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Background: Renal dysfunctions are associated with increased morbidity and mortality
in sickle cell disease (SCD). Early detection and subsequent management of SCD
patients at risk for renal failure and dysfunctions are essential, however, predictors that
can identify patients at risk of developing renal dysfunction are not fully understood.

Methods: In this study, we have investigated the association of 31 known
kidney dysfunctions-related variants detected in African Americans from multi-ethnic
genome wide studies (GWAS) meta-analysis, to kidney-dysfunctions in a group of
413 Cameroonian patients with SCD. Systems level bioinformatics analyses were
performed, employing protein-protein interaction networks to further interrogate the
putative associations.

Results: Up to 61% of these patients had micro-albuminuria, 2.4% proteinuria,
71% glomerular hyperfiltration, and 5.9% had renal failure. Six variants are
significantly associated with the two quantifiable phenotypes of kidney dysfunction
(eGFR and crude-albuminuria): A1CF-rs10994860 (P = 0.02020), SYPL2-rs12136063
(P = 0.04208), and APOL1 (G1)-rs73885319 (P = 0.04610) are associated with eGFR;
and WNT7A-rs6795744 (P = 0.03730), TMEM60-rs6465825 (P = 0.02340), and APOL1
(G2)-rs71785313 (P = 0.03803) observed to be protective against micro-albuminuria.
We identified a protein-protein interaction sub-network containing three of these gene
variants: APOL1, SYPL2, and WNT7A, connected to the Nuclear factor NF-kappa-B
p105 subunit (NFKB1), revealed to be essential and might indirectly influence extreme
phenotypes. Interestingly, clinical variables, including body mass index (BMI), systolic
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blood pressure, vaso-occlusive crisis (VOC), and haemoglobin (Hb), explain better the
kidney phenotypic variations in this SCD population.

Conclusion: This study highlights a strong contribution of haematological indices (Hb
level), anthropometric variables (BMI, blood pressure), and clinical events (i.e., vaso-
occlusive crisis) to kidney dysfunctions in SCD, rather than known genetic factors. Only
6/31 characterised gene-variants are associated with kidney dysfunction phenotypes
in SCD samples from Cameroon. The data reveal and emphasise the urgent need to
extend GWAS studies in populations of African ancestries living in Africa, and particularly
for kidney dysfunctions in SCD.

Keywords: sickle cell disease, kidney dysfunctions, gene variants, cameroon, Africa

INTRODUCTION

Sickle Cell Disease (SCD) is a monogenic disease with high
prevalence and high mortality rates in Africa. Globally, SCD is
estimated to affect more than 300,000 births per year, with nearly
two-thirds occurring in sub-Sahara Africa (Piel et al., 2013).
Cameroon is a sub-Saharan African country with an estimated
SCD carrier frequency rate between 8 and 34% (Weatherall and
Clegg, 2001). Although Cameroon declared SCD as a public
health priority, access to care and treatment is still limited due to
lack of a national medical insurance, leaving SCD patients to self-
fund or depend on familial financial support. Therefore, medical
care costs are often not met (Wonkam et al., 2014) and patients
frequently suffer from severe SCD complications such as kidney
dysfunction (Geard et al., 2017).

Renal failure caused by recurrent episodes of ischemia-
reperfusion injury and haemolytic anaemia, occurs in 5–18% of
SCD patients and is associated with an increased risk of early
mortality (Platt et al., 1994; Gladwin, 2017). The prevention
of renal failure relies on early detection and management
of kidney dysfunction. In SCD patients, renal failure can
be caused by gradual infiltration of glomerulus, which leads
to glomerular sclerosis or promotes progression of micro-
albuminuria to macro-albuminuria/proteinuria and finally to
nephrotic-range proteinuria (Nath and Hebbel, 2015). Micro-
albuminuria is prevalent in 26–68% of adult patients (Ataga
et al., 2014; Gosmanova et al., 2014) and is the most sensitive
early clinical marker for glomerular damage and other types of
kidney dysfunction. Recent studies have demonstrated that the
co-inheritance of alpha-thalassemia with SCD and/or specific
variants in the HbF promoting loci can delay the clinical
progression of kidney disease in African American SCD patients
(Saraf et al., 2017). In addition, genetic variations in two coding
regions of Apolipoprotein L1 (APOL1) and Heme oxygenase 1
(HMOX1) genes have been associated to chronic kidney disease
(Genovese et al., 2010; Tzur et al., 2010), and to SCD nephropathy
(Saraf et al., 2015; Schaefer et al., 2016).

Abbreviations: SCD, sickle cell disease; eGFR, estimated glomerular filtration
rate; VOC, vaso-occlusive crisis; GWAS, genome-wide association studies; BMI,
Body mass index; BP, blood pressure; HbF, foetal haemoglobin; HBB, beta-globin
gene; HBA, alpha-globin gene; PCR, polymerase chain reaction; RFLP, Restriction
fragment length polymorphism; WBC, white blood cell; Hb, haemoglobin; MCV,
mean corpuscular volume; CKD-EPI, Chronic Kidney Disease-Epidemiology.

In a previous study, we showed that variants in APOL1 and
HMOX1 variants are associated with kidney dysfunctions using
a targeted SNP based approach. Further investigations reveal
that these variants are associated with albumin creatinine ratio,
micro-/macro-albuminuria and eGFR in a group of SCD patients
in Cameroon (Geard et al., 2017). Given the high rate of renal
dysfunction in SCD patients in Africa with its high genetic
diversity, there is need to explore possible novel genetic variants
associated with kidney dysfunction. Ideally, whole genome
sequencing and other large-scale gene discovery approaches
should be use, expanding the targeted genetic discovery to other
variants known to be associated with renal dysfunctions. Given
the limited number of gene and variant discovery research in
SCD patients, a plausible strategy is using renal dysfunctions
associated SNPs from non-SCD affected populations.

Several kidney dysfunction genome-wide association studies
(GWAS) have been conducted in many non SCD-affected
populations (Kottgen et al., 2009, 2010; Chambers et al., 2010;
Pattaro et al., 2012). Furthermore, a recent GWAS meta-
analysis integrated 15 GWAS studies of 133,413 individuals
from multiple ethnicities and uncovered 53 SNPs associated
with renal dysfunction, including 26 SNPs found in individuals
of African descent (Pattaro et al., 2016). In this study, we
investigated the associations of these 26 SNPs in addition to four
previously characterised kidney dysfunction-related variants,
including APOL1 (G1 or G2) for rs60910145, rs73885319 and
rs71785313, and HMOX1 for rs3074372 and rs743811, relevant
to populations of African ancestry (Pattaro et al., 2016), e.g., SCD
patients from Cameroon.

Several studies, including a previous study from our group
(Geard et al., 2017), have shown that, in addition to genetic
variants, clinical, and biological factors also contribute to
glomerular damage (Audard et al., 2017). This highlights the
need to employ a multi-factorial approach in investigating
factors associated to renal abnormalities in SCD patients.
Therefore, in addition to investigating the contribution of the
selected 31 SNPs to renal dysfunctions in SCD patients from
Cameroon, we also explored the contribution of clinical factors:
socio-demographic, anthropometric, clinical and haematological
variables, and employed multifactorial regression models for
associating the variable to kidney dysfunction parameters.
Finally, systems level bioinformatics analyses were performed,
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employing protein-protein interaction networks to further
interrogate the putative associations.

MATERIALS AND METHODS

Ethical Approval
The study was performed following the Declaration of Helsinki.
This study was approved by the Faculty of Health Sciences
Human Research Ethics Committee of the University of Cape
Town, South Africa (HREC REF: 661/2015), and the National
Ethics Committee of the Ministry of Public Health, Yaoundé,
Republic of Cameroon (No. 193/CNE/SG/10). Patients older than
18 years self-consented into the study and informed consent was
given by the parents or guardians for participants younger than
18 years old with a requirement for children older than 7 years to
also sign assent forms.

Study Participants
Cameroonians living with SCD were prospectively recruited
at the Yaoundé Central Hospital and Laquintinie Hospital in
Douala, between January 2010 and December 2012. Only patients
older than 2 years of age who had not received a blood transfusion
in the past 6 months were included. None of the patients
were receiving hydroxycarbamide treatment. Community-based
recruitments were also conducted through two SCD patients’
associations who were engaged for collaboration. Additional
patients were subsequently recruited during the SCD patient
associations’ monthly meetings. No incentive was provided
for participation in the study. Socio-demographic and clinical
events were collected by means of a structured questionnaire
administered to parents/guardians or adult patients. Body mass
index (BMI) and blood pressure (BP) were also measured.
Patients’ clinical records were extracted from their medical
records covering the past 3 years. These clinical records include
blood transfusion history, the occurrence of vaso-occlusive crisis
(VOC) and hospitalisation rates per year.

Hematological Phenotypes
Complete blood counts and foetal haemoglobin (HbF)
quantifications were conducted during hospital visits. Two
methods of HbF detection were employed in this study for
patients: initially using the alkali denaturation test in 55%
of the cohort and subsequently High-Performance Liquid
Chromatography when it became available at the haematological
laboratory of the Centre Pasteur of Cameroon (CPC).

Renal Function Measurements
Urinary albumin quantifications were performed using either
the Siemens Clinitek Status test or the Hemocue Albumin 20
system on the first morning urine samples during planned
hospital visits, when patients were not experiencing VOC,
as previously reported by Geard et al. (2017). The presence
of albumin in the urine is defined as normal when the
concentration is <30 mg/dl, micro-albuminuria (30–300 mg/dl)
or macro-albuminuria >300 mg/dl. The glomerular filtration rate

(GFR) is estimated (eGFR) using the Chronic Kidney Disease-
Epidemiology Collaboration (CKD-EPI-creatinine) formula.
Kidney failure is defined as an eGFR <90 ml/min/1.73 m2, renal
hyperfiltration as an eGFR > 130 ml/min/1.73 m2 for women
and >140 ml/min/1.73 m2 for men, and normal filtration as an
eGFR between 90 ml/min/1.73 m2 and 130/140 ml/min/1.73 m2

(Haymann et al., 2010).

Molecular Methods
DNA Extraction
DNA was extracted from peripheral blood in EDTA following the
manufacturer’s instructions (Puregene Blood Kit) at CPC, and
Genotype analyses were performed at the Division of Human
Genetics, University of Cape Town, South Africa.

Sickle Cell Mutation, Beta-Globin Gene (HBB) Cluster
Haplotypes and 3.7 kb Alpha-Globin Gene
(HBA1/HBA2) Deletion
Molecular analysis to confirm the presence of the sickle mutation
w carried out on 200 ng of DNA by polymerase chain reaction
(PCR) to amplify a 770 bp segment of HBB, followed by a
digestion with DdeI restriction enzyme on the PCR product
(Saiki et al., 1985).

Five restriction fragment length polymorphism (RFLP) sites
in the HBB cluster were amplified using published primers
and methods to analyse the HBB haplotype background
(Bitoungui et al., 2015).

The 3.7 kb HBA1/HBA2 deletion was successfully screened
using the expand-long template PCR as previously published
(Rumaney et al., 2014).

Kidney Dysfunction -Related Targeted Variants
Twenty-six African American specific kidney dysfunction-
related gene variants were genotyped in this SCD cohort
after being mapped to 53 single nucleotide polymorphisms
(SNPs) identified in a GWAS meta-analysis of kidney
diseases (Pattaro et al., 2016). Five additional gene variants
in APOL1 and HMOX1 from the literature were also
considered (Genovese et al., 2010; Tzur et al., 2010;
Wonkam et al., 2014; Geard et al., 2017; Saraf et al., 2017).
Thus, all targeted SNPs in A1CF-rs10994860, WNT7A-
rs6795744, PTPRO-rs7956634, UMOD-rs4293393, LRP2
-rs4667594 ANXA9-rs267734, GCKR-rs1260326, TFDP2-rs3476
85, DAB2-rs11959928, SLC22A2-rs2279463, TMEM60-rs64658
25, SLC6A13-rs10774021, BCAS1-rs17216707, SKIL-rs9682041,
UNCX-rs10277115, KBTBD2-rs3750082, CNQ1-rs163160, AP5B
1-rs4014195, NFKB1-rs228611, CACNA1S-rs3850625, SYPL2-rs1
2136063, ETV5-rs10513801, DPEP1-s164748, SIPA1L3-rs1166649
7, NFATC1-rs8091180 and IGFBP5-rs2712184, and in APOL1
(G1)-rs60910145, APOL1 (G1)-rs73885319, APOL1 (G2)-rs71
785313, HMOX1-rs3074372, HMOX1-rs743811, were genotyped
with the iPLEX Gold Sequenom Mass Genotyping Array.
Thereafter, the validation of the genotyping results was done by
Sanger sequencing using BigDye terminator mix in 10% subset
of sample (Supplementary Figure S1).
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Statistical and Bioinformatics Analysis
We performed association analyses between kidney dysfunction
outcomes (characterised by eGFR and crude-albuminuria
scores), socio-demographic and clinical variables, and 31
known kidney dysfunction-related variants among this group
of SCD patients. First, to ensure genotypic quality of the
data, we ran PLINK 1.9 (Purcell et al., 2007), performing a
Hardy-Weinberg Equilibrium (HWE) test with significant level,
minor allele frequency (MAF), and missing genotype data
thresholds of 0.001, 0.05, and 0.1, respectively. A total of 13
out of 31 SNPs in the dataset did not pass quality control (QC)
filters, of which 8 were removed due to missing genotype data
and 5 others do not meeting the set minor allele thresholds.
With R software, we first performed descriptive statistics to
provide a general summary of different parameters to be
considered in the analysis. Thereafter, two regression analyses
were performed: (1) multi-variable regressions for each kidney
dysfunction phenotype with different socio-demographic,
anthropometric, haematogical, clinical variables and each
genetic variant after adjusting or transforming phenotype
values to approximate a symmetric (normal) distribution
based on their Fisher-Pearson skewness coefficient scores; (2)
logistic regressions for each kidney dysfunction phenotype
and all variables and genetic variants under consideration
after mapping phenotypes to 0 (controls) or 1 (cases: micro-
and macro-albuminuria for crude-albuminuria, then renal
failure and hyperfiltration for eGFR). Finally, we performed
functional and protein–protein interaction network enrichment
analyses, using Gene Ontology (GO) process (The Gene
Ontology Consortium, 2019), the protein GO Annotation
(GOA) mapping (Mi et al., 2019) and the Kyoto Encyclopeadia
of Genes and Genomes (KEGG) pathway (Kanehisa et al., 2019)
datasets, to identify potential enriched biological processes and
pathways in which identified candidate genes are involved.
A significance level of 0.05 was considered after adjusting
p-values (P) for Bonferroni multiple corrections and gene
functional annotations were retrieved from the Ensembl
database (Yates et al., 2020).

RESULTS

Description of Study Participants
A total of 413 SCD steady state Cameroonian patients were
included in the study. The participants’ characteristics are
described in Table 1. There are roughly equal numbers
of males and females (M/F = 210/203), with a median
age of 15.5 years. The median number of VOC per year
was 2 (range: 0–80). 41% (n = 168) of patients had (3
VOC per year and 28.1% (n (=114) had 2 hospitalizations
hospitalisations per year. All participants were homozygous
HbSS, Benin being the most prevalent (-globin-like gene cluster
haplotype (55%; n = 195). It is worth noting that, in this
study, we used the modified annotation protocol suggested
by Crawford et al. (2002) and Hanchard et al. (2007) for
determining β-globin gene cluster haplotypes Benin, Cameroon,
Bantu, Senegal and Arab-Indian. Haplotypes that are not

conform to these are considered to be “Atypical.” We refer
to “Other haplotypes,” all underrepresented haplotypes in the
cohort, covering Bantu, Senegal, and Arab-Indian. 32 and
11% co-inherited a single or double 3.7 kb HBA1/HBA2
deletion, respectively.

Clinical and Socio-Demographic Factors
Associated With Renal Dysfunctions
For the genotype dataset and two renal phenotypes under
consideration, a prior QC and value adjustment processes were
performed, respectively. Only 18 out the 31 genetic variants
(highlighted in Table 2) were considered for further analyses:
eight variants were removed due to missing genotype data
(genotype call rate 0.9: for cut-off of 0.1) and 5 had minor
allele frequency of less than 5%. For each phenotype to
approximate a symmetric or normal distribution, we computed
the Fisher-Pearson skewness coefficients to select the type of
transformation required. For eGFR, no value adjustment was
required as its skewness coefficient was 0.27581, comprised in
the range of -0.5 and 0.5 fitting a symmetric distribution. For
crude-albuminuria, the skewness coefficient is 6.45456 ≥ 1,
in which case, the log10 transformation was applied to
ensure that crude-albuminuria dataset approximate a symmetric
distribution (Figure 1).

After the transformation, we performed linear regression
models and factors associated with crude albuminuria and eGFR
in Cameroonian SCD patients are presented in Table 3. Age
and gender as well as creatinine were not considered in the
eGFR-based regression models to prevent biases in outputs as
these two factors are confounders, mixing up with eGFR as an
outcome (because age, gender and creatinine contribute to the
eGFR calculation).

eGFR
the level of serum creatinine used to estimate GFR
had a median of 6.8 mg/l and the eGFR median was
155.4 ml/min/1.73 m2 (Table 1). Up to 71% of the patients
had glomerular hyperfiltration and 5.9% renal failure (see overall
age-based population distributions in Figure 2A). Figure 2A
suggests that the prevalence of glomerular hyperfiltration
is high amongst patients under 21 years old and kidney
failure is relatively high up to 30 years, decreasing after
30 years. This agrees with another Canadian study which
highlighted that children with SCD between 4 and 11 years
have a significantly higher mean eGFR (Mammen et al.,
2017). The eGFR was significantly increased in male patients
(P = 4.65297e–10). Isolated hyperfiltration was present in
25.8% (n = 105) of patients, while 41.5% (n = 169) and 2.2%
(n = 9) were experiencing glomerular hyperfiltration with
micro- and macro-albuminuria, respectively. Haemoglobin,
HbF, MCV, platelet, lymphocytes, and granulocytes presented
highly significant p-values and positive correlation with eGFR,
explaining some proportion of eGFR variations (Table 3).
This suggested that there was a reduced protection of kidney
from haemoglobin mediated toxicity. Though high HbF
level as well as lymphocytes and granulocytes have beneficial
clinical effect on SCD patients and results indicated that an
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TABLE 1 | Description of the Cameroonian SCD cohort.

Variables Median (95% CI) or frequency (%) Min–max P-value Observation (n)

Age (years) 15.5 (15–16.5) 2–58 0.1123 413

Gender M/F: 210/203 413

Clinical Events

VOC (n/year) 2 (2–3) 0–80 0.4949 412

Hospitalisation (n/year) 1 (1–1) 0–40 0.2676 405

Transfusion Y/N: 76.8/23.2 410

Anthropometric

Body mass index (kg/m2) 17.6 (17.2–17.9) 10.6–32 0.1155 413

Systolic blood pressure (mmHg) 103 (101.5–104) 72–156 0.8637 409

Diastolic blood pressure (mmHg) 58 (57–59) 37–93 0.0162 409

Haematological

Hb (g/dl) 7.55 (7.4–7.7) 3.5–13.1 0.4905 406

MCV (fl) 91 (90–92) 61–125 0.9905 406

Platelets (109/l) 368.5 (355–382) 29–1,078 0.8483 406

Leucocytes (109/l) 12.65 (12.2–13.2) 4–49.8 0.0471 406

Lymphocytes (109/l) 5.2 (4.95–5.4) 1.4–22.1 0.0219 406

Monocytes (109/l) 1.5 (1.45—-1.6) 0.1–8.1 0.0009 406

Granulocytes (109/l) 4.5 (4.25–4.75) 0.2–24.3 0.0976 406

HbA2 (%) 3.15 (2.9–3.3) 0–18.2 0.0008 412

HbF (%) 9.95 (9.3–10.65) 0–37.2 0.2026 412

Alpha-thalassemia Genotypes (%) <0.0001 339

αα/αα 57 194/339*

αα/α3.7 32 109/339*

α3.7/α3.7 11 36/339*

HBB Haplotype (%) <0.0001 352

Ben/Ben 55 195/352*

Ben/Cam 26 92/352*

Ben/Atypical 7 25/352*

Cam/Cam 7 23/352*

Cam/Atypical 2 7/352*

Atypical 1 3/352*

Other haplotypes 2 7/352*

Renal functions

Serum creatinine (mg/l) 6.8 (6.5–7) 2–13.8 0.3958 404

Crude-albuminuria (mg/dl) 51.5 (47–55.5) 3–1,180 <0.0001 407

Normal (%) 37 149/407

Micro-albuminuria (mg/dl) (%) 61 248/407

Proteinuria (mg/dl) (%) 2 10/407

eGFR (ml/min/1.73 m2) 155.4 (151.6–159.2) 58.9–290.7 0.5715 404

Normal (%) 23 93/404

Glomerular hyperfiltration (%) 71 287/404

Kidney failure (%) 6 24/404

*Number of individuals, not alleles. VOC, vaso-occlusive crises; Hb, haemoglobin; MCV, mean corpuscular volume; HbA2, Haemoglobin A2; eGFR, estimated glomerular
filtration rate. In all cases, Wilcoxon tests were performed to check whether the parameter falls within the confidence interval (CI) for p-value greater than 0.05, except for
alpha-thalassemia genotypes and the HBB Haplotype, for which adjusted (χ2 p-values were computed to check whether these proportions follow a uniform distribution
for p-value greater than 0.05. In the second column, median values are followed by CI, whereas proportions are not.

increased level of these variables beyond the steady state
likely increase the risk of clinical complications. Finally,
eGFR is also correlated to systolic BP (P = 0.04674) and
VOC frequencies (P = 0.02802), explaining 40.55 and
21.73% of the eGFR variation, respectively (Table 3), with
stable systolic BP being highly protective against glomerular
hyperfiltration.

Crude-Albuminuria
The median of crude-albuminuria was 51.5 mg/dl ranging from 3
to 1,180 mg/dl. The prevalence of micro and macro-albuminuria
was 61 and 2%, respectively. All age ranges have nearly
equal proportions of micro-albuminuria, while proteinuria is
shown to increase with age (Figure 2B). Figure 2B shows
similar profile as for eGFR in Figure 2A and indicates that

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 595702

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-595702 March 9, 2021 Time: 15:40 # 6

Ngo-Bitoungui et al. Kidney Dysfunction-Related Gene Variants in Sickle Cell Disease

TABLE 2 | Allele frequencies of kidney dysfunction-related gene variants.

Gene dbSNP ID SNP position Allele change MAF Proven disease associations (Ensembl)

UNCX rs10277115 7:1245559 A > T 0.16 Renal function related trait

APOL1 (G1) rs73885319 22:36265860 T > G 0.13 Renal function related trait

APOL1 (G2) rs71785313 22:36266000 TTATAA > Deletion 0.082 Renal function related trait

A1CF rs10994860 10:50885664 C > T 0.24 Glomerular filtration rate

DAB2 rs11959928 5:39397030 T > A 0.32 Chronic kidney disease

SYPL2 rs12136063 1:109471548 G > A 0.29 Glomerular filtration rate

GCKR rs1260326 2:27508073 C > T 0.057 -

KCNQ1 rs163160 11:2768725 A > G 0.057 Glomerular filtration rate

SLC22A2 rs2279463 6:160247357 A > G 0.23 Chronic kidney disease

NFKB1 rs228611 4:102640552 G > A 0.228 Glomerular filtration rate

IGFBP5 rs2712184 – C > A 0.46 –

TFDP2 rs347685 3:142088295 A > C 0.248 Chronic kidney disease

UMOD rs4293393 16:20353266 A > G 0.227 Chronic kidney disease

TMEM60 rs6465825 7:77787122 C > T 0.45 Chronic kidney disease

WNT7A rs6795744 3:13865353 G > A 0.191 Glomerular filtration rate

PTPRO rs7956634 12:15168260 C > T 0.45 Glomerular filtration rate

NFATC1 rs8091180 18:79404243 G > A 0.068 Glomerular filtration rate

SKIL rs9682041 3:170374114 T > C 0.274 Glomerular filtration rate

FIGURE 1 | Distribution of different phenotype values. For eGFR, no transformation was required, however, for crude-albuminuria, the initial distribution is highly
skewed and log10 transformation was applied to approximate a normal distribution.

the prevalence of microalbuminurea is high amongst patients
under 21 years old, with some proteinurea cases that vanish
after 30 years of ages. This also agrees with another cohort
study in Ghana (Anto et al., 2019), which indicated that
the prevalence of renal complications, such as proteinuria,
is high in young patients aged between 5 and 12 years.
BMI, MCV, haemoglobin and transfusion are significantly
associated with crude albuminuria with the highest phenotypic
variation explained by BMI (45.34%) and Haemoglobin with
reduced risk of micro-albuminuria, though with small effect
size (Table 3).

Associations of eGFR and
Crude-Albuminuria With Kidney
Disfunction-Related Gene Variants
Three genetic variants: Synaptophysin-like protein 2
(SYPL2-rs12136063), APOBEC1 complementation factor (A1CF-
rs10994860) and Apolipoprotein L1 (APOL1 (G1)-rs73885319)
are significantly associated with eGFR with respective P-values of
0.04208, 0.02020, and 0.04610. Figure 3 shows the eGFR values
for three gene variants distributed in homozygous dominant,
recessive, and heterozygous genotypes. These distribution
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TABLE 3 | Blood pressure, clinical, and haematological variables, and genetic
variants associated eGFR and Crude albuminuria.

eGFR
(ml/min/1.73 m2)

Effect size (SE) Mean variation
explained (%)

P-values

SBP −15.01547
(7.51850)

40.55 0.04674

VOC 0.79123 (0.35834) 21.73 0.02802

Hb 3.11861 (1.40541) 16.44 0.02725

MCV (fl) 0.68573 (0.15854) 1.90 2.09130e–05

HbF 1.62340 (0.32960) 1.13 1.40989e–06

Platelet 0.05052 (0.01497) 0.28 8.35290e–04

Granulocytes 2.06830 (0.76779) 0.12 7.47090e–03

Lymphocytes 2.12071 (0.97584) 0.08 0.03057

rs12136063* 0.57907 (0.28487) 11.04 0.04208

rs10994860* −0.69852
(0.30075)

0.18 0.02020

rs73885319* 0.890305 (0.44638) 0.97 0.04610

Crude albuminuria (mg/dl)

BMI 0.01872 (0.00596) 45.34 1.87777e–03

MCV (fl) 0.01273 (0.00121) 1.22 1.17630e–07

Transfusion 0.12406 (0.05602) 0.23 0.02759

Hb* −0.28340
(0.11040)

0.19 0.0103

rs6795744* −0.59520
(0.28580)

3.70 0.03730

rs6465825* −0.46910
(0.20690)

0.65 0.02340

rs71785313 −0.12686
(0.06086)

0.10 0.03803

Effect provides an indication on the influence of a given factor on the phenotype
under consideration and mean variation explained the average contribution of a
specific factor to the phenotype. SE stands for standard error and * indicates that
the association was inferred from logistic model.

values suggested that the two allele changes (homozygous
recessive) of A1CF-rs10994860 is protective against renal
dysfunction (Table 3). On the other hand, one allele change
or heterozygous genotype showed a protective effect against

prevalent hyperfiltration considering the negative correlation
with eGFR (conferring about 2 times more protection as
compared to a patient with no copy). SYPL2-rs12136063 confers
increased risk of progressing to the renal dysfunction and APOL1
(G1)-rs73885319 to prevalent hyperfiltration and ultimately to
the renal dysfunction (approximately 2 times more likely to
progress to renal dysfunction).

Three genetic variants were also identified to be significantly
associated with crude-albuminuria: Protein Wnt-7a (WNT7A-
rs6795744), Transmembrane protein 60 (TMEM60-rs6465825),
APOL1 (G2)-rs71785313 with P-values of 0.03730, 0.02340, and
0.03803, respectively. With knowledge of the crude-albuminuria
distribution as shown in Figure 3, a change in allele or WT
deletion in the case of APOL1 provides a protective effect against
prevalent micro-albuminuria (Table 3). These results indicate
that patients with WNT7A-rs6795744 and TMEM60-rs6465825
changes are approximately 2 times less likely to progress to
micro-albuminuria state, and a single and double WT APOL1
(G2) deletions decrease crude-albuminuria value by 0.12686 and
0.24732 ml/min/1.73/m2, respectively. Though this phenotype
level change is negligible due to the effect size, it can be essential
for crude-albuminuria extreme values (e.g., values on the border
line of state changes).

Distribution of HbF Levels vs. β-Globin
Gene Cluster Haplotypes and α-Globin
Gene Deletions
HbF is a major SCD modifier, which is known to modulate
the SCD phenotype (Coleman and Inusa, 2007), to ameliorates
pathophysiological and clinical manifestations of the sickling
process (Adekile, 2020). There is accumulating evidence
indicating that this major disease modifier is influenced by
β-globin gene cluster haplotypes (Lakkakula et al., 2017; Piel et al.,
2017; Adekile, 2020) and (α-globin gene deletions (Piel et al.,
2017). Thus, we have looked at distribution of fetal haemoglobin
levels vs. representative β-globin gene cluster haplotypes and
α-globin gene deletions and results are shown in Figure 4.

FIGURE 2 | Age-based population distributions for the two kidney dysfunction indicators, i.e., crude-albuminuria and eGFR scores. (A) Age-based population
distribution using eGFR scores. (B) Age-based population distribution using microalbuminuria scores.
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FIGURE 3 | Phenotype values, eGFR and crude-albuminuria values based on the significant gene variants distributed over homozygous dominant, recessive, and
heterozygous genotypes.

These results indicate that HbF levels vary in the population
based on β-globin gene cluster haplotypes and α-globin gene
deletions. Individuals with Benin haplotyte and double 3.7 kb
α-globin gene deletions having significantly higher HbF levels
with P = 0.0813e–2 and 0.0203, respectively, accepting the
alternative hypothesis that the HbF level median is greater than
9.3%, the lower bound of the HbF level confidence interval
(Table 1), which is slightly higher than the minimal level
(8.6%) indicated to improve SCD patient survival (Coleman and
Inusa, 2007). Furthermore, we checked whether there is any
association between exposure to Benin haplotype or double 3.7 kb
α-globin gene deletions and outcomes, namely renal dysfunction
phenotypes: eGFR and albuminurea. Results obtained have
revealed an association between double 3.7 kb α-globin gene

deletions and eGRF showing a protective effect against prevalent
hyperfiltration/kidney failure with odds ratio = 0.36320 (95%CI:
0.16695–0.80532, P = 0.01007) under the null hypothesis that
odds ratio is equal to 1.

Selecting Optimal Phenotype Proxy for
Kidney Dysfunction Prediction
Using the eGFR- and crude-albuminuria-based logistic
regression model, we compute areas under the receiver
operating characteristic (ROC) and Precision-Recall (PR) curves,
as well as accuracy to identify the best phenotype proxy for
predicting kidney dysfunction in Cameroonian SCD patients.
Different areas are shown in Figure 5, with eGFR-based model
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FIGURE 4 | Distribution of HbF levels vs. β-globin gene cluster haplotypes and α-globin gene deletions.

achieving the area under ROC of 0.76 and an accuracy score of
0.78 vs. the area under ROC of 0.73 with an accuracy score of
0.70 for crude-albuminuria-based model. This suggests that it is
more effective to use eGFR phenotype as a proxy for predicting
kidney dysfunction in Cameroonian SCD population. This is
also in agreement with the Akaike’s Information Criterion (AIC)
scores produced by the two models, 284.33 for eGFR-based
model vs. 361.32 for crude-albuminuria-based model, indicating
that eGFR-based model fits data better than crude-albuminuria
phenotype proxy. This suggests that a simple classification
learning algorithm can be designed, taking as inputs, patient
age, gender, and level of serum creatinine and predicting kidney
dysfunction in patients.

Identifying Essential Genes and
Functional Enrichment Analyses
We analysed how interactive genes from knowledge-based
Protein-Protein Interaction (PPI) interacted with the 18 genes
used in different analyses, focusing specifically on six genes
identified to be associated with kidney dysfunction phenotypes.
Mapping these 18 genes to a comprehensive human Protein-
Protein Interaction (PPI) network (Wu et al., 2009; Mazandu
et al., 2018), we identify sub-networks containing these gene
variants: APOL1, SYPL2, WNT7A, IGFBP5, UNCX, NFKB1,
UMOD, and SKIL. Three gene variants within this sub-network,
namely APOL1 (G1)-rs73885319, as well as APOL1 (G2)-
rs71785313, WNT7A-rs6795744, and SYPL2-rs12136063, have
been identified to influence variation in renal dysfunction
phenotypes in SCD patients. These variant genes are connected to
NFKB1, identified to be essential or a hub based on the network
centrality measures within the sub-network via some specific
intermediate genes (Figure 6 and Table 4), following a small
world property of human PPI network (Mazandu et al., 2020).

This NFKB1 gene might indirectly influence extreme phenotype
levels. Moreover, these gene variants are enriched with the
cartilage condensation process (P = 0.02976) in which WNT7A,
revealed to be likely implicated in SCD patient renal dysfunction,
is involved. This process is possibly involved in the development
of VOC complications, resulting in proteinuria and glomerular
hyperfiltration, and ultimately in kidney damage.

DISCUSSION

This is the first study to investigate the relevance of kidney
dysfunction-related variants identified through a GWAS meta-
analysis as well as functional enrichment and protein-protein
interaction network analyses in SCD patients. The results
highlighted the high prevalence of micro-albuminuria as
presented in a previous study in Cameroon by Geard in 2017
(Geard et al., 2017). This prevalence is much higher than the
values of 18.5 and 27% observed in paediatric cohorts from
several sub-Saharan African countries (Ranque et al., 2014; Aloni
et al., 2017), the 13.2% in the multicentric study of children
with SCD in the United States (Schaefer et al., 2016) and the
44% in adults from Nigerian and the United States (Bolarinwa
et al., 2012; Drawz et al., 2016). These differences likely reflect
the lack of appropriate care of SCD or the manifestation of the
most severe SCD phenotype in Cameroon. The low proportion
of macro-albuminuria found in this study is distinct from 15.1%
reported in a cohort of SCD patients in the United Kingdom
(UK) (Brewin et al., 2017). This could be due to the difference
in age structure between the two cohorts. This study replicated
a positive association of crude-albuminuria with increasing
age as presented by a multi-center African study (Ranque
et al., 2014) and a Nigeria-based study (Brewin et al., 2017).
Some haematological variables, such as MCV and Hb level
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FIGURE 5 | Receiver operating characteristic (ROC) and Precision-Recall curves for eGFR- and crude-albuminuria-based logistic models.

(Table 3), influence crude albuminuria among SCD patients
from Cameroon, Hb level observed to be protective against
micro- albuminuria. This is in accordance with studies in Jamaica
and the United States (Aban et al., 2017; Niss et al., 2020)
which revealed that lower concentration of Hb is associated
with development of micro-albuminuria, leading to relative renal
ischemia, ischemia-reperfusion injury, and increased medullary
sickling (Aban et al., 2017). BMI provides the highest mean
variation explained for crude-albuminuria and may be a major
anthropometric factor leading to renal dysfunction. This is likely
related to the nutrition of SCD patients who struggle to maintain
an adequate quality of life. We have not observed any significant
association of crude-albuminuria with WBC counts or BP as
previously observed in a Jamaican cohort (Asnani et al., 2016).

The prevalence of glomerular hyperfiltration was similar to
the 76% found among SCD children in the United States (Aygun
et al., 2011), but higher than that previously reported in France
(51%) (2010) (Haymann et al., 2010) and DRC (2017) (Aloni
et al., 2017). It was lower than the 98% presented in the
United Kingdom (Drawz et al., 2016). These differences may be
explained by the variability in the median ages of participants in
the other studies; they may also be due to the method used to
calculate eGFR, as the Schwartz formula tends to underestimate
GFR in children compared to the CKD-EPI used in the present
study. Unlike the studies of Asnani in Jamaica (Aban et al.,
2017) and Vazquez in the United States (Aygun et al., 2011),
no significant associations between eGFR and crude albuminuria
were identified in this study. However, 41 and 2% of patients had
glomerular hyperfiltration associated with micro-albuminuria
and proteinuria, respectively. These results are different from

the values highlighted by Haymann et al. (2010) and from
the 22% of patients who had both glomerular hyperfiltration
and micro-albuminuria in DRC (Aloni et al., 2017). The eGFR
was highly associated with haemoglobin, HbF and SBP, as
previously observed in patients from the United Kingdom (Wu
et al., 2009). The strong association between SBP and eGFR
is also consistent with data reported in the study by Niss
et al. (2020) in Jamaica confirming the highly protective role
of stable SBP against glomerular hyperfiltration (Table 3). VOC
frequencies are also highly correlated to eGFR, explaining the
morbidity due to renal dysfunction among SCD patients in
Cameroon. Associations between eGFR with Hb level and WBC
(granulocytes and lymphocytes) were previously highlighted by
Aban et al. (2017), revealing that a low Hb level and increased
WBC are associated with renal failure. The correlations between
eGFR with age, BMI and creatinine were observed in patients
from the United Kingdom (Drawz et al., 2016), Jamaica (Eke
et al., 2012), Nigeria (Ajite et al., 2019), and the United States
(Becker et al., 2014). However, age and creatinine were not
confirmed by this study as they were confounding factors, mixing
up with eGFR. This suggests that previous observations were
biased, and results obtained by these studies may be flawed. Our
analysis agreed with publications within the Taiwanese (Chang
et al., 2018) and Caucasian (Brown et al., 2012) which found no
association between BMI and renal dysfunctions.

Results highlighted that only three replicated genetic variants
are associated to renal dysfunction: A1CF-rs10994860 with
reduced risk of renal dysfunction for two allele changes and
a protective effect against prevalent glomerular hyperfiltration;
It confers about 2 times more protection to SCD individuals
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FIGURE 6 | The subnetwork extracted from the human PPI network revealing how predicted gene variants interact together to influence the kidney dysfunction (refer
to Table 4 for gene descriptions). In yellow and magenda are gene variants previously shown to be associated with kidney-dysfunction, three in magenda color have
been confirmed. In green color, are intermediate nodes used by kidney-dysfunction gene variants to reach the one in red color (NFKB1) indicated to be essential in
the PPI network.

with one allele change or heterozygous genotype as compared
to a patient with no copy, and explaining only 0.18% of status
change to the glomerular hyperfiltration or renal dysfunction.
However, SYPL2-rs12136063 as well as APOL1 (G1)-rs73885319
conferred increased risk of progressing to the renal dysfunction
or to prevalent glomerular hyperfiltration, explaining 11.04 and
0.97% of status changes, respectively. Like eGFR, three gene
variants are also identified for crude-albuminuria: WNT7A-
rs6795744, TMEM60-rs6465825, and APOL1 (G2)-rs71785313
providing a protective effect against prevalent micro-albuminuria
(Table 3), explaining less than 4% of status changes. These
relative low contributions to status changes suggests that the
targeted SNPs may not be relevant to the ancestral African
populations, or it is possible SCD specific kidney dysfunctions
associated variants are still to be found. Indeed, there is
bias in polygenic risk scores (PRSs) regarding usability, and
transferability for complex trait, as most PRSs do not account
for multiple alleles that are either limited or of high frequency
among Africans, due highest genomic variations (Gurdasani
et al., 2019). A genome-wide association study (GWAS) on

genetic susceptibility to type 2 diabetes (T2D) identified a
previously unreported African-specific significant locus, while
showing transferability of 32 established T2D loci (Adeyemo
et al., 2019). Alternatively, kidney dysfunction in SCD may
be mostly driven by the pathophysiology of the disease itself
rather than genetic factors. For eGFR, SBP explained this status
changes by nearly 40.55%, followed by the number of VOC
(21.73%), Hb (16.55%), and the upper out range level of HbF
would explain the status changes for nearly 1.13%. The HbF level
distribution results indicate that HbF levels vary with β-globin
gene cluster haplotypes, as well as with α-globin gene deletions
in agreement with the current knowledge. The HbF level in
patients with Benin haplotyte and double 3.7 kb α-globin gene
deletions is significantly higher as compared to the HbF level
cutoff observed to improve the patient survival. Thus, these
two genetic events may confer a relatively favorable clinical
manifestation (Steinberg, 2009; Bitoungui et al., 2015) and
patients with double 3.7 kb α-globin gene deletions are about
3 times less likely to progress to the glomerular hyperfiltration
or kidney failure state as compared to a patient with no or one
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TABLE 4 | The description of the different genes displayed in Figure 6 extracted from the UniProt database (https://www.uniprot.org/).

Gene UniProt description

COL4A1 Collagen alpha-1 (IV) chain (Cleaved into: Arresten)

ISL1 Insulin gene enhancer protein ISL-1 (Islet-1)

CD93 Complement component C1q receptor (C1q/MBL/SPA receptor) (C1qR) (C1qR(p)) (C1qRp) (CDw93) (Complement component 1 q
subcomponent receptor 1) (Matrix-remodeling-associated protein 4) (CD antigen CD93)

SMAD3 Mothers against decapentaplegic homolog 3 (MAD homolog 3) (Mad3) (Mothers against DPP homolog 3) (hMAD-3) (JV15-2) (SMAD family
member 3) (SMAD 3) (Smad3) (hSMAD3)

AKT1 RAC-alpha serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase B) (PKB) (Protein kinase B alpha) (PKB alpha) (Proto-oncogene
c-Akt) (RAC-PK-alpha)

JP1 Junctophilin-1 (JP-1) (Junctophilin type 1)

FBLN1 Fibulin-1 (FIBL-1)

COL14A1 Collagen alpha-1 (XIV) chain (Undulin)

COX2 Prostaglandin G/H synthase 2 (EC 1.14.99.1) (Cyclooxygenase-2) (COX-2) (PHS II) (Prostaglandin H2 synthase 2) (PGH synthase 2)
(PGHS-2) (Prostaglandin-endoperoxide synthase 2)

RBPJ Recombining binding protein suppressor of hairless (CBF-1) (J kappa-recombination signal-binding protein) (RBP-J kappa) (RBP-J)
(RBP-JK) (Renal carcinoma antigen NY-REN-30)

RYR2 Ryanodine receptor 2 (RYR-2) (RyR2) (hRYR-2) (Cardiac muscle ryanodine receptor) (Cardiac muscle ryanodine receptor-calcium release
channel) (Type 2 ryanodine receptor)

UNCX Homeobox protein unc-4 homolog (Homeobox protein Uncx4.1)

C14orf60 Neurexin-3 (Neurexin III-alpha) (Neurexin-3-alpha)

NFKB1 Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in
B-cells 1) (Cleaved into: Nuclear factor NF-kappa-B p50 subunit)

HNF6 Hepatocyte nuclear factor 6 (HNF-6) (One cut domain family member 1) (One cut homeobox 1)

ESR Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1)

UMOD Uromodulin (Tamm-Horsfall urinary glycoprotein) (THP) (Cleaved into: Uromodulin, secreted form)

CREB1 Cyclic AMP-responsive element-binding protein 1 (CREB-1) (cAMP-responsive element-binding protein 1)

DLL1 Delta-like protein 1 (Drosophila Delta homolog 1) (Delta1) (H-Delta-1)

SKIL Ski-like protein (Ski-related oncogene) (Ski-related protein)

PAX3 Paired box protein Pax-3 (HuP2)

IGFBP5 Insulin-like growth factor-binding protein 5 (IBP-5) (IGF-binding protein 5) (IGFBP-5)

BMP7 Bone morphogenetic protein 7 (BMP-7) (Osteogenic protein 1) (OP-1) (Eptotermin alfa)

SYPL2 Synaptophysin-like protein 2

ALB Fas-binding factor 1 (FBF-1) (Protein albatross)

TRP3 Short transient receptor potential channel 3 (TrpC3) (Transient receptor protein 3) (TRP-3) (hTrp-3) (hTrp3)

APOL1 Apolipoprotein L1 (Apolipoprotein L) (Apo-L) (ApoL) (Apolipoprotein L-I) (ApoL-I)

WNT7A Protein Wnt-7a

GOAT Ghrelin O-acyltransferase (EC 2.3.1.-) (Membrane-bound O-acyltransferase domain-containing protein 4) (O-acyltransferase
domain-containing protein 4)

CSX Homeobox protein Nkx-2.5 (Cardiac-specific homeobox) (Homeobox protein CSX) (Homeobox protein NK-2 homolog E)

deletion (odds ratio = 0.36320). For crude-albuminuria, the status
change is mainly explained by BMI with approximately 45.34%
of variations, followed by MCV with 1.22%, transfusion (0.23%),
and Hb (0.19%).

LIMITATIONS

The first limitation of the present study is the cross-sectional
design. A longitudinal study would give more precise data on
kidney dysfunction in SCD in Cameroon. Another limitation is
the use of the CKD-EPI-creatinine equation to estimate GFR.
Recent reports indicate that the CKD-EPI original formula
overestimates GFR values. The reliability of the CKD-EPI
equation was recently adjusted by inclusion of a molecular weight
protein, Cystatin C (CysC), which is eliminated exclusively by

glomerular filtration (Yee et al., 2017). However, the protein was
not quantified for this cohort. The imbalanced distribution of
individuals without kidney dysfunction in this group of SCD
patients likely affects the performance of the different regression
models (Jedrzejowicz et al., 2018), tending to be biased toward
the normal ranges (KrishnaVeni and Sobha, 2011) and potentially
failing to identify possible signals.

CONCLUSION

This study has replicated APOL1 gene variants: (G1)-rs73885319
and (G2)-rs71785313, shown to be strongly associated with
renal dysfunction in SCD patients, as well as A1CF-rs10994860,
SYPL2-rs12136063, WNT7A-rs6795744, and TMEM60-rs6465825
in Cameroonian SCD patients. Though the protein-protein
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interaction network and enrichment analyses have revealed the
sub-network, which may influence extreme phenotype levels,
enriched with the cartilage condensation process, which likely
contributes to the development of VOC complications and
possibly to the renal dysfunction, these gene variants only explain
a small proportion of status changes. The results also suggest
that haematological indices, clinical events, anthropometric and
socio-demographic variables, are major contributors to the
pathophysiology of kidney dysfunction in SCD. This elicits the
need for further research to investigate new genetic biomarkers
which account for kidney dysfunction risk factors in SCD patients
in the African setting.
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