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Abstract

For many avian species, spatial migration patterns remain largely undescribed,

especially across hemispheric extents. Recent advancements in tracking tech-

nologies and high-resolution species distribution models (i.e., eBird Status and

Trends products) provide new insights into migratory bird movements and

offer a promising opportunity for integrating independent data sources to

describe avian migration. Here, we present a three-stage modeling framework

for estimating spatial patterns of avian migration. First, we integrate tracking

and band re-encounter data to quantify migratory connectivity, defined as the

relative proportions of individuals migrating between breeding and non-

breeding regions. Next, we use estimated connectivity proportions along with

eBird occurrence probabilities to produce probabilistic least-cost path (LCP)

indices. In a final step, we use generalized additive mixed models (GAMMs)

both to evaluate the ability of LCP indices to accurately predict (i.e., as a covar-

iate) observed locations derived from tracking and band re-encounter data sets

versus pseudo-absence locations during migratory periods and to create a fully

integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data)

spatial prediction index for mapping species-specific seasonal migrations. To

illustrate this approach, we apply this framework to describe seasonal migra-

tions of 12 bird species across the Western Hemisphere during pre- and post-

breeding migratory periods (i.e., spring and fall, respectively). We found that

including LCP indices with eBird occurrence in GAMMs generally improved

the ability to accurately predict observed migratory locations compared to

models with eBird occurrence alone. Using three performance metrics, the

eBird+ LCP model demonstrated equivalent or superior fit relative to the
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eBird-only model for 22 of 24 species–season GAMMs. In particular, the inte-

grated index filled in spatial gaps for species with over-water movements and

those that migrated over land where there were few eBird sightings and, thus,

low predictive ability of eBird occurrence probabilities (e.g., Amazonian

rainforest in South America). This methodology of combining individual-based

seasonal movement data with temporally dynamic species distribution models

provides a comprehensive approach to integrating multiple data types to

describe broad-scale spatial patterns of animal movement. Further develop-

ment and customization of this approach will continue to advance knowledge

about the full annual cycle and conservation of migratory birds.

KEYWORD S
annual cycle, band re-encounter, data integration, eBird, least-cost path, migratory
connectivity, tracking

INTRODUCTION

Billions of birds migrate across the globe each year, and
their seasonal movements span a broad range of spatial
and temporal scales. Approximately 73% of bird species
breeding in North America are migratory, and 54% of
them are considered Nearctic-Neotropical migrants
(Albert et al., 2020). Evidence suggests that migration costs
can have significant impacts on individual survival and,
ultimately, the viability of a population (Newton, 2006).
While consideration of animal movements is often neces-
sary when designing management efforts for the conserva-
tion of migratory birds (McGowan et al., 2017; Robertson
et al., 2018), their extensive ranges and highly variable
occurrence at fine spatial scales present considerable chal-
lenges (Kays et al., 2015; Nandintsetseg et al., 2019).

A comprehensive understanding of migratory connectiv-
ity, or the extent to which populations are linked throughout
the annual cycle (Marra & Studds, 2010), requires quantifica-
tion of spatial variation in the distribution and abundance of
individuals across stationary and migratory stages (Knight
et al., 2021; Webster et al., 2002). For many species, spatial
patterns during migration remain largely undescribed, espe-
cially across hemispheric extents (Nilsson et al., 2019). This
knowledge gap contributes to uncertainty about the ecologi-
cal factors limiting populations (e.g., climate vs. land cover;
Howard et al., 2020); the timing, location, and potential del-
ayed impact of those limiting factors (e.g., carryover effects;
Akresh et al., 2019); the spatial distribution of threats to habi-
tats (Wilson et al., 2019); and the optimal allocation of con-
servation efforts that will match species’ full-annual-cycle
requirements (Runge et al., 2016). Deeper insights into spe-
cies’ spatial migration patterns will not only shed light on
these uncertainties but will further advance our understand-
ing of migratory connectivity.

Advancements in tracking technologies, such as the
Global Positioning System (GPS), light-level geolocators
(LLG), and satellite telemetry (e.g., platform transmitting
terminal [PTT]), have improved our understanding of spatial
migration patterns by allowing for increasingly accurate esti-
mates of location and quantification of error in animal move-
ments (McKinnon & Love, 2018; Rakhimberdiev et al.,
2016). For example, tracking information has been used to
reveal individuals’ migration routes (e.g., DeLuca et al.,
2019), migratory bottlenecks (e.g., Buechley et al., 2018), and
conservation priorities for migratory birds (e.g., Knight
et al., 2021). Individually banded and re-encountered birds
have also contributed invaluable information to our under-
standing of migratory patterns (e.g., Deppe et al., 2015;
Kreakie & Keitt, 2012). However, individual-based data types
are often limited by restricted spatial coverage, as well as
relatively small sample sizes and low re-encounter rates.
Moreover, nonrandom deployment of tracking units and
banding efforts could misrepresent species-level patterns of
movement and habitat requirements (Buechley et al., 2018;
Li et al., 2017).

Recently developed high-resolution species distribution
models based on widespread, volunteer-collected eBird data
have proved to be an important advancement for capturing
landscape-scale, intra-annual distributional dynamics for
many avian species (e.g., Johnston et al., 2020; Schuster
et al., 2019). The eBird project consists of a global network
of volunteers (though with the majority located in North
America) who submit bird sightings, which are then veri-
fied by regional reviewers (Sullivan et al., 2014). eBird
Status and Trends products (ebird.org/science/status-and-
trends) use observations submitted since 2005 in machine
learning models to characterize species abundance and dis-
tribution at a 2.96-km resolution for each week of the year
while accounting for the local environment and multiple
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sources of sampling bias (see Appendix S1; Fink, Auer,
Johnston, Ruiz-Gutierrez, et al., 2020 for more details),
effectively capturing localized spatial patterns across broad
species ranges. Yet the predictive ability of these models is
limited in geographic areas where eBird sightings are absent
due to a lack of observers or because cryptic behaviors
make direct observation of bird movements challenging
during transitory migration periods.

The development of statistically robust methods to
integrate individual-based seasonal movement informa-
tion (i.e., tracking and band re-encounter data) with
these temporally dynamic species distribution models
(i.e., eBird Status and Trends products) will enable
researchers to leverage the unique strengths of these
independent sources and advance our understanding of
bird migration at relevant spatial and temporal extents
for full-annual-cycle conservation planning. Data integra-
tion, or the merging of multiple data types within a uni-
fied analytical framework, provides a powerful method
for sharing information among available data sources
while also minimizing their inherent biases (Miller
et al., 2019; Zipkin et al., 2021). Here, we present a novel,
three-stage approach (Figure 1) for integrating multiple,
distinct data types to describe the spatial patterns of bird
migration across the Western Hemisphere during
species-specific pre- and postbreeding migratory periods,
as defined by eBird Status and Trends products (hereafter
eBird; see Appendix S1 for species’ migration timings). In
the first two stages, we quantified migratory connectivity
and then used probabilistic least-cost paths (LCPs;
Adriaensen et al., 2003; Storfer et al., 2007) to combine
connectivity estimates with weekly estimates of relative
occurrence probabilities derived from eBird (Fink, Auer,
Johnston, Strimas-Mackey, et al., 2020). Traditionally, LCPs
have been used to model gene flow across landscapes
(Storfer et al., 2007), with resistance surfaces or costs rep-
resenting geographic or physiological barriers to animal
movement (e.g., topographic, elevational, thermal stress;
Pullinger & Johnson, 2010). More recently, LCPs have been
adapted for estimating species-specific migration routes
(e.g., Nourani et al., 2018), and they offer a promising—yet
uninvestigated—avenue for broader migration applications,
such as filling spatial gaps where volunteer-collected data
are sparse or unavailable.

In a final stage, we used generalized additive mixed
models (GAMMs) both to evaluate the ability of estimated
LCPs to accurately predict (i.e., as a covariate) observed ani-
mal locations derived from tracking and band re-encounter
data sets compared to pseudo-absence locations during
migratory periods and to create fully integrated (i.e., eBird
occurrence, LCP, and tracking/band re-encounter data) pre-
diction surfaces describing spatial patterns of seasonal bird
migrations. We apply this modeling framework to a suite of

12 bird species with a variety of migratory strategies and
geographic ranges. Accounting for spatiotemporal dynamics
strongly influences the success of conservation planning for
wide-ranging migratory species (Johnston et al., 2020;
Runge et al., 2016), and this methodology of integrating dis-
parate migration data types provides a comprehensive
approach for estimating broad-scale spatial patterns of ani-
mal movement to advance full-annual-cycle research and
conservation efficacy.

MATERIALS AND METHODS

Overview of modeling framework

To identify and evaluate spatial migration patterns using
multiple data types, we developed a novel three-stage
modeling framework (Figure 1), which we used to
describe seasonal migrations of 12 bird species across the
Western Hemisphere. In the first stage, we integrated
tracking and band re-encounter data sets to estimate
migratory connectivity, defined as the relative proportions
of individuals migrating between stationary breeding and
nonbreeding regions for each species (also referred to as
transition probabilities; Marra et al., 2006). In the second
stage, we used migratory connectivity proportions devel-
oped in the first stage along with eBird occurrence proba-
bilities (i.e., occurrence rate estimates from eBird Status
and Trends products; Fink, Auer, Johnston, Strimas-
Mackey, et al., 2020) as the conductance surface to pro-
duce probabilistic LCP passage indices (hereafter LCP
indices) during pre- and postbreeding migratory periods
(i.e., spring and fall, respectively). In the final stage, we
used GAMMs to evaluate the strength of associations
between presence/pseudo-absence data (derived from
tracking and band re-encounter data sets) and both LCP
indices and eBird occurrence probabilities. We used the
resulting GAMM prediction surfaces, which represent a
statistical integration of eBird occurrence probabilities
and LCP indices (i.e., as predictor variables), as well as
tracking and band re-encounter data (i.e., as part of the
response variable), to produce the final maps of integrated
migration patterns for each species during each migratory
period. In what follows, we briefly describe each step of
the three-stage modeling framework (Figure 1); see
Appendix S1 for additional methodological details.

Focal species

We applied our modeling framework to band re-
encounter and tracking data from 12 focal species to esti-
mate migration patterns during pre- and postbreeding
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migratory periods (see Appendix S1 for species-specific
migration timings): American white pelican (Pelecanus
erythrorhynchos), blackpoll warbler (Setophaga striata;
DeLuca et al., 2015, 2019), broad-winged hawk (Buteo
platypterus; Haines et al., 2003; McCabe et al., 2020),
grasshopper sparrow (Ammodramus savannarum; Hill &

Renfrew, 2019), great egret (Ardea alba), osprey (Pandion
haliaetus; Horton et al., 2014; Martell et al., 2014), oven-
bird (Seiurus aurocapilla; Hallworth & Marra, 2015,
Haché et al., 2017), prairie warbler (Setophaga discolor),
prothonotary warbler (Protonotaria citrea; Tonra et al.,
2019), Swainson’s hawk (Buteo swainsoni; Fuller et al.,

F I GURE 1 Conceptual schematic of the modeling framework, which integrates multiple data types to describe spatial patterns of avian

migration across the Western Hemisphere. For each species and migratory season, we (a) statistically integrated tracking and band re-

encounter data to (b) estimate migratory connectivity proportions. Migratory connectivity proportions were then used along with (c) eBird

Status and Trends products (i.e., occurrence probabilities) to produce (d) least-cost paths (LCPs). We used the LCP indices, as well as eBird

occurrence probabilities, as covariates in generalized additive mixed models (GAMMs) to evaluate the strength of association between each

predictor and presence/pseudo-absence data (i.e., response variable) obtained from tracking and band re-encounter data sets. The resulting

(e) GAMM prediction surface represents the statistical integration (i.e., integrated index) of all available migration information shown.
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1998; Kochert et al., 2011), tree swallow (Tachycineta
bicolor; Knight et al., 2018), and turkey vulture (Cathartes
aura; Dodge et al., 2014; Holland et al., 2017, 2019).
We selected species to represent a diversity of migratory
strategies (e.g., overwater vs. overland, short vs. long dis-
tance), geographic range boundaries, avian guilds, tracking
technologies, and available data quantities (see Estimating
migratory connectivity). For the latter, we ensured that all
selected species had tracking locations for ≥10 individuals
(the approximate number to minimize spatial biases; Knight
et al., 2021; O’Toole et al., 2021) because our evaluation pro-
cedure required using this data type as part of the response
variable (in addition to band re-encounters; see Integrating
data sources and evaluating relative model performance).

Estimating migratory connectivity

To develop a generalizable approach to describing migra-
tory connectivity between the stationary breeding
and nonbreeding seasons across species, we divided the
Western Hemisphere into distinct spatial units, referred
to as migratory connectivity regions (MCRs) (Figure 2a),
that largely corresponded with either predefined Bird
Conservation Regions (North America; Bird Canada and
North American Bird Conservation Initiative, 2014) or
Level II ecoregions (Central and South America; Griffith
et al., 1998, see Appendix S1 for more details). To ensure
that we did not estimate migratory connectivity between
marginal breeding and nonbreeding populations of each
species, we only considered MCRs where summed sea-
sonal eBird relative abundance estimates within a given
MCR were ≥1% of the summed total seasonal relative
abundance across a species’ range (see Appendix S1 for
details on calculating seasonal abundances from eBird
Status and Trends products). We estimated migratory
connectivity as the relative proportions of individuals
migrating between these selected breeding and non-
breeding MCRs for each species (e.g., Figure 2b). To do
this, we statistically integrated (via joint likelihood) band
re-encounter and tracking data during the stationary
breeding and nonbreeding periods following the method
developed by Korner-Nievergelt et al. (2017), which
controls for spatial heterogeneity in re-encounter proba-
bilities of marked birds. To maximize sample sizes for
inference, we used band re-encounter data obtained from
the U.S. Geological Survey (USGS) Bird Banding Labora-
tory (BBL) since 1930 (e.g., Macdonald et al., 2012; Ryder
et al., 2011) and tracking data (LLG, GPS, PTT) obtained
by Audubon’s Migratory Bird Initiative in partnership
with individual researchers (see Appendix S1 for details
on data cleaning and filtering procedures). We fit species-
specific migratory connectivity models within a Bayesian

framework via JAGS (Plummer, 2003) called from R ver-
sion 4.0.1 (R Core Team, 2019) using the jagsUI package
(Kellner, 2016). See Appendix S1 for further details on
model implementation and Appendix S2 for details on
species-specific migratory connectivity results.

Producing least-cost paths

Within selected MCRs for each species, we ranked each
2.96-km cell (i.e., native resolution of eBird Status and
Trends products) by seasonal relative abundance and
selected as the breeding and nonbreeding cores
(i.e., high-abundance clusters) the minimum number of
cells that represented 30% of the total sum of cells (sensu
Schuster et al., 2019; Lin et al., 2020) within each MCR
(Figure 2a). Relative abundance models for the breeding
and nonbreeding seasons for each of the focal species
were expert-reviewed and met performance standards of
eBird Status and Trends products (Fink, Auer, Johnston,
Ruiz-Gutierrez, et al., 2020). We used these breeding and
nonbreeding cores for initiation of LCPs (i.e., source of
origin points) for postbreeding and prebreeding migra-
tion, respectively, because we were primarily interested
in identifying major migratory pathways among popula-
tion clusters. We designed this approach to incorporate
two important attributes of identifying natural popula-
tion structures in the absence of genetic data: abundance
and spatial proximity (Rushing et al., 2016).

We randomly selected 50 grid cells within each breeding
MCR core to serve as postbreeding migration origin points
for species-specific LCPs. Next, we randomly paired each
origin point with a destination point in a randomly selected
grid cell (n = 50) within nonbreeding MCR cores using the
relative proportions estimated from the migratory connectiv-
ity analysis described earlier (Figure 2b). We then computed
a probabilistic (i.e., randomized) LCP (Adriaensen
et al., 2003; Storfer et al., 2007; Wang et al., 2009) between
each breeding–nonbreeding core pixel pair that minimized
the total cumulative cost, where the cost of moving between
paired pixels was determined by the intervening distance
weighted by a conductance surface representing average
(i.e., arithmetic mean across weeks; see Appendix S1:
Table S2) postbreeding occurrence probabilities obtained
from eBird (Figure 2c). Thus, higher occurrence values dur-
ing migration coincided with higher conductance. We chose
to use occurrence probabilities as the conductance surface,
rather than relative abundances, because abundance values
for several focal species were highly right-skewed (e.g., high-
abundance aggregations of migrating tree swallows), which
resulted in LCPs directed toward regions of unusually high
abundance, masking the known movements of smaller,
regional populations.
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To create biologically reasonable LCPs, we modified
conductance surfaces by adding minimum conductance
values where eBird occurrence probabilities were zero or
had missing values. These conductance values varied
across species to reflect relevant migratory behaviors
(e.g., likelihood of long-distance overwater movements).

See Appendix S1 for more details on assigning values to
each of the 12 focal species and the potential for customi-
zation in future analyses. Partial randomization of the
deterministic LCPs was incorporated via a constrained
random walk using the passage() function from the
gdistance package in R (Van Etten, 2017). The passage

F I GURE 2 (a) Migratory connectivity regions (MCRs) in North, Central, and South America, which we used as the spatial units of the

modeling framework. We used Swainson’s hawk as an example species to illustrate the breeding (green) and nonbreeding (purple) MCRs

selected (i.e., contain ≥1% of total seasonal eBird relative abundance) for inclusion in analyses. Green and purple points represent high-

abundance clusters (i.e., sum to 30% of abundance) within each MCR in stationary breeding and nonbreeding seasons, respectively. (b)

Estimated proportions from the migratory connectivity analysis for Swainson’s hawk integrating tracking and band re-encounter data from

stationary breeding and nonbreeding periods; for ease of illustration, the proportions shown refer to a single breeding MCR and, thus, sum

to one. (c) Average postbreeding eBird Status and Trends (eBird ST) relative occurrence probabilities of Swainson’s hawk (i.e., arithmetic

mean of weekly estimates during postbreeding migration period; see Appendix S1: Table S2 for species-specific migration timings). (d) Least-

cost path index for Swainson’s hawk illustrating probable pathways during postbreeding migration. Icons in bottom left corner of each panel

refer to a specific stage of the modeling framework and correspond to those shown in Figure 1.
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function simulates movements from a starting location to
an ending location, with movements between intervening
cells governed by a random process superimposed on a cost
surface. Randommovements are derived from a probability
distribution constrained by a parameter that controls the
degree of randomization (Saerens et al., 2009). During
model development, we evaluated a wide variety of values
and algorithms for choosing the degree of randomization
and ultimately opted to use half the minimum conductance
value, which resulted in individual probabilistic LCPs that
had a longitudinal range of �100 km (see Appendix S1 for
more details on the partial randomization process).

Each set of paired grid cells yielded one raster layer
(rescaled to a 26.6-km resolution due to computational
demands; see Appendix S1) with values between zero and
one that described the probability of passage (i.e., LCP
index) through a given grid cell during postbreeding migra-
tion. We repeated this process for the 50 sets of paired grid
cells for each breeding MCR and then repeated the entire
procedure in reverse (i.e., nonbreeding season origin points
paired with breeding season destination points) using
average prebreeding eBird occurrence probabilities as the
conductance surface to produce LCP indices during
prebreeding migration. Finally, we averaged (i) across the
50 probabilistic LCP surfaces for each season-specific
MCR and (ii) across all nonbreeding or breeding MCRs
to illustrate probable pathways during pre- and post-
breeding migrations, respectively, for each species
(Figure 2d). For example, for a species with 10 breeding
MCRs, 10� 50 = 500 total LCPs were averaged to pro-
duce a postbreeding migration surface.

Integrating data sources and evaluating
relative model performance

To integrate additional data sources with LCPs, we first
assembled available band re-encounter and tracking data
during the pre- and postbreeding migratory periods
(i.e., seasonal observations that were not used in previous
stages) and followed cleaning procedures similar to those
used in migratory connectivity analyses (see Appendix S1 for
more details). We also filtered redundant tracking observa-
tions by randomly selecting one observation per individual
bird per 26.6-km grid cell for each migratory season.
Observations were filtered in this way to reduce spatial and
temporal autocorrelation (sensu Northrup et al., 2013). For
LLG data, we also removed locations over a 20-day period
centered on each equinox. At each of these remaining
“known presence” locations (e.g., Figure 3a) during each
migratory season, we extracted two underlying raster values
using geographic coordinates: (i) eBird occurrence probabil-
ity (Figure 2c) and (ii) LCP index (Figure 2d). We then

extracted occurrence probabilities and LCP indices at 10,000
background (pseudo-absence) points drawn from a convex
hull across each species’ full-annual-cycle range (i.e., the spa-
tial extent of possible migration locations), which we defined
by overlaying eBird Status and Trends seasonal ranges with
BirdLife International seasonal ranges to encompass periph-
eral, unmodeled areas (BirdLife International, 2017).

For each species and migratory season, we built three
GAMMs assuming a binomial distribution with a logit-link
function to evaluate associations between presence/
pseudo-absence data and both eBird occurrence probabili-
ties and LCP indices. The full model had a global inter-
cept, a random intercept that represented either an
individual bird (tracking data) or all banded birds (band
re-encounter data), and a two-dimensional smooth effect
of eBird occurrence probabilities and LCP indices because
we expected possible interacting and asymptotic relation-
ships between the predictors and the response variable.
The random effect was specified to control for potential
correlations in tracking locations within individuals, as
well as possible error correlations associated with different
data types, while minimizing the number of random-effect
levels because of computational challenges (e.g., all band
re-encounters were assigned the same level). Random
intercept levels for pseudo-absence locations were ran-
domly generated in proportion to the presence data (see
Appendix S1 for details). In an eBird-only model, we
included both intercept terms as well as a one-dimensional
smooth effect of eBird occurrence. In a third model, we
included only the two intercepts and considered this the
null model. Despite filtering tracking data and specifying
random effects for individual birds, there was residual
autocorrelation in some species–season models (results
not shown). However, we did not expect the autocorrela-
tion of tracking data to impact our inferences regarding
the contributions of LCP indices relative to eBird occur-
rence probabilities because (i) tracking data were included
as the response variable in all models (i.e., there were no
comparisons of models with and without tracking data)
and (ii) spatial or temporal autocorrelation is primarily of
concern when hypothesis testing (e.g., resource selection
modeling; Gillies et al., 2006; Koper & Manseau, 2012),
which we did not do here.

We assessed the added contribution of LCP-derived
indices to describing eBird-derived migration patterns by
comparing model fits of the full model (i.e., eBird+ LCP)
versus eBird-only model using three evaluation metrics:
Akaike’s information criterion (AIC), proportion devi-
ance explained, and area under the receiver operator
curve (AUC). The same response data (i.e., tracking and
band re-encounters during migration) were used for
model comparisons within each species–season combina-
tion; see Appendix S1 for more details on GAMM fitting
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and results. We did not evaluate a LCP-only model
because we were primarily interested in assessing
whether LCP indices provided additional information,
beyond that of eBird occurrence probabilities, for describ-
ing spatial patterns of avian migration. Although eBird
occurrence informed LCP indices, which may have
resulted in correlated predictors for some locations, we
note that our objective of determining orthogonal added
predictive value (rather than hypothesis testing) makes
multicollinearity concerns less important.

The resulting GAMM prediction surface (e.g., Figure 3b)
for each species in each migratory season represented a sta-
tistical integration of eBird occurrence probabilities and
LCP indices (i.e., predictor variables in GAMMs), as well as
available tracking and band re-encounter data (i.e., as part
of the response variable in GAMMs). In what follows, we
summarize results across the 12 focal species and illustrate
specific results for Swainson’s hawk during postbreeding
migration as a fully worked case study; see Appendix S3 for
all species-specific results and Appendix S4 for data attribu-
tions for each of the 12 species analyzed here.

Sensitivity analyses

We conducted post hoc Spearman’s correlations using
model fit results and quantities and qualities of data types

to evaluate whether our inferences on LCP contributions
relative to eBird occurrences were related to data avail-
ability or technology type. To further understand the relative
effects of data quantity and quality, we ran a multiple linear
regression with deviance explained by the full model as a
function of the following four predictors that were centered
and scaled prior to analysis: number of tracked individuals,
number of geolocator-tagged or banded individuals, number
of individuals tracked with PTT or GPS tags (i.e., high-
quality tracking data), and spatial comprehensiveness of
tracking data (i.e., proportion of species-specific breeding
and wintering MCRs with ≥1% of the total number of track-
ing observations). We included the latter metric to deter-
mine whether there was a relationship between spatial
coverage of tracking data and model fit (see Appendix S1 for
more details on sensitivity analyses).

RESULTS

Migratory connectivity

For several focal species (e.g., American white pelican,
osprey, ovenbird, prairie warbler), tracking and band re-
encounter data suggested relatively high migratory connec-
tivity proportions (i.e., strong connectivity). For example,
more than half (0.59) of marked ovenbirds breeding in the

F I GURE 3 (a) Available band re-encounter (green), Global Positioning System (GPS, orange), and platform transmitting terminal

(PTT, purple) data for Swainson’s hawk during postbreeding migration. These data were considered “known presence” locations and
combined with 10,000 background points (i.e., pseudo-absence locations) and used as the response variable in generalized additive mixed

models (GAMMs) to create (b) the integrated index illustrating bird migration patterns across the Western Hemisphere (Swainson’s hawk
shown here). See Appendix S1: Table S3 for sample sizes of the tracking and band re-encounter data sets used in GAMMs for each species–
season. Icons in bottom left corner of each panel refer to a specific stage of the modeling framework and correspond to those shown in

Figure 1.
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northeastern United States (MCR 14) overwintered in Flor-
ida (MCR 31) and the Greater Antilles (MCR 162), while
marked ovenbirds breeding in the central/western Cana-
dian boreal region (MCR 6) were generally equally
distributed across wintering MCRs in Mexico, Central
America, and the Caribbean Islands. For other species,
tracking and band re-encounter data supported equivalent
(i.e., weak) migratory connectivity among all breeding and
nonbreeding MCRs. Given that the migratory connectivity
model assumed equal proportions of individuals migrating
between breeding and nonbreeding MCR pairs in the
absence of available data (i.e., null hypothesis; see
Appendix S1), this pattern of uniformly distributed con-
nectivity proportions was a result of data limitations for
certain species or for certain breeding–nonbreeding MCR
connections within species (see Appendix S2: Table S1 for
species-specific sample sizes).

For the Swainson’s hawk case study (Figure 2b), the
average connectivity proportion between a given breeding
MCR and each nonbreeding MCR was 0.13, which was
close to the expected (null) proportion of 0.11 (i.e., 1 breed-
ing MCR � 9 nonbreeding MCRs; Figure 2a). Yet our
results revealed that proportions were greater than average
(i.e., strong connectivity) between the Great Basin (MCR 9)
and Northern Prairie (MCR 11) breeding regions of the
United States and the Pampas region of Argentina (MCR
232) during the nonbreeding season (0.42 and 0.29, respec-
tively; MCR 11 connections shown in Figure 2b). Further,
greater-than-average proportions of individuals breeding in
the Central Valley of California (MCR 15) overwintered in
the desert regions of the southern United States (Sonoran
and Mohave) and northern Mexico (Chihuahuan; MCR 33)
and along the Transverse Volcanic Belt (MCR 134) in
Mexico (0.23 and 0.22, respectively). Concurrently, Central
Valley breeders had lower-than-average proportions of indi-
viduals overwintering in the Pampas and Gran Chaco
(MCR 134) regions of Argentina (both proportions of 0.06).
Though we used these mean connectivity proportions
(i.e., posterior means) as a method of incorporating migra-
tory connectivity information into LCPs, we acknowledge
that, given limited data, differences in mean connectivity
proportions were seldom statistically significant (i.e., 95%
credible intervals around mean estimates overlapped; see
Appendix S2 for more information). All estimated connec-
tivity proportions for each of the 12 focal species are avail-
able on Audubon’s GitHub repository: https://github.com/
audubongit/migration_data_integration.

Least-cost paths

As designed, LCPs mapped probable migratory pathways
and filled in gaps in eBird seasonal occurrence estimates,

specifically in areas with a lack of eBird sightings. This
pattern was especially apparent for Swainson’s hawk
during postbreeding migration, where LCP indices
provided nonzero estimates over much of South America
(e.g., Amazonian rainforest) in areas where eBird occur-
rence probabilities were zero (Figure 2c,d). Similarly,
LCP indices for overwater migrants were nonzero in
locations over the Atlantic Ocean and Gulf of Mexico,
indicating predicted migratory movements in marine
areas where eBird observations were also unavailable
(see Appendix S3 for all species-specific results).

In addition to filling in spatial gaps, LCPs mapped
migratory bottlenecks or locations where the geographic
funneling of migrants could lead to relatively high proba-
bilities of occurrence. For example, for Swainson’s hawk
during postbreeding migration, the LCP indices over Cen-
tral America were particularly high relative to the seasonal
average occurrence probabilities estimated from eBird
(Figure 2c,d). Likewise, several other species demonstrated
high-use migratory areas along peninsulas via greater LCP
indices (e.g., blackpoll warbler, grasshopper sparrow, prai-
rie warbler, tree swallow in Florida; Appendix S3), as well
as stepping stone migratory movements via greater LCP
indices in Cuba, where migrants are known to concentrate
before or after passage over large expanses of open water
(e.g., blackpoll warbler, ovenbird, prairie warbler, protho-
notary warbler; Appendix S3).

Relative model performance

When AIC and deviance explained were the evaluation
metrics, GAMMs that included LCP indices (i.e., full
models) had either equivalent or superior model fit than
those that did not (i.e., eBird-only models; Figure 4;
Appendix S1: Table S4). However, based on AUC, two
species–season models (great egret and prairie warbler dur-
ing postbreeding migrations) demonstrated poorer fit when
LCP indices were included, relative to the eBird-only model.
Across the 24 combinations of 12 species and 2 migratory
seasons, the inclusion of LCP indices as predictors in
GAMMs increased the deviance explained by an average of
57% (range = 0%–163%) and increased AUC by an average
of 6% (range = �11%–17%; Appendix S1: Table S4). For
Swainson’s hawk during postbreeding migration (Figure 3),
the addition of LCP indices to the GAMM increased the
deviance explained by 67% (Appendix S1: Table S4).

Integrated prediction surfaces

The degree to which eBird occurrences and LCP indices
were represented in each species’ GAMM-produced
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integrated prediction surface depended on the agreement
between each predictor and observed locations obtained
from tracking data and band re-encounters. For
Swainson’s hawk, high values of the integrated index in
the northwestern plains of North America were largely
due to the spatial agreement between band re-encounter
locations (Figure 3a) and high eBird occurrence probabil-
ities (Figure 2c). Conversely, high integrated index values
across South America (Figure 3b) were almost entirely
due to a congruence between telemetry (GPS and PTT)
locations and high LCP index values (Figure 2d). Thus,
for this species during the postbreeding migration season,
both eBird and LCP prediction surfaces appeared to make
important contributions to the integrated surface. Across
the remaining species, contributions of the two predictors
varied considerably and depended, in part, on the extent
to which each species migrated over areas where eBird
observations were sparse. See Appendix S3 for detailed
results for each of the 12 focal species.

Sensitivity analyses

Correlations between data quality/quantity and model fit
(Appendix S1: Table S5) and fit improvement (Appendix S1:
Table S6) were all positive. When evaluated together via
multiple linear regression, we found weak, positive effects
of the number of tracked individuals (β = 0.07, p = 0.02)
and number of high-quality tracked individuals (β = 0.04,
p = 0.06); a weak, negative effect of number of geolocator-
tagged individuals (β = �0.05, p = 0.07); and no detectable
effect of spatial comprehensiveness (β = �0.03, p = 0.21).

DISCUSSION

There are many approaches to tracking birds during
migration (reviewed in Bridge et al., 2011; McKinnon &
Love, 2018; Bernard et al., 2021), yet few attempts have
been made to unite these technologies with widespread
eBird data within a single integrated modeling frame-
work to share information across data sources and
account for associated uncertainties and biases (but see
Hallworth et al., 2015; Tonra et al., 2019). Our modeling
framework leverages the strengths of multiple data types
to describe the spatial patterns of avian migration across
the Western Hemisphere during pre- and postbreeding
migratory seasons. We applied our approach to a suite of
12 species with varying life histories to illustrate its repro-
ducibility across different migratory strategies, tracking
technologies, range boundaries, and data quantities.
Overall, we demonstrated that LCPs contributed addi-
tional information to eBird occurrence probabilities,

broadening our understanding of migratory patterns at
unprecedented spatial extents. Given the rapid declines
in migratory species globally (Wilcove & Wikelski, 2008;
Wilson et al., 2018), knowledge of both the connectivity
among populations and the high-use areas during migra-
tion can inform conservation strategies to effectively
advance species recovery while avoiding expenditures of
limited resources on locations that may have little ability
to mitigate declines. Although the variability and com-
plexity of biological systems, along with the nuances of
data collection, make it difficult to develop a universal
integrated model for describing bird migration, this
method represents a powerful starting point for further
development and customization based on researcher
needs and data availabilities (Appendix S1).

Compared to eBird occurrences alone, we found that
inclusion of LCP indices as a covariate in GAMMs gener-
ally improved model fit for estimating observed animal
locations derived from tracking and band re-encounter
data sets. Out of 24 species–season models, all but two
(great egret and prairie warbler during postbreeding
migrations) demonstrated either equivalent or superior
fit of the full model (i.e., eBird+ LCP) compared to the
eBird-only model across three separate performance met-
rics (Figure 4). For the two exceptions, fits of the full
models were only slightly poorer than the eBird-only
models based on AUC (Appendix S1: Table S4). From our
post hoc analysis evaluating correlations between data
quantity/quality and model fit, we found that all correla-
tions were positive, indicating that increased data avail-
ability and quality improved model fit (Appendix S1:
Tables S5 and S6). When we evaluated data availability
metrics together, we found that the number of tracked
individuals was the most significant predictor of model
fit. Specifically, the inclusion of high-quality tracking
data (PTT and GPS tags) was positively associated with
model fit, which likely accounts for the poorer fit of the
full model for prairie warbler during postbreeding migra-
tion because only LLG data (i.e., tracking technology
with the greatest location error) were available for this
species (Appendix S3: Figure S16). Although spatial com-
prehensiveness of the tracking data was not a significant
predictor of model fit across species, we found that spe-
cies with <50% of seasonal MCRs containing tracking
observations had more variable model performance,
which may partly explain the poorer fit of the full model
for great egret during postbreeding migration (32% of
MCRs with tracking observations; Appendix S1: Table S3
and Appendix S3: Figure S10). Taken together, these
results suggest that model performance is optimal when
high-quality tracking data are well distributed through-
out a species’ range, thereby reducing spatial biases and
uncertainties.
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Species for which LCPs greatly improved model fit via
AIC (i.e., positive outliers in Figure 4a), compared to
eBird occurrences alone, included osprey and American
white pelican, both of which were rich in high-quality
tracking data sources (GPS and PTT; Appendix S1:
Table S3 and Appendix S3: Figures S1, S2 and S11, S12).
LCPs also made a valuable contribution to describing avian
migratory patterns for species with overwater movements
(e.g., blackpoll warbler in both seasons and prairie warbler
during prebreeding migration; Appendix S3: Figures S3, S4
and S15) and those that migrate over land where there are
presumably few eBird sightings (e.g., broad-winged hawk
and Swainson’s hawk in South America; Appendix S3:
Figures S5, S6 and S19, S20) and, thus, low predictive ability
of eBird Status and Trends models. LCP analysis was
designed to model the flow of individuals (or genes)
between points on a heterogeneous landscape (Storfer
et al., 2007), and our findings demonstrate that this same
logic can be applied to birds migrating (i.e., species-specific
occurrence estimates) between grid cells at weekly time
steps. By supplementing this approach with prior knowl-
edge on migratory connectivity derived from tracking and
band re-encounters (i.e., akin to using informed prior dis-
tributions in Bayesian frameworks), we are integrating
concepts and technologies, enabling LCPs to reflect the
migratory behavior of birds at the species level more
accurately.

The complexities of avian migration have contributed
to a long-standing gap in our knowledge of the full annual
cycle and migratory connectivity (Marra et al., 2015;
Marra & Studds, 2010). The LCP-derived integrated index
of passage probability developed here represents bird space
use during migratory seasons and, thus, captures average
patterns at the species level. However, we acknowledge
that the integrated index is only a proxy for spatially
explicit migratory abundances and suggest that it be inter-
preted within the context of a species’ life history to ensure
consistency with known migratory patterns. In addition,
exploring model modifications, such as spatially varying
coefficients for predictor surfaces or a spatial covariance
structure, as well as alternative null hypotheses for con-
nectivity analyses (e.g., abundance-weighted or informed
by expert opinion or genetic structure), may help over-
come potential species-specific challenges.

Although we selected focal species with the goal of
developing a robust and widely applicable method, con-
ducting more extensive sensitivity analyses to fully assess
model fit across a range of species groups, sample sizes,
and tracking technologies is also warranted (see
Appendix S1 for further details). For example, we foresee
difficulties in applying this modeling framework to spe-
cies with unusual migrations (e.g., irruptive species like
redpolls, grosbeaks, and nuthatches) or with spatially
complex distributions of migratory and nonmigratory

F I GURE 4 Evaluation metrics—(a) Akaike’s information criterion (AIC), (b) deviance explained, and (c) area under receiver operator

curve (AUC)—used to assess the difference (Δ) in fits between two generalized additive mixed models (GAMMs): (i) a full model including

eBird occurrence probabilities+ least-cost path (LCP) passage indices and (ii) a model including only eBird occurrence probabilities as

predictors of presence/pseudo-absence data (derived from tracking and band re-encounter data sets during pre- and postbreeding

migrations). Positive values (above horizontal dashed line) indicate improvements in model fit with addition of LCP indices

(e.g., AICeBird – AICfull in [a], DevExpfull – DevExpeBird in [b], AUCfull – AUCeBird in [c]); negative values (below horizontal dashed line)

indicate poorer fit of full model relative to eBird-only model; values at zero (on horizontal dashed line) indicate equivalent model fits.

Results from 24 species–season model comparisons are shown, with yellow boxplots showing distribution of model fits during postbreeding

migration (i.e., fall) and green boxplots showing distribution of model fits during prebreeding migration (i.e., spring). Horizontal lines in

boxplots indicate median values, bounds of boxes indicate 25th and 75th percentiles, and labeled points represent outliers. See Appendix S1:

Table S4 for additional model fit results.
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populations (e.g., American robin). Species that are pri-
marily aquatic (e.g., terns, loons) or otherwise secretive
(e.g., marshbirds), and thus have very low eBird occurrence
probabilities terrestrially, will also likely face computational
issues during LCP production. While integrating multiple
data sources can alleviate some of the limitations of tradi-
tional independent analyses, such as filling in spatiotempo-
ral data gaps and increasing the precision of parameter
estimates (Zipkin & Saunders, 2018), the caliber of individ-
ual data sets ultimately determines the quality of inference,
and integrated modeling cannot completely remove biases
inherent in each data set. Nevertheless, the resulting
integrated index represents a much-needed initial syn-
thesis of several data types that are frequently collected
on migratory birds, enabling new insights that may not
have been obtained from separate analyses.

There are several potential avenues for further refining
this framework (see Appendix S1: Table S7 for more
details). Future developments could involve incorporating
additional sources of information on migration, including
genetic (Ruegg et al., 2020), isotope (Wassenaar, 2019),
and Motus (Taylor et al., 2017) data. Although not all of
these data types are available for every species, we suggest
that researchers could customize the method presented
here based on the data available for their species of inter-
est, allowing for a complete, detailed understanding of
migratory patterns and connectivity. In the absence of
tracking and band-re-encounter data, integrated surfaces
could also be produced using the maximum values across
eBird occurrence and LCP index surfaces. Indeed, prelimi-
nary analyses suggested that using “max” surfaces to gener-
ate the integrated index produced results qualitatively
similar to those from GAMMs using presence/pseudo-
absence locations (see Appendix S1 for more details). For
species with long-term tracking data availability that are
particularly sensitive to fluctuating environmental condi-
tions (e.g., waterfowl in response to wetland availability), a
temporally varying version of this approach (e.g., annual or
decadal) could be developed to understand potential shifts
in migratory patterns with climate change. While evidence
suggests that birds are generally shortening their migration
distances as a result of globally rising temperatures (Visser
et al., 2009), the rate and magnitude of these changes vary
by species’ migratory behaviors and winter geographies
(Rushing et al., 2020). Estimating and predicting human-
induced alterations to animal migrations remains an active
area of research (Kubelka et al., 2022).

The acquisition and synthesis of knowledge across
technologies is needed to inform the ecology and conser-
vation of migratory birds breeding in North America,
which have declined by 2.5 billion since 1970 (Rosenberg
et al., 2019). Designing multifunctional landscapes is
key to supporting migratory species, and this modeling

framework represents a critical step toward predicting
where and when (e.g., pre- vs. postbreeding migratory
periods) species will be moving through locations, which
can help conservationists optimize provisioning of
habitat (e.g., stopover) or abatement of threats (e.g., wind
turbines, light pollution). Hence, we anticipate several
creative uses of this work to advance migration and con-
servation sciences (Appendix S1: Table S7), including
(i) filling knowledge gaps regarding the spatial distribution
of species with cryptic life histories that hinder direct
observation of movements and (ii) prioritizing localized
conservation actions that are responsive to migratory spe-
cies’ spatiotemporal dynamics. Uncovering species’ spatial
migration patterns during the high-mortality periods of
their annual cycles has important implications for migra-
tion ecology, migratory bird policies, and conservation
actions for populations and species across their ranges. We
encourage researchers to explore and advance the methods
presented here for other migratory species or systems,
which will further expand the scope of inference on spatial
patterns of animal movement across hemispheric extents
and the full annual cycle.
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