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Abstract

Summary: Exhaustive detection of multi-loci markers from genome-wide association study data-

sets is a computationally challenging problem. This paper presents a massively parallel algorithm

for finding all significant combinations of alleles and introduces a software tool termed MP-LAMP

that can be easily deployed in a cloud platform, such as Amazon Web Service, as well as in an in-

house computer cluster. Multi-loci marker detection is an unbalanced tree search problem that can-

not be parallelized by simple tree-splitting using generic parallel programming frameworks, such

as Map-Reduce. We employ work stealing and periodic reduce-broadcast to decrease the running

time almost linearly to the number of cores.

Availability and implementation: MP-LAMP is available at https://github.com/tsudalab/mp-lamp.

Contact: tsuda@k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the last decade, a large number of genome-wide association stud-

ies (GWASs) have been conducted and created a substantial resource

of genomic data. It is often pointed out that this data resource has

not been fully exploited because most genetic studies investigate the

effect of a single-locus marker only (Niel et al., 2015). Finding

multi-loci markers involving three loci or more presents a tremen-

dous computational challenge due to combinatorial explosion. It

also poses a statistical problem that the probability of occurrence of

at least one false discovery, called the family-wise error rate

(FWER), increases as the number of marker candidates increases.

A multiple testing procedure, such as Bonferroni correction, is

used to solve this serious statistical problem, but most procedures cal-

culate the upper bound of FWER too loosely and the calculated cor-

rection factor is very large in multi-loci marker analysis. To reduce

the correction factor by a tighter bound of FWER, Terada et al.

proposed a tree-search algorithm, called Limitless Arity Multiple-

testing Procedure (LAMP; Terada et al., 2013), by using the following

property (Tarone, 1990). Given a set of multi-loci markers to be eval-

uated for association with the phenotype, the multi-loci markers can

be divided into testable and untestable ones. Testable markers have

the possibility of causing a false positive result, while untestable ones

have no possibility of doing so. Therefore, we only count the number

of testable ones in the correction factor.

Despite these theoretical advantages, the application of LAMP to

GWAS is still confined to a few studies. It is known that LAMP

requires substantially more computational time if SNPs of high minor

allele frequency (MAF) are included in the data (Terada et al., 2016).

Recently, cloud platforms such as Amazon Web Services (AWS)

have emerged as a cost-effective alternative to in-house computer

clusters. By default, AWS offers Map-Reduce as a parallel process-

ing framework. However, LAMP cannot be parallelized simply by
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Map-Reduce because the algorithm is designed using an unbalanced

tree search. We therefore implemented a software called MP-LAMP,

which is directly built on Message Passing Interface (MPI). Applied

to the GWAS datasets, the running time of MP-LAMP decreased al-

most linearly relative to the number of cores.

2 Implementation and usage

We parallelized a depth-first search algorithm (Minato et al., 2014)

to overcome time-consuming problem because it is the fastest algo-

rithm of LAMP on a single core. Our code is implemented in C and

uses three libraries: MPI Library, boost library � 1.55.0 and gflags

� 2.0. We here describe the key ideas of MP-LAMP. The detailed

algorithms are described in the Supplementary Material.

Let us call a computing entity worker. Parallelization of LAMP has

to satisfy the following three requirements. (i) Workers should traverse

the search tree collectively without load unbalance. (ii) The threshold k0

for the frequency of multi-loci markers is shared by all workers because

it gradually increases during the depth-first search. (iii) Exact number

of frequent multi-loci markers with frequency higher than k0 is counted.

To fulfill the first requirement, work stealing on hypercube top-

ology (Saraswat et al., 2011) is employed for the co-ordinated tra-

versal. It is conducted with communication between the adjusted

workers in a de-centralized manner. Figure 1a shows an example.

Worker 3 has no jobs in the stack, while worker 7 has four jobs I to

IV. Therefore, worker 3 sends a request message to worker 7 to get

jobs and worker 7 gives half of the jobs as a reply.

For the second and third requirements, we develop reduce-

broadcast (Mattern, 1990). Unlike the work stealing, the reduce-

broadcast defines the master worker in advance as shown in

Figure 1b. First, the master worker sends k0 to its child nodes (the

solid lines). When a leaf worker receives k0, it sends back a reply

message to its parent (the dotted lines). These reply messages include

the count table, which keeps the number of multi-loci markers that

are found. Finally, the master worker obtains the total count table

that allows it to update the threshold k0.

MP-LAMP is invoked with the following command: $mpiexec

-np [# workers]./mp-lamp –item [file1] –pos [file2].

The number of workers is set with the -np option of the mpiexec

command. The two csv files are given with –item and –pos. The

former file represents single-marker genotypes of each sample. The

latter file gives the phenotype of each sample. Additionally, the sig-

nificance level can be changed by using thea–a option.

The outputs include statistically significant multi-loci markers whose

P-value is smaller than the adjusted significance level. By default, one-

sided Fisher’s exact test is selected to calculate the P-value. This setting

can be changed by using the -P and –alternative options. Additional

descriptions of these options are shown in Supplementary Table S1.

3 Results

We applied MP-LAMP to two GWAS datasets. One dataset is

human exome data provided by the 1000 Genomes Project (The

International HapMap Consortium, 2005; 1000 genomes dataset).

The other dataset was obtained from an Alzheimer GWAS study

(Webster et al., 2009; AD dataset). We used cSNPs in these data.

The former dataset consists of 12 758 SNPs with 105 cases and 592

controls. The latter dataset has 3307 SNPs with 176 cases and 188

controls. One-sided Fisher’s exact test was used to calculate the

P-value. The significance level was set to 0.05.

Experiments were performed on two environments: cloud com-

puting with the AWS and a High-Performance Computing cluster.

The detailed environments are shown in Supplementary Table S2.

We evaluated the performance of MP-LAMP using GWAS datasets

that contains SNPs with low MAF because the original LAMP can be

slow if SNPs with high MAF are included. The MAF threshold and the

number of SNPs analyzed are shown in Supplementary Tables S3 and

S4. Supplementary Figure S1 shows that parallelization algorithm

works efficiently on cloud computing of AWS. The running time of

MP-LAMP linearly decreases with an increasing number of workers

when the dataset contains many SNPs (Supplementary Fig. S1c and g).

When MP-LAMP was run on a massively parallel cluster, it

achieved almost linear speedup as the number of cores increased.

Analysis of the AD dataset containing SNPs with MAF � 0:4 fin-

ished in 1504.585 s with 1200 workers (Fig. 1c). Without parallel

computation, it was estimated that over 20 days would be required

to conduct an identical analysis. The results of the 1000 genomes

dataset were similar to these for the AD dataset analysis

(Supplementary Fig. S2). These results indicate that our paralleliza-

tion algorithm works efficiently to reduce the running time in a

GWAS analysis even when over 1000 workers are used. We also

evaluated the influence of MAF threshold in computational time.

The result is summarized in Supplementary Figure S6.

Our analysis of the AD dataset yielded numerous statistically sig-

nificant markers including three or more SNPs. When the AD data-

set was analyzed with a MAF � 0.4, 651 markers were detected as

statistically significantly associated with case individuals. Among

them, 552 markers consisted of at least three SNPs, and the largest

markers include five SNPs. All of the significant markers are listed

in Supplementary Table S7. Our results include multi-loci markers

that have been confirmed to be associated with AD development, as

described in Supplementary Material.
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Fig. 1. Strategies of MP-LAMP and time performance. (a) Work stealing.

A hypercube communication graph is used for low-overhead task distribution.

A vertex and edge represent a worker and communication between them, re-

spectively. (b) Reduce-broadcast. The communication graph is a rooted span-

ning tree. (c) Running time and speedup with increasing number of workers
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