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Abstract

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is an imaging-based

analytical technique that can characterize the surfaces of biomaterials. We used

TOF-SIMS to identify important metabolites and oncogenic KRAS mutation

expressed in human colorectal cancer (CRC). We obtained 540 TOF-SIMS spectra

from 180 tissue samples by scanning cryo-sections and selected discriminatory mole-

cules using the support vector machine (SVM) algorithm. Each TOF-SIMS spectrum

contained nearly 860,000 ion profiles and hundreds of spectra were analyzed; there-

fore, reducing the dimensionality of the original data was necessary. We performed

principal component analysis after preprocessing the spectral data, and the principal

components (20) of each spectrum were used as the inputs of the SVM algorithm

using the R package. The performance of the algorithm was evaluated using the

receiver operating characteristic (ROC) area under the curve (AUC) (0.9297). Spectral

peaks (m/z) corresponding to discriminatory molecules used to classify normal and

tumor samples were selected according to p-value and were assigned to arginine,

α-tocopherol, and fragments of glycerophosphocholine. Pathway analysis using these

discriminatory molecules showed that they were involved in gastrointestinal disease

and organismal abnormalities. In addition, spectra were classified according to the

expression of KRAS somatic mutation, with 0.9921 AUC. Taken together, TOF-SIMS

efficiently and simultaneously screened metabolite biomarkers and performed KRAS

genotyping. In addition, a machine learning algorithm was provided as a diagnostic

tool applied to spectral data acquired from clinical samples prepared as frozen tissue

slides, which are commonly used in a variety of biomedical tests.
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1 | INTRODUCTION

Certain lipids and metabolites are closely related to the initiation and

progression of cancers. Metabolomic analysis to diagnose cancer and

assist therapeutic treatments using mass spectrometry has been

widely studied for various tumor types.1,2 In conventional mass spec-

trometric analyses of metabolites, extraction of the aqueous or

fat-soluble fraction from tissues should be performed first, and subse-

quently the extracted fraction can be analyzed by gas (GC-MS) or liq-

uid (LC–MS) chromatography–mass spectrometry.3,4

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has

been used to analyze surface chemical compositions of samples, via

identification of positive and negative secondary ions, with high reso-

lution and sensitivity.5,6 Recently, TOF-SIMS has been used to study

complex biological molecules on the surfaces of tissue specimens pre-

pared by cryosectioning.7,8 In TOF-SIMS studies of cancer, compara-

tive analyses of the surface images in diseased and normal tissues

revealed discriminatory images of disease states, supported by known

molecular markers.7,9 These studies indicate that TOF-SIMS is a prom-

ising technology to analyze small lipids and metabolites without the

separation of lipid or aqueous fractions from the samples.

Current state-of-the-art TOF-SIMS data sets consist of large

amounts of raw data for a single experiment, ranging from gigabytes

to terabytes in size, and typically containing 104–106 m/z data. There-

fore, computer memory shortages and long processing times when

using standard desktop computers are likely for the application of

classification techniques based on software designed for traditional

statistical methods such as principal components analysis (PCA), par-

tial least square-discriminant analysis (PLS-DA), and orthogonal partial

least squares discriminant analysis (OPLS-DA).10 A common method

to deal with these issues is to perform a feature selection step such as

peak-picking before data analysis. This reduces the number of vari-

ables and the data set size by eliminating spectral bins that do not

contain peak centers. Other methods used to reduce the size of the

data include spectral binning, which involves averaging ion intensities

over multiple m/z bins. Several studies have been reported on the

analysis of TOF-SIMS data using the abovementioned methods,

including feature selection, in which ten to thirty samples were used

to verify spectral variations.11-14

In fact, several groups have investigated efficient machine learn-

ing algorithms and techniques capable of handling the large amounts

of data from TOF-SIMS measurements for imaging-based mass spec-

trometric or chemical analyses.10,15 However, studies on computa-

tional methods that can identify disease states by extraction of

clinically important molecular information from TOF-SIMS data sets

are insufficient. It requires minimal loss of information and reduced

dimensionality. Therefore, optimized methods should be developed to

support TOF-SIMS, to obtain essential information on diseases from

clinical samples.

In this study, we applied TOF-SIMS analysis to the screening of

tumor-related metabolites in colorectal cancer (CRC), which is the

third most deadly and fourth most common cancer in the world.16

CRC is a malignant organ tumor and is common among elderly people.

Research on CRC has been extensive, but few studies have reported

the application of TOF-SIMS to the metabolomic analysis of CRC tis-

sues. In one study, 48 amino acids peak from TOF-SIMS measure-

ments were analyzed by PCA to distinguish cancerous areas from

normal colon mucosa with the aim of developing a new cancer diag-

nostic technique.17 In our study, a support vector machine (SVM)

algorithm was applied in the analysis of mass profiles, to improve the

analysis method and allow the extraction of more detailed informa-

tion, including important biomarkers, from TOF-SIMS data sets. SVM

is a supervised model for linear regression analysis on nonlinear data

sets. SVM-based classification of samples in the analysis of metabolite

profiles from GC–MS and LC–MS has been reported,18,19 but efficient

SVM models optimized for TOF-SIMS data analysis using clinical sam-

ples have not yet been defined.

We prepared specimens from CRC patients and analyzed each

one using TOF-SIMS to identify lipid and metabolite biomarkers that

are enhanced in tumor tissues. The SVM algorithm was optimized for

the classification of the spectra, and important molecules were

selected as CRC-specific biomarkers. The feasibility of the biomarkers

was evaluated by comparing them with those selected by conven-

tional GC–MS analysis. Furthermore, we propose that the mass profile

from TOF-SIMS can discriminate KRAS (Kirsten rat sarcoma 2 viral

oncogene homolog) somatic mutation genotypes, of which there is a

high incidence rate in CRC, >40%.20

2 | RESULTS AND DISCUSSION

2.1 | Data acquisition by TOF-SIMS

The experimental design and samples used in this study are summa-

rized in Figure 1. To increase the reliability of the machine learning

algorithm, we collected a greater number of CRC patient samples than

is usual for a metabolomic analysis: a total of 180 specimens from

90 CRC patients were collected. Figure S1A shows a representative

tissue image analyzed by TOF-SIMS. The acquired data were the

intensity profiles of each ion released from the tissue surface, which

were in the range of 100 to 1300 m/z. Over 859,000 ions were

detected from samples with areas of 250 μm × 250 μm. The image on

the left in Figure S1A shows a tumor tissue stained with hematoxylin

and eosin (H&E), the optical image of the specimen to be measured by

TOF-SIMS is shown in the middle, and the image on the right displays

the data acquired from the spatial distribution of the ion signals at

each pixel (256 × 256 pixels). Figure S1B shows representative mass

spectra of normal and tumor tissue from a single patient. Most of the

ion masses were detected at 100–350 m/z, as shown in the figure.

2.2 | Optimization and classification accuracy of
the SVM model for the analysis of TOF-SIMS data

Data preprocessing was performed using the MALDIquant package,

and the parameters used are listed in Table S1. To optimize the
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preprocess parameters, the selected signal-to-noise ratio (SNR) was

varied from four to nine during peak detection. Figure 2a shows that

the highest area under the curve (AUC) value using a receiver operat-

ing characteristic (ROC) curve occurred when the SNR for peak detec-

tion was set to eight.

Cross-validation was performed for tuning the cost parameter,

and Figure S2 shows a schematic diagram of the cross-validation pro-

cess for the SVM model development.21 Figure 2b indicates that

8 among 14 models produced by the cross-validation process had the

highest AUC values, for which the SVM cost was two. Figure 2c

shows the number of models that were evaluated with the highest

AUC when the SVM cost was 0.5, 1, 2, 4, and 16. As a result, the

SVM model was optimized by setting the SNR to eight and the SVM

cost to two.

PCA analysis was applied to the preprocessed data sets of normal

and tumor samples to investigate the structure of the mass profiles as

variables for unsupervised classification (Figure 2d). Twenty principal

components were generated, and the first two components captured

78.3% (58.1% and 20.2%) of the total variance in the data. The PCA

loadings were not clearly separated between the normal and tumor

groups, indicating that the data structure acquired from TOF-SIMS

analysis was extremely complicated. In this case, OPLS-DA could be

used as an alternative method because PCA failed to separate the

groups. However, based on a study using data that had been incom-

pletely separated into groups by PCA, it was reported that OPLS-DA

could easily yield statistically unreliable group separation.22

In this study, an SVM model was used to analyze TOF-SIMS spec-

tra using R packages. We used 20 principal components of each

F IGURE 1 Schematic
diagram of analysis methods and
steps used in this study

F IGURE 2 Preprocessing and
optimization of SVM algorithm.
(a) Determination of optimized SNR
based on the AUC value.
(b) Optimization of SVM score by
cross validation. (c) Number of
models with the highest AUC values
according to SVM cost. (d) PCA
score plot for normal and tumor
tissue spectra
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observation as input features for the SVM algorithm to reduce the

dimensionality of the TOF-SIMS spectra. The combined application of

PCA and SVM was reported in previous studies for the classification

of groups with high dimensionality.23,24

The prepared SVM model was evaluated for its ability to classify

the spectra from tumor and normal tissues based on several parameters,

including a ROC curve. Table S2 provides a summary of the evaluation

results. The sensitivity and specificity of the prediction model were

0.8387 and 0.8817, respectively, and the accuracy was 0.8602. The

AUC was 0.9207. Fleiss' kappa statistic for the SVM algorithm was

0.7024; a higher kappa value indicates stronger agreement, and a kappa

value of one indicates perfect agreement. Based on Landis' categories,25

the kappa value for the SVM in this study was interpreted to indicate

“substantial agreement (kappa range, 0.61–0.80)”. These results indi-

cated that the optimized SVM algorithm was able to classify normal and

tumor tissues from CRC patients with substantial accuracy.

There are several reports on the use of SVM models for mass

spectrometric analysis. Anderson et al., reported an SVM classification

model to identify proteins from peptide profiles produced by a tryptic

digest in proteomic analysis.26 They used 696 peptide mass values

cleaved from 47 proteins, and the AUC was determined to be

0.920–0.988. In another case of the application of SVM to mass spec-

trometric analysis by Guan et al., serum mass data produced by

LC–MS was used to classify ovarian cancer samples.27 In this case, the

accuracy of the models was determined to be 0.917–0.972, using

72 patient samples and hundreds of mass values for each patient.

Because this study was focused on recognizing panels of important

features for the classification of ovarian cancer serum, its purpose

was the same as that of the present study, even though the target

cancer type was different. However, the different instrument used

produced different data sets, and different data preprocessing was

used. These differences necessitated the customization of the model

development for our study.

In the studies by Anderson et al. and Guan et al., high AUC and

accuracy values over 0.9 were achieved, which implies that the

application of SVM algorithms to the classification of biological data is a

promising approach. In our study, the AUC obtained for the classifica-

tion of colon cancer tissues (0.9207) was comparable to those reported

for other studies. Moreover, our study involved the processing and anal-

ysis of very large data sets composed of 859,000 mass values from each

specimen. Even though we could not compare the prediction perfor-

mance of the model with those of other TOF-SIMS studies due to the

unavailability of the previous data, we can conclude that the con-

structed SVM algorithm could be a possible model for the analysis of

TOF-SIMS data, for example, for the selection of important molecules

and for disease diagnosis using clinical samples.

2.3 | Discriminatory metabolites for normal and
tumor tissues selected from TOF-SIMS spectra

Within clinical settings, one of the most important considerations for

a machine learning model is the identification of important molecules

that can be used to discriminate between normal and tumor tissues.28

In this study, we selected discriminatory metabolites based on the

p-values generated by the SVM algorithm.

Table 1 shows the 20 features selected as the top variables, and

these variables could be grouped in some cases; the peak m/z value

showing the highest intensity within a group was finally selected as

the discriminatory metabolite in these cases. The peaks were assigned

to arginine, tocopherol, and fragments of glycerophosphocholines

(G-PCs) of different sizes, based on previous TOF-SIMS analysis

results.29-31 In fact, four of the seven metabolites were related to

G-PCs, which have been observed widely in tissues analyzed by

TOF-SIMS.32 These are usually detected in fragmented forms in lipid-

related metabolic pathways in mammalian systems, and can be identi-

fied using 15Nphosphocholine molecules.31 Lipid analyses of samples

from cancer tissue displayed an increase in phospholipid content as

compared to non-cancerous adjacent healthy tissue.33 For example,

concentrations of the two major phospholipid components,

TABLE 1 Discriminatory molecules for normal and tumor tissues generated by SVM analysis of TOF-SIMS data

Top variables Peak value (m/z) p-value Fold change (CRC/Normal) Assignment Formula Reference

102.08 102.08 6.57 × 10−11 1.33 Arginine C4H12N3
+ [27]

104.11, 104.36

104.38, 104.42

104.44, 104.46

104.47, 104.51

104.63

104.11 5.82 × 10−7 1.29 G-PC/SM C5H14NO+ [28,29]

150.06 150.06 1.10 × 10−9 1.35 α-tocopherol C10H14O
+ [27]

166.06 166.06 7.35 × 10−7 1.25 G-PC C5H13NPO3
+ [28]

184.74, 184.78

184.81, 184.84

184.90, 184.92

184.81 1.59 × 10−6 1.25 G-PC/SM C5H15NPO4
+ [28,29]

224.10 224.11 2.33 × 10−7 1.38 G-PC C7H15NPO5
+ [28,29]

238.12 238.12 2.37 × 10−7 1.38 G-PC C8H17NPO5
+ [28]

Abbreviations: G-PC, Glycerophosphocholine; SM, Sphingomyelin.
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phosphatidylcholine and phosphatidylethanolamine, were found to

increase with breast-cancer tumor grade, indicating that phospholipid

synthesis was dependent on tumor progression.34

Figure 3 shows the averaged spectra of normal and tumor tissues,

acquired by TOF-SIMS measurement. The selected discriminatory

metabolites, m/z = 102.08, 104.11, 150.06, 166.06, 184.81, and

224.11, are observed in the main peaks of the overall tumor spectrum.

Interestingly, compared with the normal tissue, all of these were

upregulated in the tumor tissue, and the fold changes in tumor tissues

are also listed in Table 1. In fact, the tumor specimens used in this

study were not informed on their types and stages of CRC, but we

used tumor samples with an information that the tumor ratios were

over 70%. Therefore, these discriminatory molecules are proposed as

common biomarkers that can be applied to the diagnosis of all types

of CRC, if TOF-SIMS is used for clinical diagnosis.

2.4 | Discriminatory metabolites from GC–TOF-
MS spectra

To carry out a feasibility comparison between the potential bio-

markers selected by TOF-SIMS analysis and those selected by

another method, gas chromatography–time-of-flight mass spec-

trometry (GC–TOF-MS) analysis was performed on additional CRC

patient tissue samples. The sample number used in GC–TOF-MS

analysis was 12 (six normal tissue and six tumor tissue samples).

Pretreatment of samples using methanol extraction was performed

to separate lipids and small molecule fractions for gas chromatogra-

phy. By GC–TOF-MS analysis, 14,600 mass data points per metabo-

lite profile coupled with retention time were acquired from each

sample. The quantity of data produced by GC–TOF-MS means that

the results can be analyzed using OPLS-DA (SIMCA+ software), as

reported previously.35,36

The OPLS-DA score plot is shown in Figure 4a; the separation of

the samples in the score plot is apparent, and the AUC and accuracy

are determined to be 1. The resulting performance statistics were

R2X = 0.407, R2Y = 0.878, and Q2 = 0.431 (Table S3); thus, the R2X

and Q2 values did not meet the criteria of a good prediction model

(R2X, R2Y, and Q2 > 0.5). Table 2 shows the discriminatory molecules

identified by GC–TOF-MS analysis. The criteria for the selection of

these molecules were that their variable importance parameter (VIP)

was greater than one. Thirteen molecules were selected as discrimina-

tory molecules; however, the p-values of those molecules did not

meet the criteria for statistical significance (p < 0.05).

The number of samples used in this study was relatively lower

than those used in previous studies on CRC biomarkers using GC–

TOF-MS. Phua et al.37 and Qui et al.38 used 21 and 376 total patient

tissue samples, respectively. However, the reported OPLS-DA perfor-

mance statistics were quite comparable to those of our study: for

Phua et al., R2X = 0.407; R2Y = 0.996; Q2 = 0.35, and for Qui et al.,

R2X = 0.374; R2Y = 0.706; Q2 = 0.532. In addition, several molecules

listed in Table 2—myo-inositol, lactic acid, hypoxanthine, glycerol, ura-

cil, and glucose—were also selected as discriminated molecules in

the study of Qiu et al. However, the panels of proposed biomarkers

in these literature studies were substantially different from each

other as well as from that of the current study. This result indicates

that the CRC-specific metabolites selected by GC–TOF-MS are not

generally reproduced by different studies, irrespective of the sample

numbers. The multiple lipid-extraction steps using organic solvents

might have contributed to the different results from the GC–TOF-

MS measurements.

F IGURE 3 Performance of classification using the SVM algorithm.
Comparison of TOF-SIMS spectra averaged over 270 measurements.
Arrows indicate the peaks of the discriminatory molecules determined
by the SVM model. Numbers are m/z values for each peak

F IGURE 4 OPLS-DA score
plots for the classification of
tumor and KRAS(+) tissues.
(a) Score plot for classification of
normal and tumor tissues.
(b) Score plot for classification of
KRAS(+) and KRAS(−)
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2.5 | Comparison of TOF-SIMS and GC–TOF-MS
biomarkers by pathway analysis

Pathway analysis can demonstrate important diseases and biological

functions related to discriminatory molecules. The top pathways

involved for the important molecules selected by TOF-SIMS and GC–

TOF-MS are listed in Table 3. Gastrointestinal disease, organismal

injury and abnormality, and endocrine system disorders were identi-

fied as the top three pathways related to arginine, tocopherol, and G-

PCs. Developmental disorders, hereditary disorders, and metabolic

diseases were proposed to be related to glucose, hypoxanthine,

stearic acid, and glycerol, which were selected as discriminants by

GC–TOF-MS analysis. The top pathways proposed by TOF-SIMS

analysis included gastrointestinal diseases, which could be closely

related to CRC. This result indicated that the discriminatory molecules

selected by TOF-SIMS analysis had enhanced feasibility, with respect

to those selected by GC–TOF-MS analysis, as CRC-specific metabo-

lite biomarkers. Therefore, TOF-SIMS measurements can be consid-

ered a potential screening method to identify important molecules

released from the surface of tumor tissues as specific signals. In addi-

tion, the SVM algorithm optimized for the classification of tumor

tissues efficiently analyzed the TOF-SIMS data, deriving discrimina-

tory molecules with high significances.

2.6 | Prediction of KRAS mutations in CRC tissues

The abnormal activation of KRAS plays a critical role in tumor initia-

tion and progression with the highest frequency of human malignan-

cies.39,40 Treatment options for CRC patients harboring a KRAS

mutation are limited and their mortality rate is high;41 therefore, it is

crucial to determine whether KRAS is mutated in the tumor tissues of

CRC patients. If it were possible to perform KRAS genotyping with

simultaneous diagnosis of CRC, it would help in the establishment of

more efficient therapeutic programs for CRC patients. In recent years,

KRAS mutation assays become important companion diagnostic

tests.42

In this study, the KRAS genotype was determined by analyzing

the TOF-SIMS spectra. Out of the 90 patient tumor samples used for

SIMS measurement, 24 samples were randomly selected, and single

nucleotide polymorphism (SNP) genotyping for KRAS mutations

G12D, G12A, and G12V was performed by nucleotide sequencing.

TABLE 2 Discriminatory molecules in
tumor tissues analyzed by GC–TOF-MS

Discriminatory molecules RT (min) Mass VIP p-value

Threonic acid 9.62 292 1.751 0.055

myo-Inositiol 13.41 191 1.578 0.091

Ethanolamine 6.98 174 1.492 0.113

Pantothenic acid (vitamin B5) 12.72 103 1.342 0.160

Glucose 12.16 205 1.329 0.164

Glycerol 7.07 218 1.302 0.174

Hydroxylamine 5.43 133 1.273 0.185

N-Acetyl-D-glucosamine 13.35 202 1.228 0.202

Hypoxanthine 11.62 265 1.212 0.209

Oxalic acid 5.64 219 1.066 0.273

Lactic acid 4.89 117 1.058 0.277

Stearic acid 14.12 117 1.047 0.282

Uridine monophosphate 17.40 169 1.033 0.289

Abbreviation: RT, retention time.

TABLE 3 Pathways related to the discriminatory molecules determined by TOF-SIMS and GC–TOF-MS analyses

Diseases and bio function p-value Related molecules

TOF-SIMS Gastrointestinal disease 4.16 × 10−2–5.73 × 10−4 arginine, tocopherol, G-PC

Organismal injury and abnormality 4.15 × 10−2–5.73 × 10−4 arginine, tocopherol, G-PC

Endocrine system disorder 1.83 × 10−2–7.37 × 10−4 arginine

GC–TOF-MS Developmental disorder 7.53 × 10−3–6.06 × 10−5 Glucose, hypoxanthine, stearic acid, glycerol

Hereditary disorder 7.35 × 10−3–6.06 × 10−5 Glucose, hypoxanthine, stearic acid

Metabolic disease 1.61 × 10−2–6.06 × 10−5 Glucose, hypoxanthine, stearic acid

6 of 10 CHO ET AL.



Then, metabolite profiles were analyzed to classify them according to

expression of the KRAS(+) and KRAS(−) mutations.

As a result, we were able to classify KRAS(+) and KRAS(−) tissues

by analyzing their TOF-SIMS spectra. As shown in Figure 4b, the perfor-

mance statistics were R2X = 0.893, Q2 = 0.399, and R2Y = 0.641. The

AUC of the OPLS-DA model used to predict the KRAS(+) mutation in

tissues was 0.99. In Table S4, the prediction performance parameters,

including accuracy, AUC, specificity, and sensitivity, determined by the

OPLS-DA model to classify KRAS genotype are provided.

The discriminatory molecules identified in KRAS(+) tissues are listed

in Table 4. The selection criteria were as follows: VIP > 1, standard error

of VIP < 1, and p < 0.05. All the molecules listed in Table 4 are different

molecules from those listed in Table 1. Among the 24 identified as dis-

criminatory molecules, four molecules were assigned as G-PCs, phos-

phatidylcholine derivatives. As shown in Table 1, G-PCs were identified

as discriminatory molecules for the classification of CRC, but the mass

values for the KRAS(+)-related molecules were totally different from the

mass values of these derivatives. By TOF-SIMS analysis, several G-PCs

were newly identified as KRAS(+) discriminators.

The mass value 159.09 was assigned to tryptophan,29 which was

reported to be found in elevated quantities in KRAS-mutated tissues.43

Tryptophan is catabolized to kynurenine, which is a tumor-associated

metabolite. Increased kynurenine levels have been observed in various

tumors, and an important role of kynurenine is to suppress antitumor

immune responses.44 In addition, the mass value 109.14 was assigned

to cholesterol, which has also been reported to be elevated in tissues

with a KRAS mutation.45 The steroid biosynthesis pathway was also sig-

nificantly upregulated in KRAS(+) CRC cells, and the final product of ste-

roid biosynthesis is cholesterol.46 KRAS(+) cancer cells require elevated

levels of cholesterol to support their rapid growth.47

Altogether, the TOF-SIMS spectra were able to classify the KRAS

genotype in CRC tissues, and the several discriminatory molecules

used for KRAS genotyping were well-matched to the known indica-

tors of KRAS mutations.

3 | CONCLUSIONS

TOF-SIMS is an imaging-based mass spectrometric technique that can

characterize the surfaces of biomaterials. Our study demonstrates the

applicability of TOF-SIMS as a metabolome screening method for can-

cer diagnosis. It allows the direct analysis of mass signals from tissue

sections without requiring any extraction processes. However, TOF-

SIMS usually produces large amounts of raw data, which makes it dif-

ficult to extract valuable information using conventional software.

In this study, we applied a machine learning algorithm to manage

TOF-SIMS data from hundreds of patient samples. Preprocessing and

optimization results for the SVM model for the classification of TOF-

TABLE 4 Discriminatory molecules
for KRAS(+) mutation in tumor tissues
analyzed by TOF-SIMS analysis

Peak (m/z) p-value VIP Assignment Formula

100.06 2.31 × 10−4 2.13 G-PC C5H10NO+

106.05 0.0182 2.28

109.14 4.51 × 10−4 1.87 Cholesterol and derivatives C8H13

112.06 1.60 × 10−4 1.81

116.03 0.043 2.11

119.05 0.036 1.54

120.05 0.018 2.01

121.04 6.15 × 10−3 1.77

123.10 7.80 × 10−4 1.90

125.09 2.30 × 10−3 1.86

129.11 1.11 × 10−4 1.61

130.09 1.15 × 10−3 1.61

134.06 8.56 × 10−3 2.68 G-PC C5H13NPO3

136.05 2.07 × 10−4 1.34 G-PC C5H15NPO4

141.10 4.55 × 10−5 1.59 C8H15NO+

142.05 9.41 × 10−3 1.79 Phosphonosphingolipid C2H9NPO4

144.08 1.61 × 10−3 1.51 C10H10N
+

145.07 9.32 × 10−3 2.28

152.06 3.60 × 10−4 1.88

153.07 3.88 × 10−4 1.71

155.08 5.87 × 10−4 1.91

157.09 2.99 × 10−3 1.59

159.09 2.45 × 10−3 1.74 Tryptophan C10H11N2
+

226.05 2.03 × 10−4 1.96 G-PC C7H17NPO5
+
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SIMS data sets were provided in this report, and the data and method

provided are potential computational resources for the utilization of

metabolomic data in clinical decision-making or biomedical research.

As we know, this is the first report confirming that KRAS

genotyping can be achieved via mass spectrometric analysis. Based on

these results, spectral data could be employed to determine treatment

options for CRC patients. This work should also lead to improvements

in our understanding of the involvement of lipids and metabolites in

tumor progression and metastasis.

4 | MATERIALS AND METHODS

4.1 | Sample collection and preparation

Tissues from 90 CRC patients (45 male, 45 female) were obtained via

the Keimyung University Dongsan Hospital Korea Regional Biobank

and Inje University Paik Hospital Korea Regional Biobank, members of

the National Biobank of Korea, which is supported by the Ministry

of Health and Welfare. All samples derived from the National Biobank

of Korea were obtained with informed consent in accordance with

protocols approved by the review board at Daegu Gyeongbuk Insti-

tute of Science and Technology (IRB Approval No. DGIST-

150709-BR-015-01). Normal and cancerous colon tissues were

obtained from each patient (180 specimens). Tumor samples were

provided with information on the percentage of tumorigenic mass in

the whole sample. We used tumor samples with over 70% tumori-

genic mass. For TOF-SIMS analysis, ~1-cm-diameter specimens were

frozen in optimal cutting temperature compound (Tissue-Tek®) at

−20�C. Cryosections of each tissue (10-μm thick) were generated

using a cryostat (Leica CM 1850, Leica Microsystems), placed on an

indium tin oxide (ITO) glass slide and stored at −20�C. The slides were

rinsed with water and then air-dried immediately before analysis.

4.2 | TOF-SIMS measurement

Measurements were conducted on a TOF-SIMS 5 instrument using a

pulsed 30-keV Bi3
+ primary ion beam in spectrometry mode with a pri-

mary ion dose of 1013 ions/cm2 for positive ions. The primary beam irradi-

ated the specimen at a 45� incident angle. Spectra were obtained from

tissue sections over an area of 250 × 250 μm2 (256 × 256 pixels density).

Three spectral points per a specimen were measured; thus, 540 mass

spectra (270 normal and 270 tumor tissue spectra) were obtained. The

mass range was m/z 100–1300 with a cycle time of 100 μs. The Bi3
+ cur-

rents were typically 0.46 pA for spectrometry-mode operation.

4.3 | Optimization of the SVM model using
TOF-SIMS data to classify tumor tissues

The spectra from normal and tumor samples were analyzed using soft-

ware written in the R language. Data preprocessing was performed

for variance stabilization, normalization, spectrum alignment, averag-

ing and peak detection, binning, and filtering. This preprocessing was

performed using the MALDIquant package.48 Variance stabilization

was performed by a square root transformation to overcome the

potential dependency of the variance on the mean. For normalization,

each intensity value was divided by the total ion intensities to over-

come small batch effects. For the alignment of mass spectrometric

data, a peak-based warping algorithm was used. Subsequently, we

averaged the spectral intensities to create a mean spectrum for each

sample. Peaks were assigned to a local maximum above a noise

threshold. Peak binning was performed by making similar mass values

identical. Finally, less frequent peaks were removed by the filtering

process.

After these preprocessing steps, PCA was performed using the

mass spectra of each sample. The principal components for each sam-

ple were used as the input of the SVM classifier. 21 Cross-validation

was performed to tune the cost parameters in SVM. The overall data

set was randomly divided into a training set (80% of overall set) and

external testing set (20% of overall set) (Figure S2). The training set

was then subdivided into three resample sets, and each resample set

was also subdivided into analysis (80%) and assessment (20%) sets

using random division. The analysis sets were used for SVM model

development. Classification was then made for the associated assess-

ment sets and then the external testing set. We evaluated the perfor-

mance of the predictive model using sensitivity, specificity, accuracy,

and AUC values.

4.4 | Metabolomic analysis of CRC tissues using
GC–TOF-MS

A further twelve samples (six tumors and six normal tissues) from six

patients were used for GC–TOF-MS analysis. Each sample (100 mg)

underwent a methanol extraction process; 1 ml of 100% methanol

and 10 μl of internal standard (2-chlorophenylalanine, 0.5 mg/ml) was

used for the extraction in an MM400 mixer mill with a zirconium

bead, and this was followed by sonication of the sample for 10 min.

After incubation for 1 h at −20�C, cold centrifugation at 12,000 × g

for 10 min was performed, and the supernatant was filtered through a

0.2-μm polytetrafluorethylene filter and evaporated using a speed

vacuum concentrator (Modulspin 31). The GC–TOF-MS metabolomic

analysis was performed according to the procedure reported by Yang

et al. (2018).49 The GC system used in this study was Agilent 7890A

(Agilent), and the mass spectrometer was Pegasus III. The column was

Rtx-5MS (30 m length × 0.25 mm × 0.25 μm). The gas flow rate was

1.5 ml/min, and the mass range was 50–1000 m/z. Metabolomic data

were normalized using an internal standard.

The metabolomic data acquired by GC–TOF-MS were classified

by OPLS-DA, using SIMCA P+ software (version 14.0). A score plot to

visualize the classification was drawn, and the contribution of vari-

ables to the separation of classes was identified using the loading and

contribution plots. The quality of the models is described by the

cumulative modeled variation, via R2X(cum), R2Y(cum), and Q2(cum)
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values. The performance of the prediction was evaluated by AUC and

accuracy from the ROC curve. The VIP values according to their con-

tribution to the model were identified, and VIP > 1 was used as a cri-

terion for the discriminatory molecules. Significant differences

between groups (p < 0.05), as calculated via t-tests, were also

considered.

4.5 | Pathway analysis of potential biomarkers
selected by the TOF-SIMS and GC–TOF-MS

For the selected CRC discriminators from TOF-SIMS and GC–TOF-

MS measurements, related diseases and functions were analyzed to

confirm their biological relevance as metabolite biomarkers. The iden-

tification of the discriminatory molecules was performed using litera-

ture studies and available online biochemical databases such as

ChemSpider, Human Metabolome Database, and MassBank.jp (http://

www.massbank.jp). The pathway analyses of the identified metabo-

lites were performed using Ingenuity Pathway Analysis software (IPA)

to identify enriched disease and bio-function pathways due to the dif-

ferential expression of the discriminatory molecules.

4.6 | Classification of KRAS genotypes using TOF-
SIMS analysis

We tested 24 tumor samples for SNPs on KRAS G12D, G12A, and

G12V sites (rs121913529). Before the pyrosequencing analysis of an

SNP in the KRAS gene, a polymerase chain reaction (PCR) was per-

formed using primer sets of forward 50-CGATACACGTCTGCAGTC

AA-30 and reverse 50-ATCAAAGAATGGTCCTGCAC-30. Reactions

were performed using 50 ng of genomic DNA, 10 μM of each

primer, 2.5 mM of dNTP, and IP-Taq DNA polymerase in a 25-μl

reaction volume. The PCR condition was 35 cycles of 30 s at 94�C,

30 s at 56�C, and 30 s at 72�C. The genotype of the PCR products

was analyzed using a pyrosequencer. The DNA sequences were

analyzed using the BioEdit program ver. 7.0.0 and the SNPs were

identified by a manual search of the electropherogram results (data

not shown). Using the OPLS-DA model, we classified 72 TOF-SIMS

spectra for 24 samples according to the KRAS(+) versus KRAS(−)

groups.
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