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Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed
and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression
and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction
method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept
of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment
dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments.
Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation
tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the
state-of-the-art methods.

1. Introduction

In most literatures, facial feature points are also referred to
facial landmarks or facial fiducial points.These points mainly
locate around edges or corners of facial components such as
eyebrows, eyes, mouth, nose, and jaw (see Figure 1). Existing
databases for method comparison are labeled with different
number of feature points, varying from theminimum5-point
configuration [1] to the maximal 194-point configuration
[2]. Generally facial feature point detection is a supervised
or semisupervised learning process that trains model on
a large number of labeled facial images. It starts from a
face detection process and then predicts facial landmarks
inside the detected face bounding box. The localized facial
feature points can be utilized for various face analysis
tasks, for example, face recognition [3], facial animation
[4], facial expression detection [5], and head pose tracking
[6].

In recent years, regression-based methods have gained
increasing attention for robust facial feature point detection.
Among these methods, a cascade framework is adopted to
recursively estimate the face shape 𝑆 of an input image,
which is the concatenation of facial feature point coordinates.

Beginning with an initial shape 𝑆(1), 𝑆 is updated by inferring
a shape increment Δ𝑆 from the previous shape:

Δ𝑆(𝑡) = 𝑊(𝑡)Φ(𝑡) (𝐼, 𝑆(𝑡)) , (1)

where Δ𝑆(𝑡) and 𝑊(𝑡) are the shape increment and linear
regression matrix after 𝑡 iterations, respectively. As the input
variable of the mapping function Φ(𝑡), 𝐼 denotes the image
appearance and 𝑆(𝑡) denotes the corresponding face shape.
The regression goes to the next iteration by the additive
formula:

𝑆(𝑡) = 𝑆(𝑡−1) + Δ𝑆(𝑡−1). (2)

In this paper, we propose a sparse reconstructionmethod
that embeds sparse coding in the reconstruction of shape
increment. As a very popular signal coding algorithm, sparse
coding has been recently successfully applied to the fields
of computer vision and machine learning, such as feature
selection and clustering analysis, image classification, and
face recognition [7–11]. In our method, sparse overcomplete
dictionaries are learned to encode various facial poses and
local textures considering the complex nature of imaging
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Figure 1: Schematic diagram of our robust sparse reconstruction method for facial feature point detection.

conditions. The schematic diagram of the proposed shape
increment reconstruction method is illustrated in Figure 1.
In the training stage, two kinds of overcomplete dictionaries
need to be learned. The first kind of dictionary is termed
shape increment dictionary since the atoms consist of typical
shape increments in each iteration. The other kind of dic-
tionary is termed local appearance dictionary because of the
atoms abstracting the complex facial feature appearance. In
the testing stage, local features are extracted around the shape
points of current iteration and then encoded into feature
coefficients using the local appearance dictionary.Thus shape
increments can be reconstructed by the shape increment
dictionary and the shape coefficients transformed from the
feature coefficients. Considering the holistic performance,
we adopt a way of alternate verification and local enumer-
ation to get the best parameter set in a large number of
experiments. Comparison with three previous methods is
evaluated on three publicly available face datasets. Experi-
mental results show that the proposed sparse reconstruction
method achieves a superior detection robustness comparing
with other methods.

The following contents of this paper are organized as
follows: relatedwork is introduced in Section 2.The proposed
sparse reconstruction method is described in detail in Sec-
tion 3 and experimental results are compared in Section 4.
Finally we conclude the whole paper in Section 5.

2. Related Work

During the past two decades, a large number of methods
have been proposed for facial feature point detection. Among
the early methods, Active Appearance Model (AAM) [12]
is a representative parametric model that aims to minimize
the difference between the texture sampled from the testing
image and the texture synthesized by the model. Later
many improvements and extensions of AAM are proposed
[6, 13–20]. To improve the efficiency in real-time system,
Tzimiropoulos and Pantic [16] proposed amodel to efficiently
solve the AAM fitting problem. Tresadern et al. [14] used
Haar-like features to reduce computation, which can help

the mobile device to perform real-time tracking. Nguyen
et al. [17–19] thought AAMs are easily converged to local
minima. And to overcome this problem, they designed a new
model that learns a cost function having local minima only
at desired places. In terms of improving robustness, Huang et
al. [6] combined view-based AAM [20] and Kalman filter to
perform pose tracking and use shape parameters to rebuild
the view space. Hansen et al. [13] introduced a nonlinear
shape model that based on Riemannian elasticity model to
handle the problem of poor pose initialization.

Generally, Constrained Local Model- (CLM-) based
methods [21–25] are to learn a group of local experts and then
take various shape prior for refinement. Vogler et al. [21] used
Active Shape Model (ASM) [23] to build a 3D deformable
model for real-time tracking. Yu et al. [22] used the mean-
shift method [25] to rapidly approach the global optimum.
AndLiang et al. [24] constrained the structure of facial feature
points using the component locations.

The aforementionedmethods share the same characteris-
tic which controls face shape variations through some certain
parameters. But different from thosemethods, the regression-
based methods [26–28] directly learn the regression function
from image appearance to target output. Gao et al. [26] adopt
a two-level cascaded boosted regression [27] structure to
obtain a vectorial output for all points. To solve the problems
of large shape variations and occlusions, Burgos-Artizzu et al.
[28] improved their method in three aspects: firstly, they first
reference pixels by linear interpolation between two land-
marks. Secondly, the regression model directly embeds the
occlusion information for robustness. Thirdly, they designed
a smart initialization restart scheme to avoid unsuitable
random initializations.

Our method belongs to the regression-based method,
like [28–31]. However, our work is different from previous
methods in several aspects. Firstly, existing methods, like
[31], acquire the descent direction in a supervised learning
manner. But in our proposed method, the information of
descent direction is included in the sparse dictionaries for
reconstructing the shape increment. And then unlike the
method in [28], our method has no usage of the occlusion
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information of each feature point. Finally the method from
[30] designed a two-level boosted regression model to infer
the holistic face shape. In our regression model, we refine the
face shape by the learned two coupled dictionaries stage by
stage.

3. Regression-Based Sparse
Reconstruction Method

3.1. Problem Formulation. In this paper, the alignment target
of all methods is assessed through the following formula:

𝑆
(final) − 𝑆(ground-truth)2 , (3)

where 𝑆(final) and 𝑆(ground-truth) denote the final estimated
shape and the corresponding ground-truth shape of an image,
respectively. In the regression-based methods, the iterative
equation is formulated as the following:

𝑆(𝑘) = 𝑆(𝑘−1) + Δ𝑆(𝑘−1)∗; (4)

here Δ𝑆(𝑘−1)∗ is a variable of shape increment after 𝑘 − 1
iterations, and its value should approximate the ground-truth
shape incrementΔ𝑆(𝑘−1), whereΔ𝑆(𝑘−1) = 𝑆(ground-truth)−𝑆(𝑘−1).

3.2.Multi-Initialization andMultiparameter Strategies. Multi-
initialization means diversification of initial iteration shape
which can improve robustness of the reconstruction model.
Specifically, we randomly select multiple ground-truth face
shapes from the training set to form a group of initial shapes
for the current image. Obviously, the multi-initialization
strategy is able to enlarge the training sample size and enrich
extracted feature information that makes each regression
model more robust, while, during the testing stage, multi-
initialization can create more chances to step out of potential
local minima that may lead to inaccurate feature point
localization.

In our method, there are four key parameters that are
the size of feature dictionary, the size of shape increment
dictionary, and their corresponding sparsity. The selection
of the four parameters has a direct influence on the learned
reconstruction model. Therefore we do a large number of
validation tests to find the best matched parameters. Then
according to the validation results, we decide to adopt three
sets of parameters to train the model.

3.3. The Learning of Sparse Coding. We use the Orthogonal
Matching Pursuit (OMP) [32] algorithm and the K-Singular
Value Decomposition (K-SVD) [33] algorithm to find the
overcomplete dictionary by minimizing the overall recon-
struction error:

min
𝐷,𝛾

𝑆 − 𝐷𝛾

2

𝐹

subject to 𝛾𝑖
0 ≤ 𝑇0, ∀𝑖,

(5)

where 𝑆 is the input data and𝐷 and 𝛾denote sparse dictionary
and sparse coefficient, respectively. 𝑇0 defines the number
of nonzero values in a coefficient vector and is termed the
sparsity.

3.4.The Learning of Shape Increment. In Supervised Descend
Method (SDM [31]), authors adopt a linear regression equa-
tion to approximate shape increments:

Δ𝑆(𝑘) = 𝑅(𝑘)𝜙(𝑘) + 𝑏(𝑘); (6)

here 𝜙(𝑘) denotes Histograms of Oriented Gradients (HoG)
features extracted from the shapes 𝑆(𝑘) of previous stage. 𝑅(𝑘)

and 𝑏(𝑘) are got from the training set by minimizing

arg min
𝑅(𝑘),𝑏(𝑘)
∑
𝑖

Δ𝑆
(𝑘𝑖)∗ − 𝑅(𝑘)𝜙(𝑘𝑖) − 𝑏(𝑘)

2

2
. (7)

Different from the idea of linear approximation proposed in
SDM, we introduce the concept of direct sparse reconstruc-
tion for reconstructing shape increments:

Δ𝑆(𝑘)∗ = 𝐷(𝑘)Δ 𝛾
(𝑘)
Δ . (8)

Here 𝐷(𝑘)Δ and 𝛾(𝑘)Δ represent the shape increment dictionary
and its corresponding sparse coefficient in the 𝑘th iteration,
respectively. From another perspective the generic descent
directions are embedded into the sparse dictionary 𝐷(𝑘)Δ
which can be more robust in facing large shape variations.

3.5. The Shape Regression Framework. To better represent
local appearances around facial feature points, the extracted
HoG features are also encoded into sparse coefficients:

𝜙(𝑘) = 𝐷(𝑘)𝛾(𝑘), (9)

where 𝐷(𝑘) and 𝛾(𝑘) are the local appearance dictionary and
the local appearance sparse coefficient, respectively. Instead
of a direct mapping from the whole feature space to the shape
increment space, we propose to perform regression only in
the sparse coefficient space. Since both coefficient matrixes
are sufficient sparse, the regression matrix can be quickly
solved. The equation is formulated as follows:

𝛾(𝑘)Δ = 𝐻
(𝑘)𝛾(𝑘). (10)

Nowwedescribe the shape regression framework in detail
(see Pseudocode 1). During the training stage, we can get
the shape prediction of the next stage using (4). By iterative
learning shape increment Δ𝑆(𝑘)∗, we can obtain the final
face shape. Combining (10) and (8) Δ𝑆(𝑘)∗ is computed from
Δ𝑆(𝑘)∗ = 𝐷(𝑘)Δ 𝐻

(𝑘)𝛾(𝑘), where 𝐷(𝑘)Δ and 𝛾(𝑘) are variables
that can be acquired by the following sparse reconstruction
formulas:

argmin
𝐷(𝑘) ,𝛾(𝑘)

𝜙
(𝑘) − 𝐷(𝑘)𝛾(𝑘)

2

2
,

s.t 𝛾
(𝑘)0 ≤ 𝑇𝜙

argmin
𝐷(𝑘)
Δ
,𝛾(𝑘)
Δ

Δ𝑆
(𝑘) − 𝐷(𝑘)Δ 𝛾

(𝑘)
Δ


2

2
,

s.t 𝛾
(𝑘)
Δ

0 ≤ 𝑇Δ.

(11)
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Input: Training set images and corresponding shapes: 𝐼train = [𝐼1, 𝐼2, . . . , 𝐼𝑁] and 𝑆train = [𝑆1, 𝑆2, . . . , 𝑆𝑁]. Testing
set images and corresponding initial shapes: 𝐼test = [𝐼1, 𝐼2, . . . , 𝐼𝑁 ] and 𝑆initial = [𝑆

(1)
1 , 𝑆
(1)
2 , . . . , 𝑆

(1)

𝑁
]. Sparse

coding parameters set: 𝑇Δ, 𝑇𝜙, size of𝐷Δ and size of𝐷. Total iterations 𝑄.
Output: Final face shapes 𝑆test = [𝑆

(𝑄+1)
1 , 𝑆

(𝑄+1)
2 , . . . , 𝑆

(𝑄+1)

𝑁
].

Training Stage:
for 𝑘 from 1 to 𝑄, do
step 1: Given 𝑆∗ and 𝑆(𝑘), obtain Δ𝑆(𝑘). Then extract 𝜙(𝑘) from 𝑆(𝑘).
step 2: Sequentially get 𝛾(𝑘),𝐷(𝑘)Δ and 𝛾(𝑘)Δ using Equations (11).
step 3: Get𝐻(𝑘) using Equation (12).

end for
Training Model: [𝐷(1)Δ , 𝐷

(2)
Δ , . . . , 𝐷

(𝑄)
Δ ], [𝐷

(1), 𝐷(2), . . . , 𝐷(𝑄)] and [𝐻(1), 𝐻(2), . . . , 𝐻(𝑄)].
Testing Stage:
for 𝑘 from 1 to 𝑄, do
step 1: Similarly, extract 𝜙(𝑘) on 𝑆(𝑘).
step 2: Given𝐷(𝑘)Δ , 𝐷

(𝑘) and𝐻(𝑘), calculate Δ𝑆(𝑘) using Equation (14).
step 3: Obtain 𝑆(𝑘+1) using Equation (13).

end for

Pseudocode 1: Pseudocode of our proposed regression-based method.

𝑇Δ and 𝑇𝜙 represent the shape increment sparsity and the
local appearance sparsity, respectively. Given 𝛾(𝑘) and 𝛾(𝑘)Δ we
can get𝐻(𝑘) by

arg min
𝐻(𝑘)

𝛾
(𝑘)
Δ − 𝐻

(𝑘)𝛾(𝑘)
2

2
. (12)

Finally, we can generate a set of [𝐷(1)Δ , 𝐷
(2)
Δ , . . . , 𝐷

(𝑄)
Δ ], [𝐷

(1),
𝐷(2), . . . , 𝐷(𝑄)] and [𝐻(1), 𝐻(2), . . . , 𝐻(𝑄)] after 𝑄 iterations.
Here 𝑄 is the number of iterations and 𝑘 = 1, 2, . . . , 𝑄.

During the testing stage, we can get the local appearance
coefficients 𝛾(𝑘−1) using the already learned 𝐷(𝑘−1). Then
the final face shape is estimated using (16) and (17) after 𝑄
iterations.

𝑆(𝑘+1) = 𝑆(𝑘) + Δ𝑆(𝑘), (13)

Δ𝑆(𝑘+1) = 𝐷(𝑘)Δ 𝐻
(𝑘)𝛾(𝑘). (14)

3.6. Major Contributions of the Proposed Method. In this
section, we summarize the following three contributions of
the proposed method:

(1) Sparse coding is utilized to learn a set of coupled
dictionaries, named the shape increment dictionary
and the local appearance dictionary. The solved cor-
responding sparse coefficients are embedded in a
regression framework for approximating the ground-
truth shape increments.

(2) A way of alternate verification and local enumera-
tion is applied for selecting the best parameter set
in extensive experiments. Moreover, it is shown in
experimental results that the proposed method has a
strong stability under different parameter settings.

(3) We also rebuild testing conditions that the top 5%,
10%, 15%, 20%, and 25% of the testing images are

removed according to the descending order sorted
by the normalized alignment error. And then the
proposed method is compared with three classical
methods on three publicly available face datasets.
Results support that the proposed method achieves
better detection accuracy and robustness than the
other three methods.

4. Experiments

4.1. FaceDatasets. In this section, three publicly available face
datasets are selected for performance comparison: Labeled
Face Parts in the Wild (LFPW-68 points and LFPW-29
points [16]) and Caltech Occluded Faces in the Wild 2013
(COFW) [34]. In the downloaded LFPWdataset, 811 training
images and 224 testing images are collected. Both the 68
points’ configuration and the 29 points’ configuration labeled
for the LFPW dataset are evaluated. The COFW dataset
includes 1,345 training images and 507 testing images, and
each image is labeled with 29 facial feature points and related
binary occlusion information. Particularly, collected images
in this dataset show a variety of occlusions and large shape
variations.

4.2. Implementation Details

4.2.1. Codes. The implementation codes of SDM [31], Explicit
Shape Regression (ESR) [30], and Robust Cascaded Pose
Regression (RCPR) [28] are got from the Internet. Except
that the codes of RCPR and ESR are released on the personal
websites by at least one of the authors, we get the code of SDM
from Github.

4.2.2. Parameter Settings. Generally, the size of shape incre-
ment dictionary and local appearance dictionary in our
method depends on the dimensionality of the HoG descrip-
tor. And in the following validation experiments, we will



Computational Intelligence and Neuroscience 5

Table 1: Comparison of different parameter sets on LFPW (68 points) dataset. Here 𝑇Δ is fixed to 2.

𝑇Δ 𝑇𝜙 Size of𝐷Δ Size of𝐷 𝑄 𝐾 (tr & ts) Mean errors

2 2

256 256 5 1 & 1 0.079381
256 512 5 1 & 1 0.08572
512 256 5 1 & 1 0.085932
512 512 5 1 & 1 0.086731

2 4

256 256 5 1 & 1 0.081958
256 512 5 1 & 1 0.083715
512 256 5 1 & 1 0.086187
512 512 5 1 & 1 0.087157

2 6

256 256 5 1 & 1 0.07937
256 512 5 1 & 1 0.07986
512 256 5 1 & 1 0.075987
512 512 5 1 & 1 0.084429

2 8

256 256 5 1 & 1 0.075863
256 512 5 1 & 1 0.082588
512 256 5 1 & 1 0.077048
512 512 5 1 & 1 0.082644

2 10

256 256 5 1 & 1 0.076178
256 512 5 1 & 1 0.076865
512 256 5 1 & 1 0.080907
512 512 5 1 & 1 0.088414

introduce how to select the best combination of parameters.
Parameters settings of SDM, ESR, and RCPR are consistent
with the original settings reported in the papers. In SDM, the
regression runs 5 stages. In ESR, the number of features in a
fern and candidate pixel features are 5 and 400, respectively.
To build themodel, themethod uses 10 and 500 stages to train
a two-level boosted framework. And in RCPR, 15 iterations,
5 restarts, 400 features, and 100 random fern regressors are
adopted.

4.2.3. Assessment Criteria. In our experiments, we use the
following equation to calculate and normalize the alignment
errors. Firstly, we calculate the localization errors between
the ground-truth point coordinates and the detected point
coordinates, that is, the Euclidean distance between two
vectors. Then it is further normalized by the interocular
distance as follows:

𝑑error =
‖𝑃 − 𝐺‖2𝐺leye − 𝐺reye

2
. (15)

In (15), 𝑃 denotes the detected facial point coordinates and 𝐺
denotes the ground-truth point coordinates. 𝐺leye and 𝐺reye
denote the ground-truth center coordinates of left eye and
right eye, respectively.

4.3. Experiments

4.3.1. Parameter Validation. In this section, we will introduce
how to use the way of alternate verification and local enu-
meration to find the final values of parameters. As described
above, there are six variables 𝑇Δ, 𝑇𝜙, size of 𝐷Δ, size of 𝐷,
𝑄, and 𝐾 that need to be fixed; here 𝐾 is the initialization

number during the process of training and testing. Depend-
ing on the requirements of sparsity, the candidate values of
𝑇Δ and 𝑇𝜙 are selected from the following set:

𝑇Δ, 𝑇𝜙 ∈ {2, 4, 6, 8, 10} . (16)

Similarly, the candidate sizes of𝐷Δ, sizes of𝐷,𝑄, and𝐾 form
the following sets:

size of 𝐷Δ ∈ {256, 512} ,

size of 𝐷 ∈ {256, 512} ,

𝑄 ∈ {1, 2, 3, 4, 5} ,

𝐾 ∈ {1, 6, 8, 10, 12, 14} .

(17)

Firstly the values of𝑄 and𝐾 are set to 5 and 1, respectively.
Note that the value of 𝐾 in the testing stage should be equal
to the value of 𝐾 in the training stage. Then we set the value
of 𝑇𝜙 to 2, 4, 6, 8, and 10 sequentially. The size of 𝐷Δ and 𝐷
is selected in random combination. For different values of 𝑇Δ
we can get five groups of results. AndTable 1 gives the detailed
results when 𝑇Δ is fixed to 2. From Table 1 we may find that
the parameter set {2, 8, 256, 256, 5, 1 & 1} achieves the lowest
alignment error. Similarly we conduct the rest experiments
and find the best parameter sets. The corresponding sparsity
is also fixed and therefore we get three sets of parameters that
are {6, 10, 512, 256}, {8, 8, 512, 256}, and {10, 10, 512, 256}. In
Table 2, we test the multi-initialization and multiparameter
strategies while the regression runs 4 iterations and 10
initializations with different parameter settings. In the final,
all point localizations are averaged to get the fusion result.
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Table 2: Comparison of multi-initialization and multiparameter strategies on LFPW (68 points) dataset. Here 𝑄 and 𝐾 are set to 4 and 10,
respectively.

𝑇Δ 𝑇𝜙 Size of𝐷Δ Size of𝐷 𝑄 𝐾 (tr & ts) Mean errors Fusion errors
6 10 512 256 4 10 & 10 0.062189

0.05517910 10 512 256 4 10 & 10 0.06075
8 8 512 256 4 10 & 10 0.061787

Table 3:Mean error of each facial component on LFPW (68 points), LFPW (29 points), and COFW (29 points) datasets.The top 5%maximal
mean errors of the testing facial images in each dataset are removed.

(a)

Method Contour Eyebrow Mouth Nose Eye

LFPW (68 points)

SDM 0.0829 0.0619 0.0478 0.0395 0.0369
ESR 0.0862 0.0750 0.0651 0.0596 0.0527
RCPR 0.0948 0.0690 0.0562 0.0493 0.0433

Our method 0.0747 0.0587 0.0455 0.0405 0.0392

(b)

Method Jaw Eyebrow Mouth Nose Eye

LFPW (29 points)

SDM 0.0422 0.0422 0.0410 0.0422 0.0328
ESR 0.0570 0.0459 0.0531 0.0502 0.0400
RCPR 0.0748 0.0507 0.0568 0.0509 0.0357

Our method 0.0382 0.0403 0.0401 0.0406 0.0323

(c)

Method Jaw Eyebrow Mouth Nose Eye

COFW (29 points)

SDM 0.0713 0.0714 0.0709 0.0600 0.0519
ESR 0.1507 0.1022 0.1082 0.0952 0.0801
RCPR 0.1209 0.0810 0.0781 0.0655 0.0539

Our method 0.0668 0.0642 0.0702 0.0567 0.0497

4.3.2. Comparison with Previous Methods. Due to the exis-
tence of a small number of facial images having large shape
variations and severe occlusions, it challenges the random
multi-initialization strategy which fails to generate an appro-
priate starting shape.Therefore we compare ourmethod with
three classic methods on rebuilt datasets. These datasets still
include most of the images coming from LFPW (68 points),
LFPW (29 points), and COFW (29 points). We just remove
the top 5%, 10%, 15%, 20%, and 25% of the testing facial
images in each dataset by sorting the alignment errors in a
descending order (see Figure 2).

In Figure 2, all curves of COFW show a more dispersive
distribution than the other two datasets. Since this dataset
consists of many more facial images with large shape vari-
ations and occlusions, it may affect the detection accuracy
more or less. Meanwhile, the irregular textural features
around facial feature points are challenging for learning of
structural model during the training. Obviously, in Figure 2,
the curves of our proposedmethod are superior to the others.
Additionally the LFPW (68 points) and LFPW (29 points)
share the same facial images but different face shapes, so we
may find some useful information about the performance of
methods through these datasets.

In general, the more facial feature points are, the more
difficult they are to detect. By comparing among five facial

components, themean errors of nose and eyes given in Tables
3 and 4 do not change obviously across three datasets, because
the vicinal textural information of eyes is easy to recognize
and the textural information aroundnose has a less possibility
to be occluded. Moreover, the facial feature points located
in the regions of nose and eyes are denser than the points
of contour, which is also benefit to the regressive searching
process.

Figure 3 shows the alignment errors of four methods
tested on LFPW (68 points), LFPW (29 points), and COFW
(29 points) datasets. In Figure 3 we may find that the mean
error curves show a rapid descending trend when the most
difficult 5% of testing images are removed. It indicates that
the statistical average can be biased by a few challenge images.
Then as the removal proportion increases, all the curves
become smoother. It shows in Figure 3 that our proposed
method is more stable than other methods, which means our
training model has a robustness in dealing with occlusions
and large shape variations.

Specifically, we plot the detection curves of five facial
components in Figure 4. It is obvious in Figure 4 that ESR and
RCPR has a less competitive performance for localizing each
facial components. And our method shows better robustness
in localizing feature points that belong to eyebrows and
contour, since these two facial components are very likely to
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Figure 2: Continued.
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Figure 2: Cumulative Error Distribution (CED) curves of four methods tested on LFPW (68 points), LFPW (29 points), and COFW (29
points) datasets.The top (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%, and (f) 25% of the testing images are removed according to the descending
order sorted by the normalized alignment errors.

Table 4:Mean error of each facial component on LFPW(68 points), LFPW(29 points), andCOFW(29 points) datasets.The top 25%maximal
mean errors of the testing facial images in each dataset are removed.

(a)

Method Contour Eyebrow Mouth Nose Eye

LFPW (68 points)

SDM 0.0718 0.0581 0.0433 0.0363 0.0337
ESR 0.0746 0.0634 0.0535 0.0435 0.0408
RCPR 0.0830 0.0615 0.0484 0.0414 0.0367

Our method 0.0634 0.0518 0.0406 0.0364 0.0332

(b)

Method Jaw Eyebrow Mouth Nose Eye

LFPW (29 points)

SDM 0.0385 0.0381 0.0376 0.0389 0.0295
ESR 0.0498 0.0419 0.0461 0.0435 0.0350
RCPR 0.0637 0.0460 0.0471 0.0433 0.0309

Our method 0.0336 0.0360 0.0365 0.0362 0.0292

(c)

Method Jaw Eyebrow Mouth Nose Eye

COFW (29 points)

SDM 0.0607 0.0643 0.0614 0.0525 0.0457
ESR 0.1255 0.0873 0.0882 0.0781 0.0664
RCPR 0.1055 0.0679 0.0633 0.0533 0.0440

Our method 0.0561 0.0569 0.0603 0.0497 0.0435
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Figure 3: Mean errors of four methods tested on LFPW (68 points), LFPW (29 points), and COFW (29 points) datasets.
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Figure 4: Facial feature point detection curves of four methods for each facial component on LFPW (68 points), LFPW (29 points), and
COFW (29 points) datasets. (a) Eyebrow. (b) Eye. (c) Nose. (d) Mouth. (e) Contour or jaw.
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be occluded by hair or objects and have a more separated
distribution pattern. Experimental results demonstrates that
our proposed method can estimate facial feature points with
high accuracy and is able to deal with the task of face
alignment on complex occlusions and large shape variations.

5. Conclusion

A robust sparse reconstruction method for facial feature
point detection is proposed in this paper. In the method,
we build the regressive training model by learning a coupled
set of shape increment dictionaries and local appearance
dictionaries which are learned to encode various facial poses
and rich local textures. And then we apply the sparse model
to infer the final face shape locations of an input image by
continuous reconstruction of shape increments. Moreover,
in order to find the best matched parameters, we perform
extensive validation tests by using the way of alternate veri-
fication and local enumeration. It shows in the comparison
results that our sparse coding based reconstruction model
has a strong stability. In the later experiments, we compare
our proposed method with three classic methods on three
publicly available face datasets when removing the top 0%,
5%, 10%, 15%, 20%, and 25% of the testing facial images
according to the descending order of alignment errors. The
experimental results also support that ourmethod is superior
to the others in detection accuracy and robustness.
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