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ABSTRACT We isolated halophilic and thermophilic Thermus thermophilus strains
AA2-20 and AA2-29 from nonvolcanic, oceanic Arima Onsen (hot spring) in Japan.
Here, we report the complete genome sequences of these organisms to gain in-
sights into halophilicity.

Thermus thermophilus was first isolated by Oshima and Imahori from Mine Onsen
(hot spring) in Japan (1). The bacterium grows optimally at 70 to 75°C, and its

thermophilic nature aids the study of biomacromolecules, such as enzymes (2–7) and
ribosomes (8, 9), whose functional investigations are often limited due to the lack of
stability. We isolated T. thermophilus strains AA2-20 and AA2-29 from nonvolcanic,
oceanic Arima Onsen in Kobe, Japan (10). The environmental sample was spread over
TYSS (1% [wt/vol] tryptone, 0.5% [wt/vol] yeast extract, and 4% [wt/vol] sea salts
[Sigma]) agar plates. After overnight incubation at 65°C, two colonies with red or yellow
pigmentation (named AA2-20 and AA2-29, respectively) were isolated. DNA se-
quencing analysis of the rRNA gene suggested that the two strains belong to T.
thermophilus (99% identity to the T. thermophilus HB8 gene). Both the strains
displayed limited growth in low-salt media, such as Lennox LB (1% [wt/vol] tryp-
tone, 0.5% [wt/vol] yeast extract, and 0.5% [wt/vol] NaCl) broth, thereby suggesting
their halophilic nature.

To prepare genomic DNA, the two strains were grown in TYSS broth at 65°C until
saturation. Genomic DNA was extracted using the Nexttec 1-step DNA isolation kit
for bacteria (Nexttec Biotechnologie) according to the manufacturer’s instructions.

For long-read sequencing, the extracted genomic DNA was passed through a
Circulomics short-read eliminator kit to remove short fragments. Sequencing was
performed using a GridION X5 system (Oxford Nanopore Technologies [ONT]); the
library was constructed from unfragmented genomic DNA (1.0 �g) using a ligation
sequencing kit (ONT) and applied to a FLO-MIN106 R9.41 flow cell (ONT). The
long-read sequences, which were base called using Guppy v.3.0.3, further gener-
ated 278,671 reads (1,550 Mb) with an average length of 5,563 bases during a 24-h
run time (the data are associated with quality-filtered reads with average phred
quality values of �8.0, obtained using NanoFilt v.2.3.0 [11]). The longest read had
91,228 bases.

For short-read sequencing, the extracted genomic DNA was used for library prep-
aration with the Nextera DNA library preparation kit (Illumina). Prepared libraries were
subjected to 100-bp paired-end sequencing on the Illumina HiSeq 2500 platform.
Adapters and low-quality sequencing data were trimmed using fastp v.0.14.1 (12), and
6.9 million paired-end reads (660 Mb) with an average length of 96 bases were
obtained.
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Hybrid assembly of long-read and short-read data was conducted using Unicycler
v.0.4.7 (13), followed by a final polishing with Pilon v.1.23 (14), which resulted in the
production of a single circular chromosome and a single circular plasmid. Automated
annotation was performed using DFAST v.1.1.0 (15). Default parameters were used for
all software unless otherwise noted.

The genome statistics and genomic features are listed in Table 1. A JSpecies analysis
(16) revealed that the genomic sequences of AA2-20 and AA2-29 were nearly identical
(97.2% average nucleotide identity) with no large gaps or rearrangement. Additionally,
these sequences showed high average nucleotide identity (89.6%) with the genomic
sequence of T. thermophilus JL-18 (GenBank accession number NC_017587), which was
isolated from freshwater hot springs in Great Basin National Park, USA. The strains
AA2-20 and AA2-29 differed from JL-18 with respect to large rearrangements in their
sequences, including inversions and indels.

Data availability. The accession numbers for the complete genome sequences of
T. thermophilus strains AA2-20 and AA2-29 are listed in Table 1. Raw sequencing data
have been deposited in the DDBJ SRA database under the accession number
DRA008626 (BioProject number PRJDB7414, BioSample numbers SAMD00177813 [AA2-
20] and SAMD00177814 [AA2-29]). The T. thermophilus strains AA2-20 and AA2-29 have
been deposited in the RIKEN Bioresource Center, JCM, under the accession numbers
JCM 33047 and JCM 33048, respectively.
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