above results, it is convenient to achieve the
statistic analysis of various features about the wall thick-
ness of the cavity lesion in CT images, such as maximum,
minimum, average, variance, etc. The schematic diagram
of thickness measurement of the wall of cavity lesions is
represented in Figure 4.

Ln =

√(
xP1 − xP2

)2
+

(
yP1 − yP2

)2
, n ∈ {Z | (0, 360)}

(5)

where P1 and P2 are the two intersection points between the
spreading ray and the cavity lesion’s inner and outer ring
edges. xand y are the horizontal and vertical coordinates of
intersection point, respectively.

FIGURE 4. Schematic diagram of thickness measurement of the wall of
cavity lesions.

D. EVALUATION OF WEAKLY-SUPERVISED
SEGMENTATION MODEL
The two independent stages of our proposed weakly-
supervised segmentationmodel were both evaluated using the
‘‘Accuracy’’ index, including ACC1 and ACC2, as shown in
Eqs. (6) and (7), respectively.

ACC1 =
TP′

+ TN ′

TP′ + TN ′ + FP′ + FN ′
(6)

ACC2 =
TP′′

TP′′ + FP′′
(7)

where ACC1 and ACC2 represent the accuracy of the CSA2-
ResNet classification model and the independent segmenta-
tion model, respectively. TP′, FP′, TN ′, and FN ′ represent
the number of correctly and incorrectly identified images
with cavity lesions and without cavity lesions, respectively.
TP′′ and FP′′ represent the number of correctly and incor-
rectly segmented cavity lesions. Because the edges of most
cavity lesions are blurred, it is difficult to obtain the ground
truth lesion, the segmentation correctness judgments are
finally judged by two experienced pulmonary physicians
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from Zhongshan Hospital Fudan University (≥ 6 years in
reading lung CT scans). Meanwhile, the performance of
total weakly-supervised segmentation model was quantita-
tively evaluated by five indexes including accuracy, precision,
specificity, recall, and F1 score.

III. EXPERIMENTAL RESULTS AND ANALYSIS
The proposedmethod has been tested on the data set collected
from the 35 patients who were admitted to the Zhongshan
Hospital Fudan University and have at least one cavity lesion
on chest CT scans. A total of 523 CT slice images randomly
selected from these pneumonia patients. 248 (47.42%) of
them had cavity lesions, while 275 (52.58%) were normal.
Meanwhile, 5-fold cross validation experiments were utilized
to train and test the proposed method to ensure the reliability
of the experimental results.

Deep learning models and image processing algorithms
involved in this paper were performed using Pytorch frame-
work and Matlab 2022b, respectively. All experiments were
run on a workstation with a CPU: Intel Xeon Gold 6248R,
RAM: 256G, and GPU: Tesla V100.

A. RESULTS OF WEAKLY-SUPERVISED
SEGMENTATION MODEL
All CT slice images were firstly segmented to obtain the
ROI of lung parenchyma. Then the lung parenchyma regions
were used to the subsequent training and testing process of
the proposedweakly-supervised segmentationmodel with the
hyper-parameters of epoch, batch size, learning rate, opti-
mizer, and loss function of 20, 4, 0.0001, AdamW, and cross
entropy loss function, respectively. The accuracy of CSA2-
ResNet-based classification and Grad-CAM-based segmen-
tation models were 100±0% and 96.8±2.3%, respectively.
Figure 5 shows the process of cavity lesion segmentation task.
Furthermore, we selected 100 CT slice images with clear
lesion edges and invited experienced clinicians to provide
the accurate ground truth. Then, five indicators [i.e., Dice
coefficient (DC), Jaccard similarity coefficient (JSC), Haus-
dorff distance (HD), average surface distance (ASD), and
conformity coefficient (CC)] were employed to quantitatively
evaluate the segmented results, as shown in Table 1. These
experimental results demonstrate that the proposed classifi-
cation model CSA2-ResNetwith channel and spatial attention
has good feature directionality, and the final segmentation
results are precise.

TABLE 1. Performance evaluation of segmented results.

FIGURE 5. Examples of pulmonary cavity lesions and experimental
results of the proposed models. (a) Segmented lung parenchyma images;
(b) Category activation hot map; (c) Segmented cavity lesion.

To evaluate the entire weakly-supervised segmentation
model, five indexes [i.e., accuracy (ACC), precision (PRE),
specificity (SPE), recall (REC), and F1-score (F1)] were
employed with the results of 98.48±1.09%, 96.80±2.28%,
97.20±1.97%, 100±0%, and 98.36±1.17%, respectively
(Table 2). The results demonstrate that CT images of lung
parenchyma with or without cavity lesions all have good
analytical results.

TABLE 2. Performance evaluation of total segmentation model.

B. COMPARISON WITH PREVIOUSLY RELATED MODELS
1) COMPARISON WITH ResNet-BASED WEAKLY
SUPERVISED SEGMENTATION MODEL
We compared our proposed model with the original
ResNet-based model in this task. The segmentation results
of cavities, as shown in Figure 6, indicate that the pro-
posed model outperforms the original ResNet-based model
in handling details due to its clear directionality of atten-
tion mechanism. Meanwhile, the quantitative comparison
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FIGURE 6. Segmentation results of weakly-supervised segmentation models using CSA2-ResNet and base
ResNet.

results are shown in Table 3 and 4. For stepwise com-
parison (i.e., Table 3), the proposed CSA2-ResNet-based
segmentation model significantly improved the accuracy
improvements of 5.8% and 17.0% at the classifica-
tion and segmentation stages when compared with base
ResNet, respectively (all P<0.001). In full model compar-
ison (i.e., comprehensive evaluation of two-stage models,
Table 4), compared with ResNet-based segmentation model,
the proposed CSA2-ResNet-based segmentation model per-
formed significantly better regarding all indexes, with the
gain of 23.24%, 22.80%, 20.84%, 26.00%, and 24.63% in
accuracy, precision, specificity, recall, and F1 score, respec-
tively (all P <0.001).

TABLE 3. Accuracy of CSA2-ResNet and ResNet-based weakly-supervised
segmentation models at classification and segmentation Stages.

2) COMPARISON WITH OTHER CNN AND TRANSFORMER-
BASED WEAKLY SUPERVISED SEGMENTATION MODEL
The base CSA2-ResNet classification model in the proposed
weakly-supervised model adopts the form of ‘‘CNN+Atten-
tion’’ to achieve visualization of cavity lesions in CT scans.
In order to verify the superiority of our model in the exper-
imental task of this paper, we compared it with CNN-based
models (e.g., AlexNet, Vgg-16, GoogLeNet, DenseNet-201,
and Inception-V3) and Transformer-based models (e.g., Swin
Transformer, Vision Transformer, Tokens-To-Token ViT,
Transformer in Transformer, and Twins-PCPVT). All models
were trained and testing using the same hyper-parameters,
and the segmentation results were obtained by Grad-CAM.

TABLE 4. Comparison of the weakly-supervised segmentation models
using CSA2-ResNet and base ResNet.

The performance comparison of two stages (i.e., classifica-
tion and segmentation) using accuracy and dice coefficient
are shown in Figure 7, which demonstrate that our proposed
model has the optimal segmentation performance.

C. AUTOMATIC MEASUREMENT AND APPLICATION
OF MORPHOLOGICAL CHARACTERISTICS
1) AREA
Based on the precise segmentation results, the specific area
and proportion of each lesion relative to the entire lung
parenchyma can be obtained through automated calcula-
tions, approximately following a normal distribution curve.
Simultaneously, the method permits automated and accurate
measurement of lesion and inner cavitary area, enabling mor-
phological feature analysis using the slice which contains the
largest lesion. Taking one patient as an example, CT slices
containing lesions were identified from Layers 16 to 23. The
area of lesion in each slice and its proportion to the whole
lung parenchyma ware shown in Figure 8. The largest lesion
cross-section was identified in CT slice 21, where the area of
the cavitary region and its proportion to the entire lesion were
determined as 374 pixels and 11.17%, respectively.

In addition, based on the automatic capture of the largest
lesion CT cross-section and the quantitative analysis of the
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FIGURE 7. Comparison of different models’ performance. 1-Swin Transformer, 2-Vision Transformer, 3-Tokens-To-Token ViT, 4-Transformer
in Transformer, 5-Twins-PCPVT, 6-AlexNet, 7-Vgg-16, 8-GoogLeNet, 9-DenseNet-201, 10-Inception-V3, 11-Ours.

FIGURE 8. An example of segmentation and quantitative analysis of a cavity lesion in a serial of continuous CT slices.

cavity lesion region, dynamic monitoring and comparison
of the same lesion in a patient at different treatment time
points can be achieved. Taking one patient as an example, the
presentation images and change curves of cavity lesions at
three different time points (i.e., 2017.08.18, 2017.10.11, and
2017.12.01) are shown in Figure 9. Quantified parameters of
the cavity lesions suggest that the area and relative propor-
tion of entire lesion and inner cavitary region significantly
decreased after clinical treatment (entire lesion: 4165 pix-
els (16.72%) to 970 pixels (3.06%); inner cavitary region:

1601 pixels (38.44%) to 38 pixels (3.92%)), indicating
improvement in disease condition. These results demon-
strate the potential application value of the proposed method
for pulmonary cavitary lesion segmentation and quantitative
analysis in the clinical diagnosis and follow-up.

2) THICKNESS
The distribution of chest wall thickness is also an impor-
tant indicator for clinical analysis. Thus, we conducted a
quantitative analysis on the wall thickness of cavity lesions
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FIGURE 9. An example of analyzing dynamic changes of the same cavity lesion at different time points. 1, 2, and 3 represent
three different CT acquisition time points: 20170818, 20171011, and 20171201, respectively.

in CT images. Taking one CT image as an example,
we extracted the centroid of the cavity and calculated
the thickness of the cavity walls in various directions
within a 360-degree range. Subsequently, we performed a
histogram-based statistical analysis on the collected thickness
data to identify the primary range of lesion wall thick-
ness that the range of wall thickness in this case is mainly
concentrated in the 5-6 pixel. Furthermore, we successfully
computed key statistical features including maximum, min-
imum, average, standard deviation, and variance and their
values are 19.00 pixels, 2.03 pixels, 7.98 pixels, 14.75 pixel2,
and 3.84 pixels, providing accurate metrics for characterizing
the morphology of cavity lesions. This comprehensive analy-
sis not only enhances our understanding of the wall thickness
characteristics of these lesions but also ensures a solid tech-
nical foundation for further research in this area. The main
process of statistical analysis of cavity wall thickness in CT
scans is shown in Figure 10.

IV. DISCUSSION
To facilitate automatic segmentation and quantitative char-
acterization of pulmonary cavity lesions, we designed an
effective weakly-supervised deep learning-based algorithm
and tested it by five-fold cross validation. The experimental
results show the proposed model achieved high accuracy in
segmentation task, and thus provide opportunities for fast and
precise quantitative characterization of cavity lesions.

The purpose of this study was to develop a model for
automated characterization of cavity lesions in CT imaging

which can assist in the diagnosis and treatment of pneumonia
diseases. Thus, our primary task in this study is to segment
of cavity lesions automatically and precisely. Considering
the complex manifestations of cavity lesions (e.g.,diverse
morphologies and blurry edges), classical supervised seg-
mentation model is limited due to the difficulty in obtaining
pixel-level mask labels. In contrast, image- or patient- level
labels are often accessible for weakly-supervised segmenta-
tion algorithm based on binary classification. Therefore, it is
crucial to design a pre-classification model that is suitable for
small samples with lightweight model and of high accuracy
is needed.

Due to the small sample size and the relatively simple
classification task, we adopted the classic convolutional neu-
ral network (i.e.,ResNet) as backbone and added the hybrid
attention modules to it. The hybrid attention helps the clas-
sification model to focus on the cavity lesion regions [19].
Among them, spatial attention focuses on the spatial position
in the feature map, improving the accuracy of the model in
locating the target object in the image. Meanwhile, channel
attention focuses on the channel dimensions in the feature
map, which helps the model better select and utilize feature
channels that are beneficial to the task in the image, and
improves overall performance. The effects of hybrid attention
were demonstrated in both qualitative and quantitative exper-
imental results (e.g., Figure 6, Table 3, and Table 4), where the
proposed model improved classification and segmentation
accuracy by 5.8% and 17.0% (all P<0.001), respectively,
compared with the original ResNet model.
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FIGURE 10. An example of statistical analysis of wall thickness of cavity lesions in CT scans.

Of course, there have been many other deep learning mod-
els based on CNN or Transformer, most of which achieved
good classification performance. Notably, our CSA2-ResNet
model outperforms several CNN and Transformer models
in preciseness, as shown in Figure 7. The high efficiency
of the proposed CSA2-ResNet model is attributable to its
simpler structure compared to Transformer models, which
is suitable for small sample sizes and simple classification
tasks. Additionally, by introducing attentionmechanisms into
the CNN-based ResNet models, our model also achieved
better lesion-focused effects closing to Transformer-based
model than other classical CNN-based deep learning
models.

In addition to segmentation as the foundation, we achieved
capture, analysis, and monitor of the cavity lesion for auto-
matically measuring morphological features (e.g., area and
thickness). Owing to the precise segmentation by our model,
feasible and intuitive quantitative analysis of single and serial
CT scans (e.g., area of entire lesion and single hole region,
proportion of lesion in the parenchyma and hole in the entire
lesion) is possible as presented in Figure 8 and Figure 9.
Meanwhile, by extracting the centroid of the lesion and
measuring by rotation, a clear statistical distribution of the
thickness of cavity lesion (Figure 10) has also been obtained.
The above automated measurement of cavity lesion features
reduced errors caused by subjective and objective factors in
manual measurement, which has important value for clini-
cal diagnosis and guidance of treatment. Furthermore, the
proposed model is also applicable to segment and quantify

other lesion types, such as lung nodules in CT images, thyroid
tumors in ultrasound images, brain lesions in MRI images,
and so on.
Limitations of This Study: There are still several limitations

in this study. First, this paper mainly focuses on capturing
and analyzing the section with the largest lesion. The 3D
morphology and the correlation between upper and lower
layers are also important for diagnosis, demanding for 3D
segmentation in future studies. Second, the CT scan dataset
used in this study was collected from a single hospital. Due
to the potential impacts of different devices and acquisition
environments on segmentation results, the generalizability of
our model needs further verification in multi-center dataset.
Third, our work mainly focused on segmentation task, while
more efforts are needed to use morphological and texture fea-
tures to differentiate the benign/malignant nature and etiology
of the lesions in the future.

V. CONCLUSION
In this paper, we proposed aweakly-supervised deep-learning
segmentation framework for pulmonary cavity lesions in CT
slice images with only image-level labels. It achieved good
classification and precise segmentation performance. Mean-
while, we applied the segmentation results to quantitative
characterizing cavity lesions, which is essential in automatic
assessment and dynamic monitoring. Therefore, our pro-
posed methods have great potential in facilitating accurate
diagnosis, observation of clinical course, and evaluation of
treatment efficacy.
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