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Abstract

Understanding the genomic basis of local adaptation is crucial to determine the potential of long-lived woody species to withstand

changes in their natural environment. In the past, efforts to dissect the genomic architecture in gymnosperms species have been

limited due to the absence of reference genomes. Recently, the genomes of some commercially important conifers, such as loblolly

pine, have become available, allowing whole-genome studies of these species. In this study, we test for associations between 87k

SNPs, obtained from whole-genome resequencingof loblolly pine individuals, and270environmental variables andcombinations of

them. We determine the geographic location of significant loci and identify their genomic location using our newly constructed

ultradense26kSNP linkagemap.Wefoundthatwateravailability is themainclimatic variable shaping local adaptationof thespecies,

and found 821 SNPs showing significant associations with climatic variables or combinations of them based on the consistent results

of three different genotype–environment association methods. Our results suggest that adaptation to climate in the species might

haveoccurredbymanychanges in thefrequencyofalleleswithmoderate tosmall effect sizes,andby thesmallercontributionof large

effect alleles in genes related to moisture deficit, temperature and precipitation. Genomic regions of low recombination and high

population differentiation harbored SNPs associated with groups of environmental variables, suggesting climate adaptation might

have evolved as a result of different selection pressures actingon groups of genes associated with an aspect of climate rather thanon

individual environmental variables.
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Introduction

Local adaptation may arise by differential selection pressures

across heterogeneous environments leading to increased fit-

ness in the local environment compared to the nonlocal en-

vironment. Although of great interest by population

geneticists, the genomic architecture of local adaptation

remains largely unsolved in natural populations of nonmodel

species (Anderson et al. 2013). A majority of studies aiming to

dissect the genetic architecture of local adaptation have fo-

cused at detecting signals of selection in which a new advan-

tageous mutation in a single gene is rapidly driven to fixation,

also known as the “hard sweep” model (Smith and Haigh

1974). In contrast, recent genome-wide association studies in

humans and forest trees species have suggested a largely

polygenic basis of local adaptation (Hancock et al. 2010;

Pritchard et al. 2010; Neale and Kremer 2011; Le Corre and

Kremer 2012). If a population that is well adapted to a geo-

graphic location moves to a new environment, natural selec-

tion will increase the frequency of certain alleles until the

typical phenotype in the population matches the phenotype

optimum in the new environment (Pritchard et al. 2010). This

type of adaptation also called “polygenic adaptation” is char-

acterized by subtle to moderate shifts in allele frequencies and

may be frequent in traits that have standing genetic variation

for selection to act on, are highly heritable and controlled by

many loci of small effect (Pritchard et al. 2010; Pritchard and

Di Rienzo 2010; Berg and Coop 2014).

A common approach to find genes contributing to local

adaptation has been based on the idea that genes under se-

lection should be more genetically differentiated among pop-

ulations than a neutral locus, and will therefore have high Fst

values (Cavalli-Sforza 1966; Whitlock and Lotterhos 2015).
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Loci mostly affected by spatially heterogeneous selection will

have high Fst values, whereas the ones under spatially uni-

form balancing selection will show lower than neutral Fst

values (Whitlock and Lotterhos 2015). Due to a wide distribu-

tion of Fst values in neutral markers, only advantageous alleles

with high frequencies can be detected under the Fst outlier

approach (Pritchard et al. 2010). This problem is exacerbated

by the lack of power of individual tests when correcting for

multiple comparisons over thousands of loci. As a result,

weakly selected loci, characteristic of polygenic adaptation,

will unlikely to be detected (Le Corre and Kremer 2012;

Whitlock and Lotterhos 2015; Yeaman 2015). In contrast,

genotype–environment association (GEA) studies are more

likely to detect signals associated with smaller allele frequency

shifts (Hancock et al. 2010; Forester et al. 2018).

Lately, increasing numbers of genome-wide markers have

enabled the study of the genomic architecture of local adap-

tation in natural populations. The geographic and genomic

distribution of adaptive alleles can give us insights into the

evolutionary forces that had shaped adaptation in a species.

For example, alleles associated with day length in natural pop-

ulations of Arabidopsis thaliana showed narrow geographic

distribution in which one allele had rapidly driven to high fre-

quency in the population as a result of a hard-selective sweep,

whereas SNPs associated with relative humidity had wide-

spread distributions (Hancock et al. 2011). Also, the clustering

of adaptive alleles in genomic regions of low recombination

due to linkage or divergence hitchhiking can give us insights

into the maintenance of population differentiation and local

adaptation in the face of gene flow (Via 2012; Yeaman 2013).

In the past, efforts to dissect the genomic architecture of

local adaptation in gymnosperms species have been limited

due to the absence of reference genomes. Recently, the

genomes of some commercially important conifers have be-

come available, allowing whole-genome studies of these spe-

cies (De La Torre, Birol, et al. 2014; Neale et al. 2017). Current

assemblies of reference genomes are still quite fragmented

and do not allow the location of genes in the genomes unless

high-density linkage maps are available. Loblolly pine (Pinus

taeda) is a widely distributed species in the southeastern

United States, characterized by its outcrossing mating system,

large population sizes, weak population structure, and rapid

decay of linkage disequilibrium (Eckert, van Heerwaarden,

et al. 2010). Phylogeographic studies of unglaciated North

America suggested loblolly pine follows the Mississippi River

discontinuity, which is consistent with a dual Pleistocene ref-

ugial model, and has been used to explain differences in

growth, disease resistance, drought tolerance, and genetic

differentiation between eastern and western populations

(Teskey et al. 1987; Schmidtling 2001; Soltis et al. 2006;

Eckert, Bower, et al. 2010; Eckert, van Heerwaarden, et al.

2010). In this study, we aimed to dissect the genomic archi-

tecture of climate adaptation in loblolly pine. We tested for

associations between 270 environmental variables and 87k

SNPs obtained from widely distributed coding and noncoding

regions across the 22-Gb genome of the species. We then

determined the geographic and genomic location of signifi-

cant alleles using our newly constructed, ultradense, 26k SNP

linkage map. In addition to identify the main climatic variables

driving the adaptation of the species, we were also interested

in the following questions: (1) Are adaptive alleles globally

occurring alleles with varying frequencies or localized ones?

(2) Do adaptive alleles have narrow or widespread genomic

distributions? (3) Does local adaptation occur by large or sub-

tle shifts in allele frequencies?

Materials and Methods

Sample Collection and SNP Genotyping

Needle tissue from 377 outcrossing, unrelated individuals dis-

tributed across the species’ natural range were collected from

the ADEPT2 common garden located in Mississippi, southeast

United States (fig. 1A). Ten populations were assigned based

on individuals’ geographically proximity within geopolitical

states, following Eckert, van Heerwaarden, et al. (2010). In

addition, 2 three-generation full-cross outbred pedigrees con-

structed and maintained by the Weyerhauser Company were

used to collect 192 needle samples (Sewell et al. 1999). From

these, 92 full-sib progeny samples came from the qtl pedigree,

and 100 full-sibs came from the base pedigree. DNA was

extracted using a protocol that included one day of tissue lysis

and incubation at 96�C, followed by several steps of precipi-

tation and filtering using the Qiagen DNeasy mini-prep Plant

kit with an Eppendorf automated pipetting workstation. DNA

concentration and quality were evaluated using picogreen on

a Qubit Fluorometer. Raw reads from whole-genome rese-

quencing data for ten individuals were used to call a large

number of SNPs (455 M) that were later scored, filtered and

included in an Affymetrix Axiom myDesign species-specific

and customized SNP array comprising 635k SNP markers

[full description of this procedure can be found in De La

Torre et al. (2019)]. After removing SNPs that did not pass

the genotyping quality control criteria and those that were

monomorphic, we kept 84,738 high-resolution SNPs. In addi-

tion, 3,087 gene-based SNPs previously reported by Eckert,

van Heerwaarden et al. (2010) were added to the data set,

resulting in a total of 87,825 SNPs. From these SNPs, 20,367

matched genes, exons, transcripts, or a combination of those.

Minor allele frequency distribution of all SNPs can be found in

supplementary figure S1, Supplementary Material online.

Population Structure, Diversity Estimates, and Fst Outlier
Test

Population structure in the SNP data set was evaluated using

the Python2.x fastStructure algorithm based on a variational

framework for posterior inference of K clusters (Raj et al. 2014).

Models in fastStructure were replicated 10 times with K from 1
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to 10 using the default prior; seeds for random number gen-

erators were modified for each run. The chooseK.py python

script in fastStructure was used to estimate the model com-

plexity that maximizes marginal likelihood and the model com-

ponents were used to explain structure in the data. Main

pipeline and Distruct package in CLUMPAK (Kopelman et al.

2015) were used for the summation and graphical representa-

tion of FastStructure results. In addition, we did a PCA analysis

using the Adegenet v2.0.1 R package (Jombart 2008; Jombart

and Ahmed 2011). Outlier SNPs showing higher Fst than neu-

tral loci were identified using the OutFLANK R package.

OutFLANK infers the null distribution by removing loci in the

top and bottom 5% of the distribution, and it is suggested to

be robust to demographic history (Whitlock and Lotterhos

2015). Genetic clusters identified by the population structure

analyses were then used to estimate nucleotide diversity and

pairwise Fst. Nucleotide diversity for each SNP in each of the 12

linkage groups was estimated with the R Package PopGenome

v.2.2.4 (Pfeifer et al. 2014). Pairwise fixation index (Fst) was

estimated by comparing all possible pairs of genetic clusters,

and by comparing each of them against all other individuals (Fst

one vs. all). Fst values for each SNP in each linkage group were

plotted in figure 1B–D; and average Fst values were displayed

in figure 1E–G.

Genotype–Environment Associations

We used a combination of 248 monthly, seasonal, and annual

variables obtained from climate normal data from 1961–1990

in ClimateNA v5.41 (Wang et al. 2016). In addition, we used

19 GIS-derived bioclimatic variables from WorldClim 2.5-min

(www.worldclim.org; last accessed September 2019), and

aridity index by quarter (every 4 months starting January), as

previously calculated by Eckert, van Heerwaarden, et al.

(2010). Geographical variables for each individual tree (lati-

tude and longitude), and combinations of environmental data

in the form of principal components, were also added to the

analysis. All 87k SNPs were tested for associations with 270

environmental variables and their 3 first principal components

using three different GEA methods: linear mixed model

regressions implemented in GAPIT, latent factor mixed models

implemented in LFMM, and a Bayesian approach imple-

mented in Bayenv2.

GEAs were identified for each of the 270 climatic variables

with 87,859 SNPs with compressed mixed linear model

(Zhang et al. 2010) implemented in the GAPIT R package

(Lipka et al. 2012). To reduce the chance of identifying

false-positive associations as a result of population structure,

we conducted the association analysis with only those SNPs

having a minor allele frequency (maf) higher than 3% and

used principal components of genetic data as covariates.

Manhattan plots were built using the SNP locations in our

newly constructed ultradense linkage map for loblolly pine

with the R package qqman (Turner 2014). SNP functional

annotations were obtained from the annotated genome of

loblolly pine v2.01 in TreeGenes (https://treegenesdb.org; last

accessed September 2019). For the SNPs matching tran-

scripts, we aligned them against the nonredundant protein

sequences database using BLASTX 2.8.0 (e value <1e–10)

(Zheng et al. 2000).

FIG. 1.—Population structure and nucleotide diversity of loblolly pine based on 87k genome-wide SNP markers. Results of PCA and Structure suggest

the presence of three different genetic clusters along longitude (A). Manhattan plots show pairwise Fst distributions between west and center (B), west and

east (C), and center and east genetic clusters (D). Horizontal blue line represents the mean pairwise Fst for each pair of comparisons. Average nucleotide

diversity, Fst one versus all, and pairwise Fst among genetic clusters are shown in (E–G). Colors in all figures match genetic clusters in (A).
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In addition, we used a Bayesian bootstrap approach imple-

mented in LFMM command line version 1.5 (Frichot et al.

2013). LFMM accounts for random effects due to population

structure and spatial autocorrelation with the use of latent

factors (k) (Frichot et al. 2013). Each run was repeated five

times with random seeds using the following parameters:

k¼ 3, 10,000 iterations, and 5,000 burning length.

Correction for multiple testing was done by adjusting P-values

with the genomic inflation factor (k¼median(z-score2)/0.456)

after combining z-scores obtained from multiple runs with the

LEA R package (Frichot and Francois 2015). Runs were re-

peated with k¼ 2 and k¼ 5, to check for sensitivity of results

to the number of latent factors in the model. To address the

potential correlations among environmental variables, we run

a PCA analysis using the prcomp function in R package. The

first three principal components resulting from this analysis

were tested for associations with all the 87k SNPs in LFMM.

Only SNPs with a minor allele frequency>3% were included.

We also tested for the presence of genomic clusters [more

than 10 SNPs within a 1 cM window following Renaut et al.

(2013)] for all SNPs significantly associated with any climatic

variable or principal component of them.

Finally, we used the software Bayenv2 (Günther and

Coop 2013), which implements a Bayesian approach de-

veloped by Coop et al. (2010). Bayenv2 first simulates a

null model of neutral genetic structure, represented as a

covariance matrix of estimated allele frequencies. The null

model is then compared to a linear model between allele

frequencies and an environmental variable to see if the

linear model has an improved fit over the null. The soft-

ware delivers Bayes factors (BFs) for each locus. We also

used the nonparametric extension of Bayenv2, which cal-

culates Spearman’s rank correlation coefficient (q) and

Pearson’s correlation coefficient (rS). Populations were

assigned a priori as detailed above in the methods section.

Eight runs (100,000 iterations each) were carried out dur-

ing the matrix estimation step to ensure an accurate co-

variance matrix was used. SNPs with BF equal or higher

than 3 were considered candidates for divergent selec-

tion, following Eckert, van Heerwaarden, et al. (2010)

and De La Torre, Roberts, et al. (2014).

Environmental Coassociation Network Analysis

In addition to the univariate GEA analyses implemented in

LFMM, Gapit, and Bayenv, we also tested for the multivariate

response of groups of genes associated with the environment,

using the environmental coassociation network analysis as

described in Lotterhos et al. (2018). SNPs showing univariate

associations in the GEA Gapit analysis were used to construct

a network analysis using a hierarchical clustering of the asso-

ciations between SNP allele frequencies and environmental

variables using the reshape2 and gplots R packages in

RStudio (RStudio Team 2016).

Construction of Individual Pedigree Linkage Maps

Qtl and base pedigrees’ pseudotestcrosses were used as R/qtl

(Broman et al. 2003) objects to construct ultradense linkage

maps using the MSTmap algorithm implemented in the

ASMap v.0.4 R package with default P-value (Taylor and

Butler 2017). Pairwise recombination (r) and Logarithm of

the odds (LOD) scores (obtained from linkage disequilibrium

test) were estimated for each pair of SNP markers. Markers

showing an r< 0.5 were considered located in the same link-

age group. SNP markers with pairwise recombination fre-

quency estimated as zero (colocating markers) were placed

into a recombination bin with ASMap. Several rounds of strin-

gent filtering included the removal of markers with 30% or

more missing data, duplicated individuals, double crossovers,

markers with distorted segregation patterns, and markers not

mapping well in any of the linkage groups. The presence of

switched alleles (wrong phase) was also corrected during

mapping. JointMap v5.0 (Van Ooijen et al. 2017) was used

for fine mapping and ordering of bins obtained from ASMap.

Construction of Averaged-Sex and Consensus Maps

To allow the construction of averaged-sex maps for each ped-

igree, a set of anchor markers composed by 131 fragment-

based markers (RAPD, RFLPs, ESTs, and SSRs) and 2804 SNPs

(Eckert, van Heerwaarden, et al. 2010; Martinez-Garcia et al.

2013) were added to our data set. SNPs with suspected link-

ages as defined by a recombination frequency higher than 0.6

and a LOD score higher than 1 were excluded in further anal-

yses. Forty-eight individual maps were merged to create 24

averaged-sex maps for each pedigree. Averaged-sex maps

were merged using maximum intervals (K) from 1 to 8, gen-

erating eight consensus maps for each of the 12 linkage

groups, with the R package LPmerge (Endelman and

Plomion 2014). Consensus maps with the lowest root mean-

squared error (RMSE) standard deviation (mapping conflicts

between individuals maps and consensus) were selected for

each linkage group (Endelman and Plomion 2014). Graphical

display was done with Circos (Krzywinski et al. 2009). All

markers were anchored to the reference genome of loblolly

pine v2.01 (https://treegenesdb.org; last accessed September

2019) with the BWA-MEM algorithm in BWA (http://bio-bwa.

sourceforge.net; last accessed September 2019). Convergence

and map accuracy was evaluated by comparing genomic phys-

ical location (scaffold ID) and linkage group; and by comparing

our maps with previously published maps in the species

(Martinez-Garcia et al. 2013; Westbrook et al. 2015).

Results

Population Structure and Genetic Diversity Levels

Results of the PCA analysis with 87k SNPs implemented in

the Adegenet and Gapit R packages suggest the presence of
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three major genetic clusters (east, center, west) that extend

longitudinally across the species’ natural range (fig. 1A and

supplementary fig. S2, Supplementary Material online).

When using the posterior inference of clusters based on

variational Bayesian framework implemented in

fastStructure, we found two major clusters when K varies

from 2 to 4. When K¼ 5, there is a third smaller cluster

(supplementary fig. S3, Supplementary Material online).

However, our fastStructure test of the model complexity

that maximizes marginal likelihood suggested K¼ 2 better

explains the genetic structure of the species. When K¼ 2,

the center and eastern clusters are differentiated from the

western clusters, suggesting the Mississippi river as the major

barrier for gene flow, as previously observed in De La Torre

et al. (2019). We found that eastern and western clusters

present higher pairwise Fst estimates and were therefore

more genetically distant than eastern and center, and center

and western clusters (P-value< 0.001; fig. 1B–D and supple-

mentary table S1, Supplementary Material online). For ex-

ample, from the 622 SNPs with a pairwise Fst >0.3, 394

SNPs differentiated the western and eastern genetic clusters.

Pairwise Fst was found to significantly vary in all linkage

groups with the exception of LG 7 and 10 (P-value< 0.001;

fig. 1F and G, and supplementary table S1, Supplementary

Material online). Nucleotide diversity across all linkage

groups was significantly different among genetic clusters

(P-value< 0.01), and also differed between the center and

west, and the east and west in linkage groups 3, 4, 7, 9, and

12 (P-value< 0.001; fig. 1E). Average nucleotide diversity

based on SNP data was 0.296, average Fst values (one vs.

all others) was 0.029, and average pairwise Fst was 0.027

(supplementary table S1, Supplementary Material online).

Fst Outlier Analysis

When including all 87k SNPs in the analysis, we identified 205

SNPs with P-values <0.001; however, only 3 of them passed

the threshold after correction for multiple testing (q value

<0.01). Because low heterozygosity SNPs may have confound-

ing effects on the Fst distribution, we screened out those SNPs

and ended up with a data set of 68k SNPs. Our results identified

330 SNPs with P-values<0.001, and confirmed the same top 3

outliers as in the 87k SNP data set after correction for multiple

testing (table 1). When increasing the RightTrimFraction (pa-

rameter that removes the loci mostly affected by selection be-

fore estimating the shape of the Fst distribution through

likelihood), the fit of the null distribution model was increased

in the 87k data set but not in the 68k data set (default Left and

RightTrimFractions were used in this analysis). OutFLANK iden-

tified a large number of SNPs with moderate to high Fst values;

however, the wide distribution of Fst values did not allow a

clear distinction between putatively neutral and putatively un-

der selection SNPs, as it is expected in an Fst outlier distribution

(supplementary fig. S4, Supplementary Material online).

GEA and Environmental Coassociation Network Analysis

After comparing the results of the three univariate GEA anal-

yses (Bayenv, Gapit, and LFMM), we found that 821 SNPs

showed significant associations in at least two of the three

analyses (supplementary table S3, Supplementary Material

online). Number of shared SNPs across the different GEA

methods can be found in figure 2A. From the 821 SNPs,

131 SNPs came from coding regions, and 376 were located

in linkage groups. In the Gapit results, CMD_wt (winter

Hargreaves Climatic Moisture Deficit, which is the difference

between a reference evaporation and precipitation during

winter) and CMD02 (Hargreaves Climatic Moisture Deficit in

February) showed the highest number of associated markers,

with 72 SNPs associated to each of them. Only a small group

of SNPs matching transcripts aligned to known proteins at the

NCBI nonredundant protein sequences database. In contrast,

environmental variables showing the highest number

(>1000) of associated SNPs in the Bayenv results were all

related with temperature, evaporation and radiation during

the summer (Tmax06, Tmax07, Rad07, Rad08, Rad_sm,

Eref07, Eref08, Eref_sm, and EXT). Both CMD and

Temperature-related associated SNPs were strongly repre-

sented in the combined results among GEA analyses which

include a large number of environmental variables (supple-

mentary tables S2 and S3, Supplementary Material online).

The location of SNPs associated with Radiation during August

(Rad08) can be found in figure 2B. Associated SNPs were

mainly found to be involved in transport, stress response,

transcriptional activity, and enzymatic functions. SNPs associ-

ated with any of the climatic variables were widely distributed

across all 12 linkage groups in the genome of loblolly pine.

Hierarchical clustering of significant associations between

SNP allele frequencies and environmental variables suggests

the presence of two main modules, one related to aridity

(temperature variables, radiation, and degree-days above

18�C) and another mainly associated with humidity [climate

moisture deficit during winter (CMDwt), NFFD, Annual Heat-

Moisture index (AHM)] (fig. 2B). In the first module, six SNPs

(AX-172791235, AX-173011888, AX-172909447, AX-

173250534, AX-173348038, and AX-173361850) showed

strong associations with a large number of temperature-

related environmental variables in the Gapit analysis. These

SNPs were also found to be associated with PC1 in both the

Gapit and LFMM analysis. Interestingly, even though we were

not able to map any of these SNPs in our linkage map, we

know that three of them are located in the same scaffold

(super 3645) based on the latest genome assembly of the

species. The second module is composed by several submod-

ules or subgroups. In one of them, all SNPs were associated

with CMDwt and CMD02 cluster together. Smaller submod-

ules were associated with NFFD during April, Eref during the

summer; and annual heat moisture index. Although our

results suggest pleiotropic effects of the some of the SNPs,
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our conclusions are limited by the confounding effects of en-

vironmental correlations (supplementary fig. S5,

Supplementary Material online).

PCA analysis of environmental variables showed PC1

explains 66.56% of the variation in the data set, PC2 explains

14.49%, and PC3 6.51%. PC1 negatively correlates with

Temperature-derived variables, Relative Humidity (RH), and

Radiation (Rad); and positively with Degree-days below 0�C

(DD_0), Degree-days below 18�C (DD_18), Precipitation as

snow (PAS), Frost-Free period (FFP) and Temperature season-

ality variables such as Isothermality (BIO3); Temperature sea-

sonality (BIO4); Annual Temperature Range (BIO7), and

Continentality (TD). PC2 positively correlates with RH, and

negatively with Temperature seasonality variables (TS) (sup-

plementary figs. S6 and S7, Supplementary Material online).

LFMM results showed 716 SNPs associated with PC1, 444

SNPs with PC2, and 741 SNPs with PC3 (Bonferroni-

Holmes-Adjusted P-value< 0.01, maf> 0.1). Changing the

number of latent factors (k) that account for population struc-

ture mainly identified the same group of associated SNPs

(data not shown). Bayenv identified 950 SNPs when BF was

equal or larger than 3; 498 SNPs when BF� 3 and q> 0.1;

and 52 SNPs when BF� 3 and q> 0.2. Finally, Gapit identi-

fied 131 SNPs after Bonferroni–Holmes correction for multiple

Table 1

Results of Outlier SNP Analysis Implemented by OutFlank for 87k SNPs Obtained from Whole-Genome Resequencing Individuals in Loblolly Pine

SNP He Fst maf q values P values P values Right Tail

AX-173368010 0.209176214 0.348875729 0.118670886 0.00129688 7.53E–08 3.76E–08

AX-173042514 0.340850969 0.316549401 0.217910448 0.003090746 3.59E–07 1.79E–07

AX-173175402 0.235345516 0.292451521 0.136231884 0.009047309 1.58E–06 7.88E–07

NOTE.—Heterozygosity (He), Fixation index (Fst), mean allele frequency (maf), and P-values are shown.

FIG. 2.—Results of the univariate GEA and environmental co-association analyses with 87k SNPs and 270 environmental variables. (A)The number of

SNPs that were significant in each of the GEA analyses using three different methods: LFMM, Bayenv, and Gapit. (B) The results of environmental

coassociation network analysis. Hierarchical clustering of top-significant (R2>0.4) associations between SNP allele frequencies and environmental variables

shows two main clusters, right cluster: related to aridity (temperature variables, radiation, and degree-days above 18�C) and a left cluster: mainly associated

with humidity. (C) The genomic location of SNPs associated with Radiation in August (Rad08), one of the environmental variables with more associated SNPs

based on the results of two or more GEA methods. Y- axis indicates Bayes factor (BF) divided by 10.
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testing (supplementary table S4, Supplementary Material on-

line). Convergent results among GEA analyses suggested the

presence of 25 common significant SNPs among LFMM,

Gapit and Bayenv. SNPs associated with any of the PCs

were widely distributed across all 12 linkage groups in the

genome (supplementary table S5, Supplementary Material

online).

From the individual SNPs showing associations with any

climatic variable in two or more GEA methods, we selected

a random subset and tested for changes in allele frequency.

SNPs showed clinal patterns with increased or decreased sub-

tle to moderate allele frequency shifts (mean¼ 0.146 0.07)

along the longitudinal species’ natural range. Allele frequency

of the minor allele increased from east to west in SNPs asso-

ciated with Climatic Moisture Deficit during winter

(CMD_wt), and February (CMD02), and with AHM (fig. 3).

SNPs associated with Hargreaves reference evaporation dur-

ing August (Eref08), Degree-days above 18�C, and Number

of frost free days during autumn and spring showed an in-

crease in the frequency of the minor allele from west to east.

In SNPs associated with Radiation during August (Rad08),

SNPs showed either increased or decreased allele frequency

of the minor allele along longitude (supplementary table S6,

Supplementary Material online).

Linkage Maps

As a result of mapping with ASMap and JoinMap, 17,924

SNPs from the base pedigree and 10,995 SNPs from the qtl

pedigree were mapped in 12 linkage groups in loblolly pine.

Pairwise recombination and LOD scores for the Qtl and base

pedigrees’ pseudotestcrosses can be found in supplementary

figure S8, Supplementary Material online. Anchors allowed

the construction of average-sex maps using JoinMap. Total

lengths were 2158.662 cM for the base linkage map and

2141.44 cM for the qtl linkage map. The consensus map

had a length of 2270.41 cM across 12 linkage groups, and

was built with 26,360 SNPs (table 2, fig. 4, and supplementary

table S8, Supplementary Material online). These results repre-

sent the most complete and dense map ever built for the

species [previous map had 3,856 markers in Westbrook

et al. (2015)], and one of the few ultradense linkage maps

available to date in gymnosperms (others include Norway

spruce, Bernhardsson et al. 2019; and Ginkgo biloba, Liu

et al. 2017). The mapped SNPs were distributed in 18,163

scaffolds in the genome of the species (loblolly pine v2.01 in

TreeGenes, treegenesdb.org). Consensus maps had variable

measurements of the lowest RMSE standard deviation (map-

ping conflicts between individuals maps and consensus),

ranging from 0.09 to 20.78. Scaffolds’ information of colo-

cated SNPs and assuming all SNPs in the same scaffold were

also in the same linkage group, we identified the location of

18,362 more SNPs, resulting in 44,722 SNPs with known

positions in linkage groups (17,486 scaffolds) (supplementary

table S8, Supplementary Material online). Average number of

SNPs among linkage groups was 3,726, with the number of

SNPs in each linkage group ranged from 3,179 to 4,148

markers (supplementary table S9, Supplementary Material on-

line). Convergence and map accuracy was evaluated by com-

paring genome physical location (scaffold ID) and linkage

group and by comparing our maps with previously published

maps in the species (Martinez-Garcia et al. 2013; Westbrook

et al. 2015). Our results indicate that 4% of SNPs had con-

flicting positions between the physical and linkage positions,

suggesting a very small number of SNPs within the same

scaffolds were assigned to different linkage groups. These

SNPs locations were not considered in further analysis.

Comparison between 715 common SNPs in our map and

previous maps revealed a convergence of 95.3% of linkage

group assignment with Martinez-Garcia et al. (2013) map and

94.2% with Westbrook et al. (2015). Linkage group numbers

were chosen to match those at the Martinez-Garcia et al.

(2013) linkage map.

Genomic Clusters

We looked for the presence of genomic clusters at four dif-

ferent levels: (1) SNPs associated with individual climatic var-

iables; (2) SNPs associated with principal components of

climate variables; (3) SNPs showing high pairwise Fst among

populations; and (4) SNPs located in the same environmental

coassociation modules. When evaluating SNPs that were sig-

nificantly associated with groups of environmental variables in

two or more GEA analyses, we found two small clusters, one

in linkage group 3 (9 SNPs at 48.76 cM) and another in link-

age group 9 (12 SNPs at 19.28 cM). Both of these clusters

contained SNPs associated with temperature, evaporation,

and radiation during the summer (Tmax06, Tmax07, Rad07,

Rad08, Rad_sm, Eref07, Eref08, Eref_sm, and EXT) (supple-

mentary table S3, Supplementary Material online). The eval-

uation of genomic clusters was not possible in SNPs showing

significant associations with principal components in two or

more GEA analyses because of the small number of associ-

ated SNPs (supplementary table S5, Supplementary Material

online). In contrast, when evaluating SNPs associated with

principal components from the results of only one GEA

method, we found larger numbers of colocated SNPs. This

was observed in linkage groups 2 (10 SNPs at 190.9 cM), 5 (15

SNPs at 48.76 cM), and 10 (30 SNPs at 19.28 cM). SNPs in

LG10 genomic cluster were also included among the top

20% most significant SNPs in the LFMM results data set (sup-

plementary table S4, Supplementary Material online and

fig. 4).

Finally, we found that SNPs in the aridity coassociation

module were located in the same scaffold of the species,

whereas SNPs within the humidity module were in different

linkage groups (fig. 2B). SNPs showing high population differ-

entiation were also located in low recombination genomic
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regions (colocated or within close proximity) (supplementary

table S7, Supplementary Material online). Interestingly, even

though many of these SNPs were not found to be associated

with any principal component or individual climatic variables,

they were in close proximity (same genomic clusters) with

associated SNPs (supplementary table S5, Supplementary

Material online).

Discussion

Previous studies suggest that population structure of loblolly

pine has been mainly shaped by a dual-Pleistocene refugia

that separated populations located east and west of the

Mississippi river (Wells and Wakeley 1966; Schmidtling

2003). In addition to that initial isolation, and in spite of con-

tinuous gene flow, east and west populations continued to

differentiate as they became adapted to their new distinct

environments. Our results suggest that adaptation to climate

in the species might have occurred by many changes in the

allele frequency of alleles with moderate to small effect sizes,

and by the smaller contribution of large effect alleles in genes

related to moisture deficit, temperature and precipitation.

Population Structure

Our results suggest the presence of two major genetic clusters

(east, west) and a smaller third cluster (center) that extend

longitudinally across the species’ natural range (fig. 1A and

supplementary Fig. S2, Supplementary Material online). When

K¼ 2, the center and eastern genetic clusters are differenti-

ated from the western ones, suggesting the Mississippi river as

the major barrier for gene flow. It is being suggested that the

Mississippi discontinuity is consistent with a dual-Pleistocene

refugial model in which populations in southern Florida and

southern Texas later migrated north and expanded their dis-

tribution to the current natural distribution of the species

(Wells and Wakeley 1966; Schmidtling 2003). We found

that eastern and western genetic clusters present higher pair-

wise Fst estimates and were therefore more genetically distant

than eastern and center, and center and western groups

(fig. 1B–D). Despite this differentiation, it is clear that popu-

lations were and currently are exchanging gene flow, as gen-

eral genetic differentiation levels are low, suggesting a low

population structure. Our results are broadly consistent with

previous, smaller scale studies regarding patterns of

population structure in loblolly pine (Schmidtling 2003;
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FIG. 3.—Genetic clines along longitude in which allele frequency of the minor allele increases from east to west in SNPs associated with AHM and CMD.
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Gonzalez-Martinez et al. 2006; Eckert, Bower, et al. 2010,

Eckert, van Heerwaarden, et al. 2010); and with studies in out-

crossing, widespread forest tree species with large population

sizes (Savolainen et al. 2007; De La Torre, Roberts, et al. 2014).

Water Availability Is the Highest Determinant for
Adaptation of the Species

Water stress and temperature variation impose limitations in

the survival, growth, and productivity of many forest tree spe-

cies. Loblolly pine is not the exception. Adapted to long

summers and mild winters, loblolly pine thrives in humid,

warm-temperate environments (Baker and Langdon 1990).

Soil moisture is a critical factor in seed germination and seedling

establishment; whereas temperature has a dominant influence

on the initiation of growth in the spring, and posterior ability to

compete for light and resources (Baker and Langdon 1990).

Previous physiological and genetic studies have suggested

differential responses to temperature and moisture

across geographically distant populations of the species

(Teskey et al. 1987; Eckert, Bower, et al. 2010; Eckert, van

Heerwaarden, et al. 2010; Lu et al. 2017). Populations east

from the Mississippi river grow faster and taller and are less

drought-tolerant than population in the west side (Teskey

et al. 1987; Schmidtling 2001).

In our study, we found SNPs associated with two main

aspects of climate. One group, which we called the “aridity”

module in the environmental coassociation analysis, is com-

posed by temperature-related variables during the summer

(Rad08, Eref08, Tmax07, Tmax08, AIQ3, BIO1, BIO10); and

a second group, called the “humidity” module, is composed

by moisture deficit and the relationship between precipitation

and temperature (CMD, AHM). Results of the combined GEA

analyses identified large numbers of temperature-related as-

sociated SNPs, a consistent finding with the results of the PCA

analysis of environmental variables. Principal component 1,

which explained 66.56% of the climatic variation in the

data set, was negatively correlated with Temperature-

derived variables, Relative Humidity (RH) and Radiation

(Rad); and positively with Degree-days below 0�C (DD_0),

FIG. 4.—Consensus linkage map containing 26,360 SNPs for loblolly pine. Blue region in the concentric inner circle represent the location of the largest

cluster of SNPs associated with principal components of climatic variables based on the LFMM results. Size of the region was enlarged for easier visualization.
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Degree-days below 18�C (DD_18), PAS, FFP, and

Temperature seasonality variables such as Isothermality

(BIO3), Temperature seasonality (BIO4), Annual Temperature

Range (BIO7), and Continentality (TD). Functional annotation

of these SNPs included sugar transport, fatty acid metabolism,

auxin response, stress sensing, and signal transduction (sup-

plementary table S3, Supplementary Material online). The

GEA results also identified large numbers of SNPs associated

with CMD, and AHM. Many of these SNPs showed clinal

variation of allele frequencies along the longitudinal range,

from the more drought tolerant western populations to the

more drought susceptible eastern ones. These SNPs were in-

volved in transport, enzymatic, and transcriptional activity

(supplementary Table S2, Supplementary Material online).

These results are consistent with our previous study in the

species that estimate the relationship between expression of

xylem development genes and environmental variables. In

that study, higher expression levels of MADS box protein, a

transcription factor putatively acting as a heat shock protein

binding were found with increased levels of climatic moisture

deficit in May, and increased radiation in Spring. Also, higher

expression levels of Xyloglucan endotransglycosylase 2 (XET-

2), an enzyme involved in xylem development (and associated

with Laccase 3, Laccase 7, and Phenylalanine ammonia lyase-

1), were found with increased radiation during the Spring and

decreased precipitation and moisture deficit during the sum-

mer (De la Torre et al. 2019).

Genomic Distribution of Adaptive Alleles

Theory predicts that due to the decrease in fitness with in-

creasing recombination rates, clusters of alleles contributing

to adaptive trait variation are frequently located in genomic

regions with low recombination (Yeaman 2013). In our study,

however, we did not find evidence for genomic clustering or

“genomic Islands” in SNPs associated with individual climatic

variables, which is consistent with the long-standing view that

in conifers linkage disequilibrium decreases rapidly due to

their high outcrossing rates leading to high recombination

(Neale and Kremer 2011). Most SNPs showing significant

associations with climatic variables or principal components

of them had a wide genomic distribution within and among

linkage groups, and were present in all the 12 linkage groups

of the species. Widespread genomic distributions of adaptive

alleles were also found in Picea mariana and Medicago trun-

catula (Prunier et al. 2011; Yoder et al. 2014).

Interestingly, we found larger numbers of colocated SNPs

when evaluating SNPs associated with groups of environmen-

tal variables, based on the results of the GEA, principal com-

ponents, and environmental coassociation analyses. This

suggests that adaptation to climate in loblolly pine may

have occur as a complex process in which different selection

pressures are more likely to act on groups of genes associated

with an aspect of climate rather than on individual climatic

variables. These “co-adapted” complexes of genes may

buffer against gene flow coming from maladaptive alleles

from geographically proximal but climatically different loca-

tions, maintaining polymorphisms across the species’ natural

range (Holliday et al. 2016). Increased clustering of outlier loci

was found across altitudinal gradients with high gene flow

between populations of Populus trichocarpa, suggesting ad-

aptation with gene flow might have occurred by divergence

hitchhiking of physically proximate alleles in the species

(Holliday et al. 2016). Evidence for recurrent hitchhiking was

also found in Capsella grandiflora, an outcrossing species with

large effective population size and low levels of linkage dis-

equilibrium (Williamson et al. 2014).

Our results suggest that SNPs in the aridity coassociation

module were located in the same scaffold of the species,

whereas SNPs within the humidity module were in different

linkage groups. Similarly, a different set of SNPs associated

with the same aspect of climate (aridity module composed by

temperature-related variables Rad08, Eref08, Tmax08) was

also found in close proximity in genomic regions of low re-

combination, based on the combined GEA results. Physical

linkage among loci adapting to different aspects of climate

was also found in Pinus contorta, while studying modules of

co-associated SNPs (Lotterhos et al. 2018). Both Lotterhos

et al. (2018) and this study suggest a complex genomic archi-

tecture of local adaptation in conifer species, in which the

extent of physical linkage among loci is just one of the factors

contributing to the species’ evolutionary response to changes

in climate.

Finally, we found genomic regions of low recombination in

three of the twelve linkage groups when analyzing SNPs as-

sociated with PCs (LFMM results) and those with high

Table 2

Results of the Linkage Mapping in Loblolly Pine Showing the Length and

Number of SNPs in Each Linkage Group for Individual Maps (base and qtl

pedigrees) and Consensus Map

LG Base Pedigree qtl Pedigree Consensus Map

Length SNPs Length SNPs Length SNPs RMSE SD

1 216.386 1520 180.793 844 216.39 2122 20.78

2 205.441 1561 196.181 972 198.23 2261 2.05

3 140.363 1538 180.977 1082 187.57 2365 1.46

4 211.516 1465 186.414 790 222.36 2022 0.09

5 200.858 1652 177.8 955 179.19 2342 1.47

6 196.016 1391 190.184 844 196.02 2046 3.17

7 178.767 1278 174 772 178.77 1880 1.21

8 211.527 1628 188.5 844 214.78 2252 2.4

9 189.513 1582 156.491 844 195.6 2176 0.35

10 136.854 1284 194.574 1065 197.53 2100 15.67

11 119.326 1463 160.416 994 131.67 2200 3.53

12 152.095 1562 155.107 989 152.3 2255 0.73

Total 2158.662 17924 2141.437 10995 2270.41 26021 NA

NOTE.—The ultradense consensus map has 26,021 SNP markers and a length of
2270.41cM. The RMSE standard deviation gives information about potential map-
ping conflicts between individuals maps and the consensus map.
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population differentiation. Increased linkage disequilibrium

between these climate-associated alleles of small effect may

have prevented their swamping by gene flow and may have

promoted their contribution to adaptive trait divergence

(Yeaman and Whitlock 2011; Yeaman 2015). In the case of

the SNPs located in the genomic cluster in linkage group 5

(48.04–48.84 cM), we found a correlation between increased

population differentiation and decreased diversity (R2¼ 0.3,

P< 0.05). A negative relationship between recombination

rate and genetic differentiation is a common signature of

linked selection and has been observed in several plant species

including Populus tremula and P. tremuloides (Slotte 2014;

Wang et al. 2016). In addition, two of these genomic clusters

(groups 2 at 189.62–191.79 cM and 5 at 48.04–48.84 cM)

were previously considered as “metabolic hotspots” because

they harbor SNPs associated with several metabolites such as

pelargonic acid, threonine, and other metabolites of un-

known origin (De La Torre et al. 2019).

It is important to mention that although our newly con-

structed linkage map contains the largest number of SNPs

(26k) ever mapped in the genome of the species, many of

the SNPs showing significant associations with environmental

variables or PCs could not be located within linkage groups.

An even higher density linkage map or a chromosome-scale

reference genome would be required to confidently locate

most or all of the SNPs associated with environmental

variables.

Adaptive Alleles—Globally Occurring or Localized?

An important question in population genetics is whether

alleles conferring adaptation are globally occurring alleles or

localized ones. If natural selection favors specific alleles in

specific locations, it is expected that these would be common

in these geographic locations but rare in others. On the con-

trary, if natural selection removes alleles that are deleterious in

one location but neutral in others, we would expect to find

high-frequency alleles across the species’ range (Fournier-

Level et al. 2011). Localized or private alleles with narrow

geographic distribution in which one allele has rapidly driven

to high frequency in the population may be a result of a hard-

selective sweep, as it is being observed in natural populations

of A. thaliana (Hancock et al. 2011). Alternate alleles might be

favored in different environments leading to antagonistic plei-

otropy that can result in local adaptation and the mainte-

nance of genetic polymorphisms by natural selection. In a

different scenario (conditional neutrality), alleles may be under

positive selection in one environment but neutral in others

(Anderson et al. 2013).

Our study found that putatively adaptive alleles in loblolly

pine were widely distributed across the species’ natural range

rather than localized ones. In fact, the presence of private

alleles (only present in one population) was not observed in

any of the SNPs showing associations with climate variables.

Globally occurring alleles had varying frequencies in which the

frequency of the minor allele increased from east to west in

SNPs associated with Climatic Moisture Deficit during winter

(CMD_wt), and February (CMD02), and with AHM (fig. 3);

whereas SNPs associated with Hargreaves reference evapora-

tion during August (Eref08), Degree-days above 18�C, and

Number of frost free days during autumn and spring showed

an increase in the frequency of the minor allele from west to

east. In A. thaliana populations, SNPs associated with relative

humidity also had widespread distributions (Hancock et al.

2011). With the absence of fitness measurements, we cannot

tell if loblolly pine individuals carrying these alleles are fitter in

one environment or the other. However, the fact that the

direction of the increase of the minor allele is coincident

with increasing levels of the associated climatic variable sug-

gests that these individuals may be locally adapted in that

environment.

Allele Frequency Shifts at Many Adaptive Loci

Local adaptation in natural populations may arise by differen-

tial selection pressures across heterogeneous environments in

which the targets of selection may change from one environ-

ment to another. As a consequence of this, different combi-

nations of alleles might be favored in different environments

and maintained as stable polymorphisms, or experience

“partial” or “soft” sweeps due to selection acting on stand-

ing variation (Hermisson and Pennings 2005; Yoder et al.

2014). Recent studies have found a largely polygenic basis

of adaptation in natural populations, in which trait variation

is controlled by many loci of small effect and adaptation is

characterized by subtle to moderate shifts in allele frequencies

(Pritchard et al. 2010; Pritchard and Di Rienzo 2010; Berg and

Coop 2014). With strong diversifying selection and high gene

flow, considerable trait divergence may evolve with small al-

lele frequency changes at individual loci (low Fst) but high

between-population covariance in allele effect sizes (Latta

1998; Le Corre and Kremer 2003, 2012). Adaptation to cli-

mate variation via selection on polygenic traits and/or small

allele frequency shifts has been observed in M. truncatula,

Picea glauca, Fagus sylvatica, and Maccullochella peelii

(Csillery et al. 2014; Yoder et al. 2014; Hornoy et al. 2015;

Harrisson et al. 2017). In P. glauca, small to moderate shifts in

the allele frequency of putatively climate-adaptive genes was

found in response to recent selection and high gene flow

among populations (Hornoy et al. 2015).

In our study, we found a large number of SNPs with small

to moderate effect sizes associated with climatic variables or

combinations of them. In most of these SNPs, we found subtle

to moderate shifts in allele frequencies across different envi-

ronments, in which in many cases the increase in the fre-

quency of the minor allele mirrored an increase of the

climate variable along longitudinal gradients. These SNPs

were largely captured by our GEA studies, which, in contrast
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to Fst outlier tests has been suggested to detect signals asso-

ciated with smaller allele frequency shifts (Hancock et al.

2010). Coincidently, our Fst outlier test failed to detect the

signal of selection in these weakly selected loci involved in

local adaptation of loblolly pine, and found only three SNPs

with moderate to high Fst. In polygenic traits, most loci in-

volved in local adaptation will experience weak selection,

therefore they will not be substantially more differentiated

than expected of neutral loci (Le Corre and Kremer 2012;

Whitlock and Lotterhos 2015). Loci highly associated with

expression and disease resistance and previously suggested

to be under balancing selection (De La Torre et al. 2019)

were also not identified by the Fst outlier analysis, probably

because the OutFLANK procedure is not accurate in the left

tail of the Fst distribution (Whitlock and Lotterhos 2015). The

little difference in Fst across associated versus randomly cho-

sen SNPs may also suggest that natural selection is not driving

large-scale adaptive differences among lineages of loblolly

pine. Instead, genotypes are being favored by natural selec-

tion across different environments regardless of their ancestry

(Eckert, van Heerwaarden, et al. 2010).

Responses to selection that arise from standing genetic

variation rather than new mutations or that are relatively re-

cent for fixation to have occurred leave a fainter molecular

signature (Hermisson and Pennings 2005; Hohenlohe et al.

2010). These partial, soft sweeps often leave a signature of

reduced haplotype or nucleotide diversity and extended link-

age, as we found in our LG 5. Considering the low mutation

rates in conifers (De La Torre et al. 2017), it is likely that many

of these changes in allele frequencies might have been facil-

itated by the great levels of standing genetic variation rather

than by de novo mutations in loblolly pine. Simulations studies

have suggested that good levels of standing genetic variation

are required when local adaptation occurs by alleles of small

effect (Yeaman 2015). In addition, the long generation times

in conifers and relatively recent migration from refugia of the

species, might have contributed to the genetic architecture

we see today, in which most beneficial alleles are still segre-

gating in the populations and have not reached fixation. We

therefore conclude that local adaptation to climate in loblolly

pine might have occurred by many changes in the allele fre-

quency of alleles with moderate to small effect sizes, and by

the smaller contribution of large effect alleles in genes related

to moisture deficit, temperature, and precipitation.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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