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 Abstract: Facioscapulohumeral Muscular Dystrophy (FSHD) is in the top three list of all dystro-
phies with an approximate 1:8000 incidence. It is not a life-threatening disease; however, the pro-
gression of the disease extends over being wheelchair bound. Despite some drug trials continuing, 
including DUX4 inhibition, TGF-ß inhibition and resokine which promote healthier muscle, there is 
not an applicable treatment option for FSHD today. Still, there is a need for new agents to heal, stop 
or at least slow down muscle wasting. Current FSHD studies involving nutraceuticals as vitamin C, 
vitamin E, coenzyme Q10, zinc, selenium, and phytochemicals as curcumin or genistein, daidzein 
flavonoids provide promising treatment strategies. In this review, we present the clinical and molec-
ular nature of FSHD and focus on nutraceuticals and phytochemicals that may alleviate FSHD. In 
the light of the association of impaired pathophysiological FSHD pathways with nutraceuticals and 
phytochemicals according to the literature, we present both studied and novel approaches that can 
contribute to FSHD treatment. 
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1. INTRODUCTION 

Facioscapulohumeral Muscular Dystrophy (FSHD) is one 
of the most common dystrophies with 1:8000 incidence. The 
clinic of FSHD, as the name implies, is manifested by 
asymmetric progressive loss of power in the face, shoulder-
scapular muscles and sometimes peroneal muscles [1, 2]. 

Although the time of onset of the disease is generally de-
fined as the second and third decades [1], the age and clinical 
severity of the disease differ among individuals. While the 
prognosis of some patients is severe enough to start in the 
early 20s and leave them wheelchair-bound in the advanced 
ages, a mild clinical course can be observed in other patients 
with late-onset and limited muscle involvement. In a study  
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involving large series of infantile cases, onset before the age 
of ten had been found to be related to de-novo mutation, 
while onset after the age of ten had been observed in familial 
cases [3].  

Clinical Severity Score (CSS) is widely used in Europe 
and the United States of America, which examines the pro-
gression of the disease by dividing it into ten severity levels 
[4, 5]. There are other tools to standardize clinical severity. 
In the FSHD clinical score, Lamperti et al. described the 
strength and functionality of facial muscles as 0 to 2; scapu-
lar girdle muscles 0 to 3; upper limb muscles 0 to 2; leg 
muscles 0 to 2; pelvic girdle muscles 0 to 5; abdominal mus-
cles 0 to 1; with total score ranges from 0 to 15 [6]. ReSolve 
is another study that brings together multiple evaluation 
strategies as Clinical Outcome Assessments (COA), electri-
cal impedance myography, domain 1 of the motor function 
measure; reachable workspace; orofacial strength; muscle 
mass using Dual-Energy X-ray Absorptiometry (DEXA); 
quantitative myometry and manual muscle testing [7]. The 
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outcomes of trials as antisense RNA mechanism of action for 
FSHD treatment may be followed with ReSolve [7].  

Significant clinical differences between male and female 
patients have been identified in many studies, and clinical 
findings emerge at an earlier age and progress more severely 
in male patients diagnosed with FSHD [8]. This difference 
between men and women is not observed in infantile cases 
[9]. Although FSHD is known as muscle disease, eye, ear, 
bone, and tooth anomalies can accompany the disease; this 
condition is associated with the severity of the disease [2, 10, 
11]. Other clinical findings that can be observed in FSHD are 
retinal vasculopathy, sensorineural hearing loss, restrictive 
lung disease, and right bundle branch block in the heart [12]. 
In addition, central nervous system involvements such as 
epilepsy and mental retardation can be observed in pediatric 
cases where FSHD progresses severely [13]. 

Magnetic resonance imaging studies reveal physical 
changes in FSHD. According to this, the most common find-
ings are atrophy and fat infiltration [14]. Although no FSHD 
specific change which can enable it to be distinguished from 
other muscular dystrophies to date has been found, recently, a 
significant difference has been found in the proportion of tri-
methylamine/creatine studied as a metabolite in muscle groups 
with the Multivoxel Proton Magnetic Resonance Spectroscopy 
method compared to the control group [15]. EMG findings are 
found to be compatible with myopathic findings in FSHD, but 
no correlation has been found between electrophysiological 
findings and clinical features [16]. 

2. PATHOPHYSIOLOGY OF THE DISEASE 

2.1. Genetic Background of FSHD  

FSHD is a unique disease in which a contraction of mac-
rosatellite repeat is present in contrast to other repeat diseas-
es. FSHD is inherited in an autosomal dominant or a digenic 
manner. The relationship between FSHD and repeat units 
had been revealed by linkage studies [17-20]. These repeat 
units are located on the long arm of chromosome 4q35.2 
region and named D4Z4 repeat units. In the normal popula-
tion, D4Z4 macrosatellite on chromosome 4q35.2 consists of 
11 to 100 repeat units, and each repeat unit consists of 3300 
base pairs. On the other hand, 95% of individuals diagnosed 
with FSHD carry reduced [1-10] repeat unit numbers [20], 
and they are called FSHD1 cases. FSHD1 is inherited auto-
somal dominantly, and rarely, there are de novo cases [21].  

There are many studies on gene expression levels in 
FSHD myoblast cell lines and patient biopsies [22-24]. Alt-
hough there are many differences in results (which may re-
sult from experimental factors such as study conditions, 
sample heterogeneity), these studies show the change in ex-
pression of many genes in FSHD [22, 25-28]. In studies con-
ducted, expression differences have been found to occur in 
many genes that have divergent functions such as apoptosis, 
embryological differentiation stages, when compared to 
healthy individuals. Although there are genes that show in-
tersection in different studies, a clear responsible gene for 
FSHD disease has still not been identified except for Double 
Homeobox 4 (DUX4). However, there exist a considerable 
number of new studies indicating other responsible genes 
and pathways for the FSHD disease mechanism.  

The only gene detected in the D4Z4 repeat sequence on 
4q35 is the DUX4 retrogene. The DUX4 gene is located at 
the end of each repeat unit and encodes DUX4 transcription 
factor [29] containing two homeodomains [30, 31]. In 
healthy individuals, DUX4 is not expressed in muscle, and it 
is only expected to be expressed in testicular tissue [32]. In 
FSHD, DUX4 mRNA had been shown to be transcribed only 
from the last D4Z4 repeat unit in skeletal muscles [32, 33]. 
In addition to D4Z4 repeat deletion, one more genetic struc-
ture accompanies a single nucleotide polymorphism (SNP), 
which is called as qA allele. qA allele has been found in the 
normal population at a rate of 50% and settles close to the 
D4Z4 repeat [34, 35]. This qA allele creates a polyadenyla-
tion signal for the DUX4 mRNA and stabilizes that mRNA 
by protecting it from degradation. 

The DUX4 gene has been found to be evolutionarily con-
served [36], although it has a promoter and it does not have 
its own polyadenylation signal [37]; there is no FSHD pa-
tient who had completely deleted D4Z4 sequence [38]. Be-
cause of this, it is hypothesized that the main pathology in 
FSHD is the gain of funtion. Supporting this hypothesis, 
while nearly one of every 1000 FSHD myoblasts or nuclei 
has been found to be positive for the full length (fl) mRNA 
or protein of the DUX4, control group cultures have been 
found negative for DUX4 [32]. DUX4 with impaired expres-
sion is a transcription factor [29] indicating that DUX4 ex-
hibits its effect with the target genes via binding to DNA 
rather than itself [39]. An example for this is FSHD Region 
Gene 2 (FRG2) gene which locates close to the D4Z4 area 
[40]. FRG2 was found to be upregulated in differentiating 
primary myoblasts of FSHD patients [41]. DUX4 can direct-
ly activate the FRG2 gene by binding target sequences on 
FRG2 promoter in myoblasts and fibroblasts derived from 
control individuals [42]. 

DUX4 is a double homeobox protein, especially ex-
pressed in embryological development [30, 43], and it is very 
similar to PAX protein family with their homeodomains. In 
one study, it was revealed that Paired Box 3 (PAX3) and 
PAX7 were the only members that could compete with 
DUX4, while other homeodomain proteins as PAX6, Paired 
Like Homeodomain 2 (PITX2c), Orthodenticle Homeobox 1 
(OTX1), Retina and Anterior Neural Fold Homeobox 
(RAX), HESX Homeobox 1 (Hesx1), Mix Paired-Like 
(MIXL1) and T-Box Transcription Factor (TBX1) could not 
compete [44]. When PAX3 or PAX7 was upregulated, it was 
revealed that DUX4 was no longer toxic [45]. In addition, 
when PAX3 and PAX7 were overexpressed in FSHD cell 
lines, the level of DUX4 decreased, revealing a converse 
relationship between these proteins [46]. In a recent study, 
PAX7 target gene repression had been revealed as a bi-
omarker in FSHD pathogenesis [47]. 

DUX4 related FSHD pathophysiology has not complete-
ly been enlightened. Still, there are many studies explaining 
the molecular action of DUX4. DUX4 is a pioneer transcrip-
tion factor [48] that has a short life span. The main effect of 
pathologically re-expressed DUX4 is the formation of ab-
normal-shaped myotubes and cell death, leading to muscle 
atrophy and degeneration [45, 49, 50]. Its overexpression has 
been revealed to lead to apoptosis via increased activity of 
Caspase 3 and p53 pathway [33, 45, 51, 52]. Wnt/β-catenin 
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signaling has also been shown to prevent apoptosis in 
FSHD1 and FSHD2 myotubes via suppressing DUX4 [53]. 
In 2015, Banerji et al. supported the central role of β-catenin, 
revealing its effect in the FSHD network [54].  

2.2. Epigenetic Background of FSHD 

The absence of D4Z4 deletion in approximately 5% of 
FSHD patients [55], the presence of asymptomatic cases 
with short repeat sequences in the D4Z4 on 4q35 region [56] 
and the emergence of FSHD symptoms in individuals with 
11-12 repeats [57] have directed new studies for other gene/s 
that can be responsible for the FSHD. Results of these stud-
ies have shed light on a new area of FSHD pathophysiology, 
the epigenetic component of the disease. 

Epigenetic component started with the discovery of 
Structural Maintenance of Chromosomes Flexible Hinge 
Domain Containing 1 (SMCHD1) mutation in a small pro-
portion of FSHD patients (less than 5%) [43]. SMCHD1 
gene is encoded from the p11.32 region of chromosome 18 
and functions as a dimer, providing genomic DNA methyla-
tion. Later on, DNA Methyltransferase 3 Beta (DNMT3B) 
mutations were also detected in some of the FSHD patients 
[58]. DNMT3B is located in the q11.21 region on chromo-
some 20, and the product of this gene adds methyl groups to 
genomic DNA. When any of these two genes carry a muta-
tion, general hypomethylation occurs at the DNA level. 
DNA hypomethylation occurring at D4Z4 repeats on the 
4q35 region leads to DUX4 transcription [58] from contract-
ed alleles. Just recently, in Ligand Dependent Nuclear Re-
ceptor Interacting Factor (LRIF1) gene, a homozygous mu-
tation had been identified in a FSHD patient [59] leading to 
DUX4 transcription via chromatin relaxation in D4Z4 re-
peats. FSHD patients carrying mutations of SMCHD1, 
DNMT3B or LRIF1 genes were grouped as FSHD2. Clinical-
ly, FSHD2 has no different feature that had been described; 
because of that, FSHD1 and FSHD2 are undistinguishable in 
clinical presentation and can be distinguished only with mo-
lecular genetic analysis. However, for the clinical presenta-
tion of FSHD, the presence of a mutation in SMCHD1 or 
DNMT3B or LRIF1 genes is not sufficient. These patients 
also carry D4Z4 deletions between 8-20 repeats with qA 
allele. Because D4Z4 contraction exists together with 
SMCHD1, DNMT3B or LRIF1 gene mutations, FSHD2 has a 
digenic inheritance pattern. Still, challenges exist in the ex-
planation of the interactions between SMCHD1, DNMT3B 
or LRIF1 proteins and D4Z4 repeat on 4q35 [60], and of the 
complexity of methylation status of D4Z4 region on FSHD 
clinical progression [61] directing FSHD to a complex dis-
ease more than a simply inherited Mendelian disease.  

Epigenetic regulator complexes also have substantial 
roles in FSHD. Gabellini et al. showed that the genes located 
near the repeat sequence in FSHD are overexpressed with 
deregulation of repressor multiprotein complex (including 
YY1) via binding to 27 base pairs sequence called DNA 
Binding Element (DBE) at D4Z4 repeat on 4q35 [40]. Later 
on, they related this impact to a chromatin-associated long 
non-coding RNA named as DBE-T (D4Z4 binding element 
transcript), and they showed that DBE-T provided gene tran-
scription by pulling Ash1L (ASH1 like Histone Lysine Me-
thyltransferase) into the 4q35 region and driving histone H3 
lysine 36 dimethylation [62]. The same group reported the 

role of D4Z4 repeat unit number and CpG composition in the 
repression of this area [63]. In another study, they also re-
vealed that Protein Regulator of Cytokinesis 1 (PRC1) and 
Protein Regulator of Cytokinesis 2 (PRC2) complexes are 
enriched on D4Z4 repeats [64]. By inhibition of Smi1 (the 
core component of PRC1) and Suz12 (the core component of 
PRC2), they revealed that DUX4 de-repression was specifi-
cally related to PRC1 but not PRC2 [64].  

In addition to lncRNA that is DBE-T, a wide variety of 
miRNAs have been found to be differentially expressed in 
FSHD muscle. Lim et al. reported that miRNAs play a role 
in the control of DUX4. Targeting the transcriptional starting 
region of DUX4 with siRNA decreases the DUX4 level. 
They supported this result by showing that the amount of 
DUX4 increases as a result of silencing DICER (Ribonucle-
ase III) and Argonaute (AGO), which play a role in miRNA 
processing [65]. Compatible with these results, many sense 
and antisense transcripts from the D4Z4 unit have been iden-
tified in FSHD muscle cells [66]. A significant difference 
was detected in the expression level of miR-411 in both pri-
mary and immortalized FSHD myoblast cells [67]. In a study 
comparing FSHD and control primary myoblasts, a total of 
29 different miRNAs consisting of 21 upregulated and 8 
downregulated were detected in the FSHD group [68]. In the 
same study, the myogenic miRNAs miR-1, miR-133a, miR-
133b, and miR-206 were found to be highly expressed in 
FSHD myoblasts suggesting that these cells escape differen-
tiation via myogenic miRNA-induced repression. In another 
study which compared biopsies from FSHD1 patients and 
control group, miR-330, miR-331-5p, miR-34a, miR-380-3p, 
miR-516b, miR-582-5p, miR-517 and miR-625 were found 
to have expression differences [69]. In proliferation and dif-
ferentiation stages, 6 different miRNAs specific to FSHD, 
miR-1268, 1268b, 1908, 4258, 4508 and 4516, were found to 
be changed [70]. Additionally, a change in different miRNA 
sets had been shown in FSHD1 and FSHD2 [71], indicating 
that divergent molecular pathways take place in two types of 
the disease. In the results of the aforementioned studies, sim-
ilar to mRNA expression studies in FSHD, no overlapped 
certain one or two responsible miRNA(s) could be detected 
in independent studies, most probably because of a diver-
gence in experimental designs and genetic heterogeneity of 
the disease. 

D4Z4 repeat on chromosome 4 is very close to telomer 
(TTAGGG hexameric nucleotide repeats), which is an im-
portant functional unit in human chromosomes, located on 
the short and long arm of each chromosome. Having GC-rich 
sequences [20], D4Z4 repeat structure had been investigated, 
and it was found that guanine nucleotides in D4Z4 construct-
ed G-quadruplex motifs in vitro [80, 81]. In a very recent 
study, it was also shown that by regulation of G-quadruplex 
motifs on D4Z4, DUX4 expression could be modulated. 

These telomeric heterochromatin blocks cause reversible 
silencing in the subtelomeric genes causing an epigenetic 
regulation, which is called the Telomere Position Effect 
(TPE) [72]. TPE was first described in Drosophila melano-
gaster and shown in Saccharomyces cerevisiae [73]. The 
position effect of human telomeres was shown by Ofir et al., 
for the first time, with the addition of artificial telomeric 
sequences to the lymphoblastoid cells belonging to a case 
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with 22q terminal deletion. In this study, it was shown that 
human telomeric sequences cause a delay in replication in 
the neighboring chromosomal regions [74]. On the other 
hand, every chromosome loses 30-200 bp telomere sequence 
in the 3’end of the single strand during replication of the 
discontinuous chain in each cell division due to the failure of 
DNA polymerase. While the average telomere length at birth 
is 8000, it goes down to approximately 1500 in old age [75]. 
In other words, age-related loss of telomeric sequence causes 
TPE to change as well. The shortening of the telomeric se-
quence leads to the expression of the repressed gene that is 
reproduced at an inappropriate time and place. In 2013, 
Stadler et al. revealed that compared with the samples of the 
unaffected individuals, myoblast subclones of FSHD patients 
containing the short telomeric sequence had increased DUX4 
and DUX4 target genes’ (Zinc Finger and SCAN Domain 
Containing 4 -ZSCAN4 and KH Domain Containing 1 -
KHDC1) expressions dramatically [76]. In parallel to this, 
Robin et al. proposed a model in which chromatin confor-
mation and gene expression changes were a distinctive fea-
ture of FSHD muscle due to telomere shortening [77]. An-
other study that strengthened the role of TPE in FSHD re-
vealed the difference in telomere length in semen samples 
and somatic samples that the sperm cell had strikingly short-
er telomere length compared to somatic cell in Telomere 
Restriction Fragment (TRF) analysis [78]. In this study, re-
elongation of these short telomeric sequences during early 
embryogenesis had been proposed. If the extension of these 
telomeric sequences does not occur, it may cause de-
repression of adjacent genes in the allele with a short telo-
meric sequence, which may explain the heterogeneity of 
clinical findings even in the same family members having 
FSHD. Another study which might explain the relationship 
between TPE and FSHD is related to nuclear localization. 
Telomeric sequences show a peripheral location in the cell 
nucleus as they are poor in coding DNA sequences. The hy-
pothesis is that the requirement of a threshold value is for the 
placement of D4Z4 sequence, thus TPE is epigenetically 
involved in silencing genes which are at the proximal sub-
telomeric location [79]. As a result, both shortened D4Z4 
and shortened telomeres can disrupt the nuclear location of 
the 4q35 locus, causing de-repression of neighbor genes in 
FSHD disease. 

2.3. Oxidative Stress and Inflammation  

Oxidative stress is caused by free hydroxyl radicals 
(•OH), superoxide anions (O2•−) and hydrogen peroxide 
(H2O2) that are naturally produced as a result of enzymatic 
reactions in the cell from either mitochondria-related or other 
naturally occurring reactions. A healthy cell balances these 
free radicals by converting them into less harmful forms with 
the antioxidant enzymes, such as Superoxide Dismutase 
(SOD), Catalase, and Glutathione Peroxidase 3 (GPX3) [80]. 
Otherwise, these radicals can easily transfer their unpaired 
electron to nucleic acids, fat, protein or other compounds in 
the cell, leading to DNA damage, lipid peroxidation or dam-
age to the protein structure.  

Most recently, the disruption of oxidative stress has been 
identified as one of the components leading to muscle loss in 
FSHD patients. Laoudj-Chenivesse et al. revealed increased 
levels of Adenine Nucleotide Translocator (ANT1) protein 

corresponding to mitochondrial dysfunction together with a 
decrease in oxidative stress protection in FSHD muscle 
compared to control [81]. Supporting these results, Macaione 
et al. found an increased ANT1 expression and Nuclear Fac-
tor kappa B (NF-kB) DNA binding activity together with 
increased hydrogen peroxide and reduced peroxidase activity 
[82]. Winokur and colleagues identified the dysregulation of 
oxidative stress genes via global gene expression profiling in 
FSHD. They also observed that when they induced oxidative 
stress by using paraquat, an oxidative stressor, FSHD my-
oblasts were susceptible to oxidative stress, which was not 
observed in control myoblasts [83]. Another study revealed 
that DUX4 expression had been upregulated with oxidative 
stress [84]. With these aforementioned studies, it is obvious 
that oxidative stress has an important role in the pathology of 
FSHD. Another component observed in FSHD muscle tissue 
is histological inflammatory changes; mononuclear cell infil-
trates in FSHD samples compared to controls which also 
enhance muscular damage found at higher amounts [85]. 
Pro-inflammatory cytokines have been reported to be in-
creased in FSHD [86]; for example, Tumour Necrosis Factor 
alpha (TNF-α) had also been revealed as a perturbed path-
way in FSHD network analysis [54]. DUX4 itself had also 
been shown to activate immune mediators [87], but not all 
dysregulated inflammatory genes are considered DUX4 tar-
gets. From a total of 118 immune genes that were expressed 
in FSHD biopsies, 80 were found to be DUX4 associated 
while 38 were not [88], which indicated an immune cell in-
filtration. These data render regulation of inflammation as 
another candidate for FSHD treatment.  

2.4. Sex Steroids 

Clinical variation between male and female FSHD pa-
tients indicated the effect of hormones on FSHD pathophysi-
ology [8], which was found to be very similar to Limb-
Girdle Muscle Dystrophy (LGMD) [89]. FSHD progresses 
mildly in females, and the disease progression is affected by 
pregnancy and birth in female patients [90-92]. An additional 
clue was the observation of intensified clinic findings with 
anti-estrogen therapy in FSHD cases with breast cancer [93]. 
These observations led to the investigation of sex steroids at 
both clinical and molecular levels. Mul et al. reported that 
lifetime estrogen exposure was not correlated with FSHD 
severity [94]; however, Hangul et al. reported a negative 
correlation between estradiol/total testosterone ratio and pro-
gesterone/total testosterone with the severity of FSHD, while 
there was a positive correlation found with total testosterone 
[95]. On molecular basis, Teveroni et al. treated differentiat-
ing FSHD cells with estradiol (E2) for 72 hours and detected 
that E2 antagonized DUX4-mediated impairment of my-
oblast differentiation [96]. Although DUX4 mRNA level did 
not change, E2 downregulated DUX4 target genes (e.g., 
TRIM43 and ZSCAN4) via epigenetic regulation of DUX4 
target gene promoters [96]. Supporting the protective role of 
estrogen, Hangul et al. showed that DUX4 was downregulat-
ed at the protein level in myoblasts of one male FSHD pa-
tient [97].  

In the previous part of this review, clinical features of 
FSHD, the studies on genetic and epigenetic components of 
the disease, the effect of oxidative stress, inflammation, and 
sex steroids have been summarized. In the following sections 
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of this review, in addition to current clinical trials, the stud-
ies on natural compounds, which are promising candidate 
agents that can interfere with FSHD related genes and path-
ways, will be shared. 

3. CLINICAL TRIALS FOR THE PHARMACOLOGI-
CAL TREATMENT OF FSHD  

Currently, there is no definitive specific medical treat-
ment for FSHD other than symptomatic treatments for some 
complications of FSHD. Disease management may change in 
each patient and may include different therapies, such as 
physical therapy, speech therapy, surgery and respiratory 
support.  

There are 43 clinical trials on the treatment of FSHD, of 
which 22 have been completed and 3 have been terminated. 
Of the ongoing 18 studies, 5 have not started recruitment yet, 
9 are recruiting, and the status of 4 is unknown. These clini-
cal trials are not only related to drugs but also diagnostic 
tests and devices for imaging technology. Only 18 of the 43 
clinical trials are related to pharmacological treatment, 1 of 
which is about stem cell therapy and 3 of which are about 
dietary supplements. In this review, clinical trials on phar-
macological treatment and stem cell therapy are discussed 
under section 3 (Table 1). Clinical trials on dietary supple-
ments are discussed under section 4. 

3.1. Drugs 

3.1.1. ACE-083 

ACE-083 is a locally acting follistatin-based therapeutic 
that blocks proteins in the Transforming Growth Factor 
(TGF)-beta family, such as myostatin, which is responsible 
for reducing muscle strength and growth. ACE-083 had re-
ceived orphan drug status from the U.S. Food and Drug Ad-
ministration in 2018 for the treatment of FSHD. The efficacy 
and safety of ACE-083 were evaluated in a two-part Phase 2 
clinical trial in patients with FSHD. Patients received either 
150 mg or 200 mg doses of ACE-083 by local injection once 
every three weeks to the affected muscles for three months. 
Although the first part of the study showed that ACE-083 
could increase patients’ muscle mass, the second part of the 
study failed to show an increase in muscle function with 
ACE-083 after six months [98]. As a result, the clinical trials 
of ACE-083 in FSHD were terminated by Acceleron Com-
pany. 

3.1.2. ATYR 1940 (Resolaris) 

Inflammation is involved in the pathophysiology of 
FSHD. Immunosuppression of the inflammation may slow 
down disease progression. Physiocrines are a novel group of 
naturally occurring proteins which are extracellular signaling 
regions of tRNA synthetases and modulate immune system 
pathways, thus being molecular targets for immunomodula-
tory therapies. ATYR1940 (Resolaris) is a physiocrine-based 
506 amino acid recombinant protein that is a version of hu-
man histidyl-tRNA synthetase (HARS). Resolaris could po-
tentially play a role in promoting skeletal muscle health by 
acting as an immunomodulator in skeletal muscle [99]. Reso-
laris has been shown to modulate immune responses in 
skeletal muscle in preclinical studies. Muscle strength of 
patients treated with Resolaris improved when compared to 

placebo. A two-part Phase I/II clinical trial, which was con-
ducted by aTyr Pharma, showed that Resolaris 3,0 mg/kg led 
to an improvement of up to 25,5% in individualized neuro-
muscular quality of life (INQoL), and an increase of up to 
3,8% in manual muscle testing (MMT) scores at week 12/14. 
Participants maintained or increased their MMT and INQoL 
scores at 24 and 36 weeks [100]. 

3.1.3. Albuterol (Salbutemol) 

β2-adrenergic agonists have been shown to increase mus-
cle strength and prevent muscle atrophy in experimental and 
clinical studies on healthy subjects. After albuterol, a β2-
adrenergic agonist showed encouraging results in patients 
with FSHD in a small pilot study; randomized, double blind, 
placebo-controlled trials (RCT) were planned [101, 102]. 
The first RCT performed by Kissel et al. showed that both 
albuterol 8 and 16 mg did not improve global muscle 
strength and function but only exhibited some effect in in-
creasing muscle mass. A later study conducted by Van der 
Kooi et al. showed that albuterol 8 mg exerted a limited 
positive effect on muscle strength and volume [103]. In a 
more recent study, albuterol 16 mg was inefficient in im-
proving motor test scores [104]. Periodic use of salbutamol 
had been revealed to limit its side effects, like cramps, trem-
or and insomnia, in all studies [104]. 

3.1.4. MYO-029 

Myostatin, a member of the transforming growth factor 
superfamily, is an endogenous inhibitor of muscle growth. 
MYO-029 is a recombinant human antibody that binds to 
myostatin and inhibits its activity. MYO-029 has been 
shown to increase muscle mass in immunodeficient mice by 
approximately 30% over 3 months [105]. A double-blind, 
placebo-controlled, multinational, randomized Phase I/II 
study evaluating MYO-029 in adult subjects with FSHD 
showed that MYO-029 exhibited good safety and tolerability 
with the exception of cutaneous hypersensitivity at 10 mg/kg 
and 30 mg/kg doses. The study failed to show improvement 
in muscle strength and function due to lack of power, but 
increased muscle size was demonstrated in a limited number 
of subjects by dual-energy radiographic absorptiometry and 
muscle biopsy showing MYO-029 bioactivity [106].  

3.1.5. Losmapimod 

DUX4 expression results in skeletal muscle loss and pro-
gressive motor disability. p38 inhibitors effectively suppress 
DUX4 expression in mouse xenograft models of human 
FSHD gene regulation [107]. Losmapimod is a selective 
small molecule inhibitor of p38α/β being developed by Ful-
crum Therapeutics to reduce DUX4 expression. After pre-
clinical studies demonstrated that losmapimod is a potent 
and highly selective inhibitor of p38 α/β resulting in the re-
duction of DUX4, a two-part Phase 1 clinical trial demon-
strated that losmapimod 7,5 and 15 mg in capsule form was 
safe and well tolerated in healthy volunteers and patients 
with FSHD [108, 109]. A randomized controlled Phase IIb 
study is being conducted to evaluate drug efficacy [110].  

3.1.6. Testosterone Enanthate and Somatropin 

The safety and tolerability of combination therapy with 
Recombinant Human Growth Hormone (rHGH) 5.0 μg/kg 
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Table 1.  Clinical studies and summary of their results. 

Pharmacological Treatment 
ClinicalTrials.gov 

Identifier Number 
Phase Result 

ACE-083 
NCT02927080 

NCT03943290 
II 

Safe and tolerable. Inconsistent clini-

cal results. Studies terminated in Phase 
II 

Albuterol (Salbutamol) 
NCT00004685 

NCT00027391 

NA* 

NA* 

Safe, tolerable with minor side effects. 
Only limited effect on muscle 

strength/mass  

ATYR 1940 (Resolaris) 

NCT02603562 

NCT02836418 

NCT02579239 

NCT02531217 

NCT02239224 

I/II 
Safe and tolerable. Clinical improve-

ment at weeks 12/24/36 

Losmapimod 

NCT04003974 

NCT04264442 

NCT04004000 

I/II 
Safe and tolerable. Ongoing Phase II 

trials 

MYO-029 NCT00104078 I/II 
Safe and tolerable. No clinical im-

provement but demonstrated bioactivi-

ty in limited subjects 

Stem Cell NCT02208713 I Ongoing 

Testosterone Enanthate and  

Somatropin 
NCT03123913 I Recruiting 

*NA: Not applicable, means trials without FDA-defined phases.  

 
SC and testosterone enanthate 140mg IM in adult male pa-
tients with FSHD are being investigated in the Phase 1 
“Study of Testosterone and rHGH in FSHD (STARFISH)” 
study, which has started recently in 2020 (NCT03123913). 

3.2. Stem Cell Treatment  

A Phase-1 study on muscle-derived stem cells and adi-
pose-derived mesenchymal stem cells in patients with FSHD 
is still going on. Patients were injected cell suspensions  
into biceps, triceps and trapezoids muscles and will be  
followed at 1, 2, 4, 6 and 12 months after cell injection 
(NCT02208713).  

The pharmacological treatment, ClinicalTrials.gov Identi-
fier number, clinical study phase, and a summary of the re-
sults, are shown in Table 1. 

4. STUDIES INVOLVING NATURAL COMPOUNDS 
AND PHYTOCHEMICALS ON FSHD  

Although there are plenty of studies on the genetic or  
epigenetic infrastructure of FSHD, there are a limited num-
ber of studies that have revealed the effect of natural com-
pounds in vitro or in vivo. We have classified these few stud-
ies on natural compounds as DUX4 inhibition, telomere po-
sition effect, methylation, antioxidant interventions, phytoes-
trogen interventions and protein/creatin supplementation 
(Tables 2 and Table 3). Although classified basically, all 

these compounds (Fig. 1) have an effect on multiple path-
ways in a nested way.  

4.1. DUX4 Inhibition 

Bosnakovski and colleagues completed a comprehensive 
study in which they tested 44.000 small compounds for 
DUX4 inhibition. From these compounds, they defined 52 
compounds, and 60% of these inhibited DUX4 and protected 
cells from oxidative stress [111]. However, these compounds 
did not protect against Endoplasmic Reticulum (ER) stress, 
DNA damage and caspase activated cell death [111]. This 
study is valuable with its results, but they also implicated 
that inhibiting DUX4 is not enough to stop loss of muscle. 
Because of that, in addition to DUX4 inhibition, it is essen-
tial to target additional pathways that will block ER stress, 
DNA damage and caspase activated cell death related to 
FSHD pathophysiology. 

Fisetin is a flavonol having antioxidant effect like other 
polyphenols. Sharma et al. found that protein Poly (ADP-
ribose) Polymerase 1 (PARP1) was the top-ranked protein 
having interaction with DUX4 promoter in FSHD myoblasts 
but not in control myoblasts [112]. They proposed that the 
inhibition of PARP1 might affect DUX4 level and when they 
treated FSHD myoblasts with 0.5 mM fisetin, a polyphenolic 
PARP1 inhibitor, they identified the suppression of DUX4 
expression as well as the suppression of DUX4 target gene 
ZSCAN4 [112]. 
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Table 2.  A summary of natural compounds and phytochemicals studied in FSHD. 

Natural Compound/ Phytochemical 
Target Molecule(s) & 

Structure(s) 
Effect Refs. 

Ascorbic acid, Monothioglycerol, Vitamin E and K2  Oxidative pathway Reduced oxidative stress [45] 

Berberine 
G quadruplex 

structure 
Reduced DUX4 expression [89] 

52 unnamed compounds DUX4 Inhibition [111] 

Fisetin PARP1 Inhibition [112] 

Acacetin and Chyrisin FRG2 Upregulation [113] 

Folic acid and Methionine D4Z4 methylation No change [117] 

Vitamin C and E, Zinc gluconate and  

Seleno-methionine 
Oxidative pathway and methylation effect Reduced oxidative stress [123] 

Retinoic Acid (RA) Glutathione peroxidase 3 (GPX3) Upregulation [124] 

Tempol and N-Acetyl-L-cysteine (NAC) DNA damage and oxidative stress 
Reduced level of DNA dam-

age 
[125] 

DHA, EPA, Vitamin E, Curcumin, Acetyl L-carnitine, 

Ascorbic acid, CoenzymeQ10, Baicalin, Green tea 

(FLAVOMEGA) 

Multiple pathways  Clinical improvement [126] 

Biochanin A, Daidzein or Genistein Mitochondrial biogenesis Rescued myogenesis [127] 

 

Table 3.  Clinical studies with dietary supplements and summary of their results. 

Pharmacological Treatment 
ClinicalTrials.gov 

Identifier Number 
Phase Result 

Flavonoids** NCT01596803 NA* 
Safe and tolerable 

Limited effects 

Flavonoids**+ Omega 3 NCT03317171 NA* 
Safe and tolerable  

Significant effect on walking and knee extension 

Post-exercise Protein-Carbohydrate 

supplementation 
NCT01618331 NA* 

Reduced muscle protein breakdown, abolished net 

muscle catabolism  

Long term effects unknown 

Creatine monohydrate NCT02948244 II Not effective  

*NA: Not applicable; means trials without FDA-defined phases.  
** Flavonoids refer to a variable combination of molecules like Vit C, Vit E, zinc, selenomethionine, coenzyme-Q10, amino acids, curcumin, acetyl-carnitin, etc. with various posi-
tive effects on free radicals, antioxidation, immune system, etc.  
 

Natural compounds that were used in two studies for 
DUX4 inhibition also exhibited antioxidant effects because 
of their chemical structure. Both of the studies aforemen-
tioned in this section indicate the effectiveness of natural 
compounds for DUX4 inhibition. 

4.2. TPE Intervention 

Another interesting study by Boussouar et al. revealed the 
effect of natural compounds on TPE in myoblasts. 72 hours 
treatment of two dietary flavones, acacetin and chyrisin, spe-
cifically alleviated TPE and led to the upregulation of FRG2 
expression, a gene that has been found to be upregulated in 
FSHD, in the telomeric area [113]. A limitation of this study 

was that 72 hours time period did not reflect whether long-
time effects would be in the same direction. The authors also 
tested other flavonoids, such as apigenin, luteolin, myricetin, 
quercetine dihydrate, and vitexin; however, similar effects 
were not observed [113]. Different effects of different poly-
phenols revealed that molecular effect is not a general proper-
ty of polyphenolic compounds but the structure of the mole-
cule. When the molecules in the study were carefully investi-
gated, a right-left mirror difference was observed indicating 
the importance of the 3D structure of the molecule for future 
research. Even acacetin and chyrisin exhibited antioxidant and 
vascular relaxation effects; because of their upregulation ef-
fects on telomere-related genes, they are not good candidates 
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Fig. (1). Chemical structures of phytochemicals studied in FSHD. 
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for FSHD. However, if we examine this study up way down, 
we can conclude that polyphenols, such as apigenin, luteolin, 
myricetin, quercetine dihydrate, and vitexin, can be used in 
FSHD, as they would not significantly upregulate the telomer-
ic genes as FRG2 and probably DUX4 which would be valua-
ble to investigate. For instance, among these compounds, 
apigenin (a polyphenol found in plant-derived foods, including 
parsley, thyme, celery, and chamomile tea) might be a good 
candidate to study on FSHD cells. Apigenin has been reported 
to exert antioxidative effects by scavenging free radicals 
[114]. These effects are marked from the reduction of bi-
omarkers of oxidative damage, such as reactive oxygen radi-
cals (ROS) and lipid peroxidation (LPO), as well as pro-
inflammatory cytokines [115], all of which have been shown 
to be disrupted in FSHD [81, 83, 84, 86]. To achieve a certain 
conclusion, detailed research with these compounds on FSHD 
cell lines is needed. 

Being close to telomere and having GC rich sequences 
[20], D4Z4 repeat unit on chromosome 4 formed quadruplex 
complexes. Ciszewski et al. used berberine to modulate 
quadruplex structure. As a result, it was revealed that after 
berberine treatment, expression of DUX4 reduced, fibrosis 
was inhibited and an increase in muscle function had been 
observed [116].  

4.2.1. Methylation Interventions 

There is only one study on nutraceutical supplementation 
to manipulate methylation in FSHD [117]. Kooi and col-
leagues proposed that supplemental folic acid and methio-
nine can reverse hypomethylation that is observed in FSHD. 
Because of that, they evaluated the effect of oral folic acid (5 
mg per day) and methionine (1g three times per day) sup-
plementation for 12 weeks on the methylation level of 4qter 
from peripheral blood lymphocytes of FSHD patients and the 
control group. The outcome of 4qter methylation was meas-
ured via CpG methylation-sensitive restriction sites (BsaAI 
and FseI) in the first (proximal) unit of the D4Z4 repeat ar-
ray, which was still significantly hypomethylated compared 
to the control group. In addition, they performed total DNA 
methylation analysis to estimate CpG island methylation of 
the whole genome. As a result, they identified no significant 
methylation change, both in restriction and whole-genome 
molecular tests after supplementation. They reported 12 
weeks folic acid and methionine supplementation to be safe 
[117]. Depending on these results, one can easily speculate 
the uselessness of these compounds for changing the methyl-
ation status of 4qter. However, there are multiple points that 
should be inferred and repeated. First, as Kooi and col-
leagues suggested, the folic acid dose might be insufficient. 
In addition, because the nutraceuticals have milder effects 
compared to drugs, it is important to use them for longer 
periods (more than 12 weeks) to reach a conclusion. Another 
thing to consider is the different responses of each CpG to 
folic acid and methionine supplementation. Recent studies 
on the methylation status of the first (proximal) unit of the 
D4Z4 repeat array have revealed complicated results. Jones 
et al. and Gaillard et al. reported that methylation in between 
5’ and 3’ prime of D4Z4 area is divergent [118, 119]. They 
also found a correlation between 5’ prime methylation status 
and clinical status of FSHD [118, 119]. On the other hand, in 
a large cohort of genotype-phenotype study, Nicolic et al. 

reported that they did not find a certain correlation between 
the clinical progression and methylation status of this area 
[120]. In any way, it is clear that there are individual vari-
ances in the methylation of this area, including the same 
family members with the same repeat unit, in addition to the 
difference between FSHD1 and FSHD2 patients. Because of 
that, it is necessary to design new studies by considering the 
wide variability in the methylation status of the D4Z4 region. 

4.2.2. Oxidative Stress Interventions-Antioxidants  

Antioxidant molecules have two well-known groups as 
natural and synthetic antioxidants. Even though they are 
classified as antioxidants, some of them, on the other hand, 
such as α-tocopherol (vitamin E), vitamin C, and flavonoids, 
can become pro-oxidant when used at high concentrations 
[121]. Because of that, as a potential therapeutic option for 
FSHD [122], it is necessary to select the right antioxidant(s) 
in the right dose. 

Bosnakovksi and colleagues revealed increased oxidative 
stress of DUX4-expressing myoblasts. They tested the ef-
fects of antioxidants via treating highly DUX4 exhibiting 
cells with β-mercaptoethanol, monothioglycerol, ascorbic 
acid, vitamin K2 and vitamin E. They observed these antiox-
idants enabled myoblasts even in the toxic levels of DUX4. 
They also analyzed Myogenic Differentiation 1 (MyoD) or 
Myogenic Factor 5 (Myf5) levels to reveal whether this ef-
fect was through these proteins. However, antioxidants had 
no effect on MyoD or Myf5, confirming that they exert ef-
fect via buffering the effect of DUX4 rather than inactivating 
it [45].  

In a nutraceutical clinical study on FSHD, 500 mg vita-
min C, 400 mg vitamin E, 25 mg zinc gluconate and 200 μg 
selenomethionine had been applied once a day for 17 weeks. 
53 patients had been included in this study, and they were 
grouped as 26 treated and 27 matching placebos. The effect 
of this treatment had been tested via both clinical and molec-
ular tests. The improvement in the two-minute walking test 
(2-MWT), maximal voluntary contraction, and endurance 
limit time of the dominant and nondominant quadriceps 
(MVCQD, MVCQND, TlimQD, and TlimQNDS) had been 
measured. Statistical significance had been observed only in 
MVCQ and TlimQ values, but not in 2-MWT. At the molec-
ular level, lipid peroxidation had been found to be signifi-
cantly different compared to the control group, indicating 
reduced oxidative stress [123]. These supplements were 
found to be safe and tolerable (Table 3); however, longer 
treatment periods than 17 weeks might have exhibited oxi-
dant effects which might not be preferable in the treatment of 
FSHD; for clinical use in FSHD patients, time period should 
be clarified for these agents in future studies. 

Another study tested the effect of Retinoic Acid (RA) on 
FSHD myoblasts from patient biopsies. RA reduced the cy-
totoxic damage and enhanced myoblast survival when ap-
plied before hydrogen peroxide, an oxidative stress inducer. 
The study also revealed that Glutathione Peroxidase 3 
(GPX3) is an RA target in myoblasts, and RA executes anti-
oxidant effect via upregulation of GPX3 [124].  

Dmitriev et al. pointed out that DNA damage is caused 
by oxidative stress in FSHD. After treatment with strong 
antioxidants, tempol or N-Acetyl-L-cysteine (NAC), both 
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DUX4-transfected myoblasts and FSHD myoblasts exhibited 
reduced levels of DNA damage confirming a DUX4 related 
oxidative stress in FSHD. Tempol also contributed to the 
healing of morphological defects in myotube formation 
[125].  

Recently, results of a double-blind pilot trial in muscular 
dystrophies based on flavonoids and omega-3 have (FLA-
VOMEGA) been reported. 29 dystrophy patients (DMD, 
FSHD, and LGMD) were included in this study; 5 of them 
were FSHD patients. Placebo and treatment groups have 
been selected randomly. FLAVOMEGA supplementation 
had been tested for both safety and efficacy for 24 weeks of 
treatment. FLAVOMEGA composition consists of two phas-
es as oily and powdered. In the oily phase, FLAVOMEGA 
contains Dokosaheksaenoik Acid (DHA), Eikosapentaenoic 
Acid (EPA), vitamin E, and lemon essential oil. In the pow-
dered phase, it contains curcumin, acetyl L-carnitine, ascor-
bic acid, coenzymeQ10, skullcap (Scutellaria baicalensis 
Georgi) baicalin, and green tea. This mixture of nutraceuti-
cals and phytochemicals is comprehensive as it targets mul-
tiple pathways essential for the treatment of dystrophies, 
such as disrupted mitochondria, oxidative stress and inflam-
matory pathways. In the FLAVOMEGA study, this supple-
ment had been found to be well-tolerated without adverse 
effects (Table 3), and significant differences in 6-minute 
walk distance and isokinetic knee extension had been ob-
served in the clinical outcomes of FSHD and LGMD patients 
[126].  

In the light of these studies, targeting the oxidative stress 
pathway with nutraceuticals and phytochemicals is a promis-
ing approach for FSHD treatment. 

4.2.3. Phytoestrogen Intervention 

Banerji et al. investigated the altered myogenesis and 
identified suppression of mitochondrial biogenesis. This 
suppression was found to be related to Proliferator-Activated 
Receptor Gamma Coactivator 1-α (PGC1α) and Estrogen-
Related Receptor α (ERRα). They performed knockdown of 
PGC1α in control myoblasts and observed hypertrophic my-
otubes, confirming their own results. Disturbed myogenesis 
was observed to be rescued by using food supplements as 
biochanin A, daidzein or genistein [127]. These results indi-
cate specific targeting of phytoestradiols. Biochanin A, dai-
dzein or genistein are isoflavones that can be taken from soy 
products. They are also grouped as phytoestrogens, because 
they can exhibit estrogenic activity. In addition to their es-
trogenic activity, belonging to the isoflavone class, these 
phytoestrogens exert antioxidant effects that make these nat-
ural compounds perfect candidates for the treatment of 
FSHD. 

4.2.4. Protein and Creatine Supplementation  

Protein supplementation after aerobic exercise has a 
stimulating effect on protein anabolism in healthy muscle. In 
a small group of patients with muscular dystrophy, post-
exercise protein-carbohydrate supplementation within 3 
hours led to reduced muscle protein breakdown resulting in 
an abolished net muscle catabolism, but the long-term effects 
of this treatment are unknown [128]. Creatine supplementa-
tion has been a target of interest in muscle diseases after it 
has been shown that the addition of creatine could attenuate 

weakness and metabolic disturbances in diseases character-
ized by atrophic conditions like in the muscle, bone or brain. 
Although efficient in some muscle disorders like dystro-
phinopathies, patients with FSHD did not benefit from crea-
tine supplementation [129] (Table 3).  

5. CANDIDATE NATURAL COMPOUNDS AND PHY-
TOCHEMICALS FOR FUTURE FSHD RESEARCH 

STUDIES  

Due to few studies involving natural compounds focused 
on FSHD treatment, this area paves the way for a wide varie-
ty of novel studies.  

Here, in this section, natural compounds related to some 
of the impaired FSHD pathways (Fig. 2) are discussed as 
promising possible candidates for future FSHD studies (Ta-
ble 4). There are multiple nutraceuticals and phytochemicals 
that can contribute to impaired pathways. However, to have a 
powerful effect for slowing down FSHD, it is important to 
find out the right interaction of these natural compounds with 
the impaired molecular biology of the FSHD cell. 

Curcumin, a phytopolyphenol isolated from Curcuma 
longa L., can interfere with multiple cellular targets; because 
of that, it is one of the promising candidates for muscle-
wasting diseases [130]. It has been shown that curcumin con-
tributes to the treatment of FSHD at the clinical level [126]. 
However, at the molecular level, the effects of curcumin 
have not been revealed yet; curcumin has been revealed to 
have a wide variety of molecular targets. In Mdx model of 
DMD, curcumin enhanced muscle strength by downregulat-
ing TNF-α and Interleukin 1 beta (IL-1β) levels [131]. In 
FSHD, the increased levels of reactive oxygen species relat-
ed to TNF-α had been shown to lead to FSHD cell death 
[54]. However, it is not known yet whether curcumin has a 
similar regulating effect on TNF-α and IL-1β in FSHD mus-
cle which would be interesting to investigate. Curcumin can 
also inhibit the NF-kB pathway [132, 133] which has also 
been revealed as another pathologically activated pathway in 
FSHD [82]. It had been revealed that treatment with 20 mg 
of curcuminoids daily for 6 weeks led to a significant lower-
ing of NF-kB in the muscle of rats (134], and dietary curcu-
min supplementation alleviated NF-kB dependent muscle 
wasting [135]. Another target molecule of curcumin is Smi1; 
it can reduce Smi1 level [136]. Smi1 is a member of the 
PRC2 complex that is necessary for the epigenetic modula-
tion of D4Z4 repeat on chromosome 4q35 [64]. Inhibition of 
a PRC2 complex member is an unwanted effect because 
when the activity of the PRC2 complex is reduced, the dis-
ruption of the epigenetic repression in the D4Z4 area might 
lead to an increased DUX4 expression. Until now, it has not 
been studied whether curcumin could exhibit its Smi1 reduc-
ing effect specifically on FSHD myoblasts/myotubes. The 
effects of curcumin on an FSHD cell need to be clarified. 
Another intriguing target of curcumin is P300, a histone ace-
tyl transferase [137]. Bosnakovski et al. showed that P300 
inhibitor reverses DUX4-mediated global histone H3 hyper-
acetylation, targets gene expression and cell death in FSHD 
myoblasts and FSHD animal model [138]. P300 can also be 
inhibited via other additional phytochemicals. Dietary natu-
ral compounds as Epigallocatechin-3-Gallate (EGCG), gar-
cinol, anacardic acid and gallic acid can block P300 
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Fig. (2). Chemical structures of candidate natural compounds and phytochemicals related to impaired FSHD molecular targets. 

 

Table 4.  Candidate natural compounds and phytochemicals related to impaired FSHD molecular targets.  

Target Molecule Natural Compound/Phytochemical References 

TNF-α IL-1B Curcumin [131] 

NFκB Curcumin, delphinidin [134, 135, 143] 

Smi1 (PRC2) Curcumin [136] 

P300 
Curcumin, delphinidin, garcinol, anacardic acid, gallic acid and epigallocatechin-3-

gallate (ECGC) 
[137, 139-143] 

STAT3 
Cryptotanshinone, curcumin, ursolic acid, cucurbitacin E, alantolactone, silibinin and 

piperlongumine 
[142-147] 

DNMTs Resveratrol, schizandrol A (1 or 3 ug/ul) [145, 146] 

miR-206 PAX7 TRF (25% alpha tocopherol and 75% tocotrienols) [148] 
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Fig. (3). Genetic and epigenetic background of FSHD with the indicated therapeutic interventions. (A higher resolution/colour version of this 
figure is available in the electronic copy of the article). 
 
[139-142]. Delphinidin from Punica granatum L. recently 
had been revealed as a novel p300 inhibitor which interest-
ingly had not affected other epigenetic enzymes as histone 
deacetylase and histone methyltransferase [143]. That speci-
ficity of delphinidin makes it a good candidate for FSHD 
treatment. Delphinidin additionally inhibits TNF-α stimulat-
ed NF-kB effect via blocking its target gene expression 
[143].  

Epigenetic regulation of FSHD is one of the other major 
components that should be interpreted in treatment strate-
gies. There is no natural compound in the literature that has 
been shown to affect SMCHD1 or LRIF1 proteins. However, 
in diseases other than FSHD, it has been revealed that 
DNMTs can be regulated by nutraceuticals and phytochemi-
cals. DUX4 level has been revealed to be regulated by 
DNMT3B in a tissue-dependent manner [144]. These upreg-
ulating DNMT levels leading to hypermethylation in D4Z4 
repeat may contribute to clinical severity via reducing DUX4 
levels, especially in non-DNMT3B mutated FSHD1 patients 
or FSHD2 patients with the heterozygous mutation. Resvera-
trol via stilbene polyphenolic group restored oxidative stress 
condition by upregulating the decreased levels of DNMT1, 
DNMT3a, DNMT3b and Sirtuin 1 (SIRT1) in retinal pig-
ment epithelium cells [145]. This upregulation of DNMTs 
increased the methylation levels of repeat sequence called 
Long Interspersed Nuclear element-1 (LINE-1) [145], which 
is a repeat sequence as D4Z4, making us curious to learn 
what the effect will be on FSHD. The treatment of another 
compound, schizandrol A, at 1 or 3 ug/ml dose increased 
mRNA expression of DNMT3A and DNMT3B on neuronal 

cell line, while 9 ug/ml exerted its effect in a completely 
opposite direction [146].  

Another promising emergent research area in neuromus-
cular disorders is modulating miRNAs with nutraceuticals. 
Recently, miR-206 has been suggested as a circulating  
biomarker in LGMD patients since it has been found to be 
significantly elevated compared to the control group [147]. 
Similar to that, miR-206 has been reported to be expressed 
highly in FSHD myoblasts [68], and a possible issue of 
modulating miR-206 could be interesting. From FSHD lit-
erature, PAX7 has been known to be a key protein in FSHD 
pathophysiology [44, 46, 47]. A study in human myoblasts 
has shown miR-206 and PAX7 to be overlapping, which are 
two important molecules in FSHD pathophysiology. Razak 
et al. found out that 50 μg/mL tocotrienol-rich fraction 
(TRF; consists of 25% alpha tocopherol, 75% tocotrienols) 
treatment changed the expression of myomiRs in human 
skeletal muscle myoblasts [148]. TRF treatment promoted 
differentiation by modulating the expression of miR-206 
which then resulted in the reduction of PAX7 expression 
[148]. Because TRF can target both miR-206 and PAX7, it is 
very interesting to search on FSHD at the molecular level. 
Supporting this, deprivation of vitamin E in diet resulted in 
muscle damage in rabbits, and this damage could be reversed 
with vitamin E treatment [149]. 

Signal Transducer and Activator of Transcription factors 
(STATs) are a key protein family playing a central role in 
multiple pathways. Although there is no study related to 
STATs in FSHD, we have recently reported a coincident 
FSHD-thrombocythemia case with Janus Kinase 2 (JAK2) 
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mutation [150] which has recently aroused suspicion regard-
ing the JAK/STAT pathway. In addition to this, convincing 
evidence exists regarding STAT3 playing a key role in mus-
cle differentiation, regeneration and dystrophies. Tierney et 
al. revealed that STAT3 signaling controls satellite cell ex-
pansion and skeletal muscle repair; transient STAT3 inhibi-
tion promoted satellite cell expansion and enhanced tissue 
repair in dystrophic muscles [151]. However, continuous 
STAT3 inhibition leads to muscle wasting; because of that, 
transient STAT3 activation is thought to be beneficial for 
muscle regeneration [152]. Pharmaceutical STAT3 inhibitors 
are difficult to use in this two-edged situation in daily treat-
ment because of their side effects. Here, natural STAT3 in-
hibitors might present a good alternative to use intermittently 
having lower side effects; on the other hand, it is worthy of 
notice that they can be inactivated easily, and they are not 
STAT3 specific. There are multiple natural compounds es-
pecially effective on STAT3; cryptotanshinone, curcumine, 
ursolic acid, cucurbitacin E, alantolactone, silibinin and 
piperlongumine [153-158] are some of these compounds.  

To summarize, by matching natural compounds to im-
paired FSHD pathways (Fig. 3), promising treatment strate-
gies might be developed. In this section, we have presented 
candidates targeting miR-206, DNMT3B, PRC2 (epigenetic 
modulation effect), p300, PAX7 (DUX4 modulation effect), 
Nf-kB, TGF-ß, (anti-inflammatory effect), and STAT3 for 
future research. These candidates can be expanded with the 
same approach via targeting several impaired pathways of 
FSHD. It is beneficial paying attention to some points while 
choosing the agent in order to achieve the desired success in 
the treatment. Natural compounds have multiple molecular 
targets in a cell. Because of that, it is necessary to test 
whether this compound affects the molecules that we want to 
target and whether it has no effect on other impaired path-
ways that we do not want to target in FSHD  
myoblast/myotube. Another point to be aware of is that natu-
ral compounds have milder effects compared to drugs which 
might lead to a wrong conclusion as they are ineffective. To 
overcome this, two strategies might be used: treatment for 
longer periods and combining more than one natural com-
pound to get stronger effects. 

There are a few studies that have tested nutraceuticals 
and phytochemicals in cell lines. To obtain convincing evi-
dence, it is necessary to perform an increased number of 
studies. Especially, evaluating right dosage and side effects 
in animal models might be useful. However, having different 
epigenetic states and translational differences, it is important 
to hold in mind that animal models might not provide com-
plete reflection of treatment efficacy in humans in vivo. For 
this reason, after identifying dosage and side effects, studies 
on human cell lines and clinical trials need to be better per-
formed for the clear reflection of efficacy. For the outcomes 
of clinical trials, evaluating some biomarker levels might be 
useful. Even though there is no FSHD specific severity, re-
flecting biomarkers as miyomiRs might provide information 
to follow the efficacy of potential treatment. 

CONCLUSION 

In this review, we have presented a variety of natural 
compounds which match up to each disrupted target in 

FSHD disease. As we put forward, natural compounds offer 
a wide variability of treatment options with matched molecu-
lar pathways observed in FSHD. Most of the natural com-
pounds are safe when they are used in appropriate doses. As 
long as distinguished and combined in an appropriate way, 
nutraceuticals/phytochemicals can be suggested to amelio-
rate diseases; they can also be used as supplemental treat-
ment options in addition to drugs for severely affected cases. 
In molecular studies, it would be useful to search for appro-
priate doses and combinations of right molecules on FSHD 
cell cultures and animal models, directing the results of these 
studies to clinical trials. With lower side effects and promis-
ing properties, these compounds deserve to take part in both 
clinical trials and molecular research studies. 

KEY POINTS 

Similar molecules in the same group of phytochemicals 
might have different effects on the same target. Example: 
Resveratrol via stilbene polyphenolic group restored oxida-
tive stress condition by upregulating the decreased levels of 
DNMT1, DNMT3a, and DNMT3b [145]. EGCG, on the 
contrary, decreased DNMT3a and DNMT3b expression via 
catechin metabolite in the embryos of mice. Even though 
both stilbene and catechin are polyphenolic compounds, the-
se counteracting results indicate the specificity of the effect 
for each compound and the importance of choosing the spe-
cifically correct metabolite for targeting wanted effect(s).  
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