
Shan et al. Cell Discovery            (2020) 6:48 Cell Discovery
https://doi.org/10.1038/s41421-020-0177-8 www.nature.com/celldisc

ART ICLE Open Ac ce s s

Defining relative mutational difficulty to
understand cancer formation
Lin Shan1,2, Jiao Yu1,2, Zhengjin He1,2, Shishuang Chen1,2, Mingxian Liu1,2, Hongyu Ding 1,2, Liang Xu1,2, Jie Zhao1,2,
Ailing Yang1,2 and Hai Jiang 1,2

Abstract
Most mutations in human cancer are low-frequency missense mutations, whose functional status remains hard to
predict. Here, we show that depending on the type of nucleotide change and the surrounding sequences, the
tendency to generate each type of nucleotide mutations varies greatly, even by several hundred folds. Therefore, a
cancer-promoting mutation may appear only in a small number of cancer cases, if the underlying nucleotide change is
too difficult to generate. We propose a method that integrates both the original mutation counts and their relative
mutational difficulty. Using this method, we can accurately predict the functionality of hundreds of low-frequency
missense mutations in p53, PTEN, and INK4A. Many loss-of-function p53 mutations with dominant negative effects
were identified, and the functional importance of several regions in p53 structure were highlighted by this analysis.
Our study not only established relative mutational difficulties for different types of mutations in human cancer, but
also showed that by incorporating such a parameter, we can bring new angles to understanding cancer formation.

Introduction
Gene mutation is a major cause of tumorigenesis. Cer-

tain mutations on important cancer genes such as KRAS
and p53 drive cancer formation1,2. As a result, such
mutations are enriched in cancer, and are found in
numerous cancer samples. It is generally perceived that if
a mutation occurs in higher number of cancer cases, it is
more likely to be a driver mutation3,4. However, most
mutations in cancer only occurs in very small number of
cancer cases, and the functional impacts of these muta-
tions are hard to predict.
To address this problem, it is necessary to consider that

the chance of observing a mutation in cancer cases is
influenced by at least two major aspects: (1) how difficult
it is to generate the mutation; and (2) whether the
mutation promotes cancer, therefore it will be selectively

enriched in cancer cases. If different mutations are initi-
ally generated at significantly different rates, it will greatly
impact the mutational distribution in cancer genome
database such as Catalog of Somatic Mutations in Cancer
(COSMIC). Certain cancer-driving, but too-hard-to gen-
erate mutations may appear exceedingly rare in cancer
database, yet certain passenger-type mutations may pile
up in greater numbers, if the underlying mutations are too
easy to occur.
At nucleotide level, there are 12 routes of interchanges

between A/G/T/C for single nucleotide substitutions,
which underly most cancer mutations. The chances of
generating each kind of mutations are certainly not equal.
Many factors contribute to such phenomenon. First, dif-
ferent endogenous and exogenous mutagenic events lead
to different types of nucleotide substitutions5–9. Second,
the abilities to recognize, repair, and tolerate different
types of mutations are also different10,11. Third, although
difficult to predict, different nucleotide sequences sur-
rounding the mutation site may cause local variances,
which may physically or chemically affect the chance of
mutagenesis. In addition, certain sequences are also more
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prone to be edited by enzymes such as APOBEC12,13.
Therefore, different flanking nucleotide sequences can
also affect mutation rate7,14,15.
Taken together, the probability to generate different

types of nucleotide change may vary greatly. If two
mutations both change the functional status of an
important gene and promote cancer, they should be found
in multiple cancer samples. However, if one of such
mutation is too difficult to generate at nucleotide level,
the number of cancer cases carrying that mutation will
decrease significantly. Considering this, if we can define
the relative difficulty to generate each type of nucleotide
mutations in cancer, we will be able to better estimate the
functional importance of cancer mutations.
Although mutational signatures for ageing, UV, APO-

BEC, smoking, and other cancer causes have been estab-
lished16, it is difficult to predict what percentage of
cancers are influenced by each signature, and to what
extent. Moreover, some of the major contributors to
cancer, including nitrosamine, have not been assigned a
Sanger mutation signature. Therefore, the relative diffi-
culty to generate different types of mutation in cancer has
not been adequately established. In this report, through
analysis of mutational data from 26,000 cancer genomes,
we established the relative mutational difficulty for dif-
ferent types of cancer mutations and showed that it can
help accurately interpret functional importance of cancer
mutations.

Results
Defining relative mutational difficulties in human cancer
Given the complexity of mutagenesis in cancer, it is very

difficult to construct a mathematical model that could
weight in all relevant factors to forwardly predict how
much more difficult it is to generate one type of mutation
versus the other. However, such differences do factually
exist, and they collectively determined the mutation dis-
tributions in human cancer. Based on this notion, we
argue that by analyzing large human cancer genome
dataset, we can reversely derive the relative difficulties for
each type of mutation (Supplementary Fig. S1).
We retrieved mutation dataset for all human coding

genes from the COSMIC database. From the approxi-
mately 26,000 cancer samples (Supplementary Fig. S2)
that were subjected to exome or whole-genome sequen-
cing, more than 3 million single nucleotide mutations
were identified on protein coding sequences (Fig. 1a).
Considering that some mutations such as KRAS G12D
and BRAF V600E are selectively enriched during cancer
development, which could skew our estimation of muta-
tion tendency, we excluded mutational events that occur
in more than five cancer samples (see “Methods” for

further discussion). This eliminated about 2% of muta-
tions (Fig. 1a) and the remaining mutations were collated
into different groups.
Overall, the number of C→T mutations and its com-

plementary G→A mutations constitute more than half of
mutations in cancer (Fig. 1b). The rate of C→T mutation
is 14-folds more than T→G mutation, demonstrating that
the chances to generate each type of mutations do vary
significantly (Fig. 1b).
Importantly, to reach a systematic view of how neigh-

boring sequences might affect mutational tendency, we
performed an extensive analysis, in which nucleotides at
−2, −1, +1, and +2 position were all taken into con-
sideration. Consequently, mutations were divided into
3072 groups (Supplementary Table S1).
For example, the most likely to occur cancer mutation is

C→T mutation on TTCGT sequences, which appeared
10,563 times. There are approximately 575 million
TTCGT sequences in 26,000 coding genomes. Therefore,
the chance of a C→T cancer mutation on TTCGT
sequences can be calculated as 1.85 × 10−5 (=10,563/
575,000,000), which is about 200-folds more than the
probability of A→C mutation on an ACATC sequence
(Fig. 1c). In other words, it is 200 times more “difficult” to
generate the latter mutation in human cancer. Similarly,
such “difficulty” indexes were generated for all 3072 types
of nucleotide substitutions, which showed a wide dis-
tribution (Fig. 1c, Supplementary Fig. S3, Table S1).
Analysis of these difficulty indexes showed that in addi-
tion to nucleotides on −1 and +1 positions (Fig. 1d), the
nucleotides on +2 and −2 positions can also exert sig-
nificant impacts on mutational tendency (Fig. 1e, Sup-
plementary Fig. S4). This indicates that it is important to
incorporate the flanking nucleotide sequences into ana-
lysis when assessing individual mutations.
Our analysis shows that different types of mutations are

generated at remarkably different rates (Fig. 1c). Given
that the chance to generate different types of mutations
can vary by several 100-folds, it strongly suggests the need
to reassess human cancer mutations and our dataset
(Supplementary Table S2) will provide a useful tool.
To more precisely evaluate individual cancer mutation,

we also took into consideration that certain types of
human malignancies such as melanoma, endometrial and
colorectal cancers exhibit significantly higher mutation
rates than other types of human cancer17. Therefore, the
same type of mutation may be generated at significantly
different rates in different types of cancer. Considering
this, we generated cancer type-specific mutational diffi-
culty indexes with similar method (Fig. 1f, Supplementary
Fig. S5, Table S2). which will enable precise assessment of
cancer mutations.
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Fig. 1 Relative mutational difficulty in human cancer. a, b Overview and classification of coding mutations from about 26,154 cancer genomes.
c Rates and relative difficulties of different types of mutations based on 26,154 cancer genomes. Depending on the type of nucleotide substitution
and the surrounding sequences, mutations are divided into 3072 groups. d, e The impact of flanking nucleotides on relative mutational difficulty. f
Cancer type-specific relative mutational difficulty.
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Incorporating mutational difficulty to predict loss of
function p53 mutations
We hypothesize that these “difficulty” indexes can serve as

a valuable tool to predict the functional importance of
cancer mutations. For example, if an A→C mutation on an
ACATC sequence, despite the high difficulty, is still strongly
selected for and appears in noticeable number of cancer
samples, it could indicate that such a mutation is sig-
nificantly enriched during cancer development. Therefore,
such mutations may be crucial for cancer development.
We applied this method to assess the functional impact

of p53 missense mutations. Several well-established p53
hotspot mutations account for about 27% of all p53
missense mutations and are known to abolish gene
function. Most of the less frequent p53 missense muta-
tions, although constituting the majority, are hard to
predict in terms of their functional impact. We factored in
the aforementioned “mutational difficulty” to estimate the
functional importance of each mutation. For example, the
M133R mutation is caused by T→G substitution on a
GATGT sequence, whose difficulty index is 233. This
mutation appeared in only 11 cancer samples in the
COSMIC database. Given our argument, the frequency of
this M133R mutation may have been severely penalized
by the high mutational difficulty. Considering this, we
designated M133R’s original count as 11 and revised
count as 2563 (= 11 × 233). Notably, the revised count for
this mutation is comparable to that of the hotspot R282W
mutation (original count 609, difficulty index 3.31, revised
count 2017), suggesting M133R is also a deleterious
mutation despite its low frequency in cancer database.
To more precisely assess these p53 mutations, we also

took into consideration that the same type of mutations is
generated at different rates in different cancer types (Fig.
1f). Therefore, in all our analysis we used cancer type-
specific mutational difficulty indexes to calculate the
revised mutation count for each p53 mutation (see
“Methods”) (Supplementary Table S3).
The global view of p53 missense mutations is provided

in Fig. 2a. The map of p53 original mutation count is
characterized by seven high peaks at R248 and R273,
which are crucial for interaction with DNA, as well as
R175, Y220, G245, R249, and R282, which are crucial for
maintaining p53 structure. In the revised mutation count
map, many more such high peaks appeared, suggesting
that other portions of p53 also contain numerous amino
acid residues that are essential for p53 function (Fig. 2a).
Importantly, judging from original counts, only a few p53
missense mutations occur more frequently than the hot-
spot R282W mutation (Fig. 2b). After considering the
mutational difficulty, more than 130 of p53 missense
mutations exhibit a higher revised count than R282W

(Fig. 2b), suggesting that many more p53 missense
mutations potentially abolish gene function.
To establish a cut-off value that could help identify p53

mutants that still retain wild-type function, we compiled
revised count values for all p53 synonymous mutations
and found them to be mostly below 700 (Supplementary
Fig. S6). Therefore, a revised count below 700 may suggest
wild type function for p53 mutants. We also estimated
that a revised count over 900 might suggest loss of
function. We constructed more than 80 low-frequency
p53 mutants with various revised count values to test such
hypothesis. The human osteosarcoma cell line Saos-2
carries homozygous deletion of p53. It could tolerate
hotspot p53 mutants but not wild-type p53 (Fig. 2c).
Twenty-two p53 mutants with revised count lower than
700 were cloned and tested. Consistent with our
hypothesis, they all behaved like wild type p53 in this
assay (Fig. 2c, Supplementary Fig. S7), suggesting they do
retain gene function as predicted by our method. For
example, the R282Q mutation (original count 36) is
located on the functionally essential amino acid residue
R282. However, the underlying mutation is relatively easy
to occur, and with a revised count of 186, this mutant
retained wild-type p53 function. We also noticed that the
highly frequent R158H mutation, although observed in 95
cancer samples, is an easy-to-occur mutation. With a
revised count lower than 700, this mutation also retained
wild type function. The high number of cancer samples
carrying this R158H mutation may be more of a result of
the easiness to generate the underlying mutation.
In contrast, certain high difficulty p53 mutations,

although many of which only occur in less than 10 cancer
samples, are predicted to be loss of function mutations
with revised counts over 900. We examined 61 such p53
mutations, and they were all well tolerated by Saos-2 cells,
confirming their loss-of-function status (Fig. 2c, Supple-
mentary Fig. S7).
We also noticed that, on P177, the P177L mutation

(original count 24, revised count 262) retains wild-type
function (Fig. 2d). Interestingly, on the same residue is
another mutation P177R, which exhibit lower original
count but much higher revised count (original count= 18,
revised count= 2887). Despite it being less frequent than
P177L, it is actually a loss-of-function mutation (Fig. 2d).
Importantly, in our analysis we observed multiple such
cases that even on the same residue, less frequent muta-
tions could be loss-of-function, yet mutants with higher
original counts retain wild-type function. Examples
include R282Q/P, M160I/L, L130F/R, R158H/L, and
others (Fig. 2d). Such a reverse phenomenon can be
explained by their revised mutation counts, again
demonstrating the validity of our method.
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Fig. 2 (See legend on next page.)
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To examine the biochemical function of these p53
mutants, we introduced them into HCT116 p53−/− cell
line, and tested whether DNA damage drugs can still
induce the expression of p21, a well-established p53
transcriptional target18. Quantitative polymerase chain
reaction (qPCR) analysis showed that these p53 mutants
were expressed at similar levels (Supplementary Fig. S9a).
Again, p53 mutants with revised counts lower than 700
behaved similarly to wild p53, whereas p53 mutants with
revised mutation counts higher than 900 behaved simi-
larly to hotspot mutants, failing to upregulate p21 mRNA
expression upon DNA damage (Supplementary Fig. S9b).
Summarized in Fig. 2e, despite the common perception

that high-impact mutations appear more frequently in
cancer database, the original mutation count is not a
reliable predictor of functional status. p53 mutants with
original counts less than 100 can either be loss of function
mutants or retain wild-type function. In contrast, the
functional status of p53 mutants are accurately predicted
by their revised mutation counts (Fig. 2f). This shows that
by defining relative mutational difficulty, we can provide
novel tools to accurately assess cancer mutations.

Dominant negative effects of p53 mutants
It is known that human p53 hotspot mutations also exert

dominant negative effect over wild-type p5319. To explore
whether such dominant negative effect also exists for other
p53 mutations, and whether our method could predict
such dominant negative effect, we established an experi-
mental system using the Eμ-Myc p19Arf−/− mouse
lymphoma cell line. This cell line retains wild type p53,
which can be activated by DNA damage to induce cell
death20. Expression of hotspot p53 mutant together with
green flourescent protein (GFP) was achieved in this cell
line via retroviral vectors. Hotspot p53 mutant exerts
dominant negative effects over endogenous wild-type p53,
and cells could not efficiently elicit cell death when treated
with DNA damaging drugs. As a result, the percentage of
GFP-positive, hotspot p53 mutant-expressing cells will
increase after drug treatment (Fig. 3a). In contrast,

expression of wild-type p53 in this system moderately will
sensitize cells to DNA damage drugs (Fig. 3a).
We cloned the murine versions of various human p53

mutants and tested whether they exhibit dominant
negative function. Importantly, among the 83 constructs
we tested, all p53 mutants with revised counts lower than
700 behaved like wild-type p53 (Fig. 3b), whereas all p53
mutants with revised count higher than 900 exhibited
dominant negative effect (Fig. 3b). Again, as a predictor of
dominant negative effect, revised count performed sig-
nificantly better than original mutation count (Fig. 3c, d).
We further tested whether our method could predict

cancer-promoting abilities of p53 mutants in vivo. Using a
tail-vein hydrodynamic injection method, together with a
transposon system21 and CRISPR gene editing22, Myc
overexpression and PTEN knockout was achieved in liver
cells of wild-type FVB mice. Under such condition, no
mice developed liver tumor at 3 weeks. Addition of R246S
murine p53 mutant, which mimics the human R249S
hotspot mutation, overrode endogenous wild-type p53 in
mice liver and caused massive tumors (Fig. 3e). Using this
setting, we tested eight p53 mutations. Among them,
R175C and R282Q are moderately recurring mutations on
amino acid residues that are essential for p53 function.
R158H is highly recurrent with an original count of 95.
Our method and in vitro results (Fig. 2c”) suggest that
despite their crucial location and/or high frequency, they
all retain wild-type p53 function. On the other hand,
K132Q, H193P, I251S, and I255F are predicted to be loss
of function mutations based on their revised counts.
These mutations are located at several β-strands, struc-
tures that are understudied in terms of their importance
to p53 function. The cDNAs of these p53 mutants were
introduced together with Myc cDNA and sgPTEN to
analyze their ability to promote liver cancer in vivo.
Figure 3e showed images of whole mouse livers from

this experiment. Consistent with our prediction, four
mutants with revised counts lower than 700 all behaved
like wild-type p53 and caused no tumors. In contrast, four
p53 mutants with high revised counts all caused massive

(see figure on previous page)
Fig. 2 Integrating relative mutational difficulty to predict the functional status of p53 mutations. a p53 mutation histogram based on original
and revised counts. Different types of mutations on the same amino acid residue (e.g., R273H and R273C) are combined to make this graph. Red lines
indicate hotspot mutation sites such as G245 and R282. In the lower panel, anmino acid residues with low original counts but high revised counts are
marked in blue. b The original and revised counts of p53 cancer mutations. Red lines indicate hotspot mutations such as R282W. c Expression of wild-
type p53 suppresses the growth of Saos-2 cells. Genes were delivered to cells via retroviral infection. For all colony formation assays in this study, cells
were infected with low MOI such that 30–50% of cells were infected with virus. c’ p53 hotspot mutants are well-tolerated by Saos-2 cells. The original
and revised counts are listed below each mutant. c” p53 mutants with revised count lower than 700 behave like wild-type p53 and suppresses Saos-2
growth. c”’ p53 mutants with revised count higher than 900 are loss of function mutants and are well-tolerated by Saos-2 cells. All colony formation
assay in this study were done in three independent biological repeats. d Pairs of p53 mutations on the same amino acid. Shown are examples of
high-difficulty mutations, although appearing in lower number of cancer samples, are loss of function mutations instead. e Original mutation counts
do not correlate with functional status of p53 mutants. f Revised mutation counts correctly predict the functional status of p53 mutants.
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Fig. 3 (See legend on next page.)
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liver tumors in mice (Fig. 3e), indicating they were able to
override endogenous wild-type p53 to promote cancer.

Functional importance of several regions on p53 structure
highlighted by our method
Our results suggest there are many low frequency p53

mutations with significant functional impacts. Their
locations are marked by blue lines in Fig. 2a. To better
understand their general distribution, we mapped these
high-impact mutations on the three-dimensional struc-
ture of p53. Known p53 hotspot mutations are located on
the interfaces that are crucial for p53 structure and
interaction with DNA. We first noticed that many resi-
dues adjacent to hotspot sites, such as V173, H178, M246,
V274, and A276, although with rather low original
mutation counts, showed very high revised counts (Fig.
4a, Supplementary Fig. S10a). This observation suggests
that many residues surrounding hotspot sites are in fact
also essential for p53 function. These crucial sites are
rarely mutated in cancer because their mutation fre-
quencies are severely penalized by high mutational
difficulty.
In addition to these residues, several other regions of

p53 stood out with high revised mutation counts. One of
such rarely mutated, high impact region is residues
130–138. These residues form a β strand and loop
structure that lays closely to a β strand–loop–helix
domain (amino acids 270–282), which host several hot-
spot mutations and are responsible for DNA-
interaction23,24 (Fig. 4b). Other high impact amino acids
identified by this method are five β strands that formed
the central β-barrel of p53. On the three-dimensional
structure of p53, such amino acids are also very close to
AA173–179 and AA244–249, both hosting hotspot
mutations25 (Fig. 4c, Supplementary Fig. S10b). Colony
formation assays in Saos-2 cells confirmed that many rare,
but difficult-to-generate mutations on these sites disrupt
p53 function (Supplementary Fig. S7). Such mutations
were also tested in the Eμ-Myc p19Arf−/− system and
exhibited dominant negative effects over wild-type p53
(Fig. 3b). Taken together, our method could regroup p53
mutations by integrating mutational difficulty, and points

to additional regions that are crucial for the function
of p53.
Of note, previous studies established that p53 has five

conserved domains26,27. We complied revised counts for
these five conserved domains (Fig. 4d). Many residues on
conserved domain II–V showed high revised count values,
indicating that these domains are indeed crucially
involved in cancer formation. The exception is conserved
domain I (AA 13–20), which contains two Serine residues
(S15 and S20) that are phosphorylated upon DNA
damage. These two residues may be functionally over-
lapping, and mutation of either S15 or S20 alone may not
be enough to allow for prompt tumorigenesis. Consistent
with this, mouse models in which these two serine resi-
dues were mutated either developed no tumors28, or
showed much weaker tumor phenotypes compared with
p53 hotspot mutant mice29,30.

Functional landscape of p53 mutations in human cancer
Our results suggest that, in addition to hotspot muta-

tion sites, numerous other amino acid residues are also
crucial for p53 function. Based on our analysis, we esti-
mate that out of the 1219 types of missense p53 mutations
in COMIC database, 27% are loss of function mutations
and 70% retain wild-type function. In addition, out of the
19598 p53-mutated cancer samples in COSMIC database,
83% samples contain loss of function p53 mutation and
15% samples retain wild-type p53 function. Experimental
analysis (Figs. 2 and 3) showed that our method can
accurately predict the functional status of p53 mutations.
However, the experimental work is limited by the fact that
we have not conducted an unbiased screen of all possible
mutations, and therefore the true-positive rate cannot be
extrapolated across to other mutations. To address this,
we compared our functional assessment of p53 mutations
with other methods.
The Functional Analysis through Hidden Markov

Models (FATHMM) method31, which estimates func-
tional impact based on sequence conservation and the
overall tolerance of the protein/domain to mutations, has
been commonly used to predict cancer-driving mutations.
Such a method is used by COSMIC to annotate cancer

(see figure on previous page)
Fig. 3 Integrating relative mutational difficulty to predict dominant negative effects of p53 mutations. a An experimental system to analyze
dominant negative effects of p53 mutations. A murine lymphoma cell line that retain wild-type p53 is partially infected by retrovirus that express p53
mutants and GFP. If the p53 mutants exert dominant negative effect over endogenous wild-type p53, it will render cells more resistant to DNA
damage induced by doxorubicin, and the rate of GFP-positive cells increases in surviving cells. Expression of wild-type p53 will moderately sensitize
cells to doxorubicin treatment. b–d Revised counts, but not original counts of p53 mutants correctly predicts whether such mutants exhibit
dominant negative effects. Murine p53 mutants corresponding to human p53 mutants were used in these experiments. e Revised counts correctly
predict whether p53 mutants can promote liver cancer formation in vivo. The original and revised counts are listed below each mutant, separated by
a “/”mark. Murine p53 mutants corresponding to human p53 mutants were used in this experiment. Mice were sacrificed 30 days after hydrodynamic
delivery of genes in vivo. n= 3 for each experimental group, except I248S for which one of the injected mice did not recover from hydrodynamic
injection. Shown are images of whole liver from each mouse.
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Fig. 4 (See legend on next page.)
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mutations. With regards to p53 mutations, comparison of
our prediction results with the FATHMM method
showed only 50% overlap (Fig. 5, Supplementary
Table S4).
Interestingly, in a recent publication by Giacomelli

et al., thousands of different types of p53 mutants were
introduced to cancer cells, and the functional status of
these p53 mutations were assessed by whether these
mutations were tolerated by cells under different condi-
tions32. Such a dataset (PHANTM) provides direct
experimental readout of p53 mutations. Our predictions
of the functionality of p53 mutations are highly consistent
with their experimental results, with an 88% overlap
(Fig. 5). The 12% p53 mutations that are differently pre-
dicted are listed in Supplementary Table S5. They may
have resulted from wrong prediction of our method, or
from small inaccuracies associated with the pool-based
large-scale studies used in Giacomelli et al.
We further looked at how other bioinformatic tools

such as PROVEN, SIFT, Polyphen predict the function-
ality of p53 mutants. In comparison, our method showed
the highest percentage of consistency with the experi-
mental results of Giacomelli et al.32 (Fig. 5).

Predicting the functional status of PTEN and INK4A
mutations
Next, we asked whether this method could be applied to

other established cancer genes such as PTEN and INK4A.
We cloned about 20 low-frequency PTEN and INK4A
mutations and expressed them in PTEN or INK4A defi-
cient cancer cell lines to see whether such mutations
abolish gene function. As predicted by our method, those
mutations with low revised counts retained wild-type
function, whereas those mutations with high revised
counts caused gene loss of function (Fig. 6a–c).
For example, high difficulty mutations including PTEN

Y27N, C124S, and I135K, although each only occurring in
five cancer samples in COSMIC, could not suppress AKT
signaling, proving that they all abolish PTEN function
(Fig. 6a). In contrast, the PTEN R173C and R173H
mutations, despite being the fifth and sixth most common
PTEN mutations and occurring in 47 and 36 cancer
samples, both retained wild-type function (Fig. 6a).
According to our method, both are low-difficulty muta-
tions, which explains why they did not disrupt PTEN

function. This observation, together with finding that p53
R158H mutation (original count 95, revised count 673)
also retains wild type function, demonstrate that our
method not only help identify rare mutations that pro-
motes cancer, it can also point out high frequency,
passenger-type mutations in cancer database.

Discussion
Significant differences of mutational difficulties in human
cancer
The functional importance of a mutation to cancer can

be reflected by its selective enrichment in cancer samples.
However, due to the lack of understanding of relative
mutational difficulty in cancer, most studies use mutation
frequency in cancer database to directly calculate selective
pressure. Our analysis shows that, depending on the type
of nucleotide substitution and the surrounding sequences,
the chances of generating different types of mutations can
vary by as much as 400-folds (Fig. 1c). Such a drastic
difference highlights the need to reapproach how we
interpret the functional importance of cancer mutations.
Many factors contributed to the fact that different types

of nucleotide substitutions are created at rather different
rates9. In this report, through analysis of large number of
human cancer genomes, we reversely derived the relative
difficulties for each type of mutation. We also established
such numbers in a cancer type-specific manner. Such a
dataset (Supplementary Table S2) will be a useful tool to
understanding cancer genome.
For most genes, close to 30,000 cancer samples have

been analyzed and deposited in the COSMIC database as
of January 2018. Certain easy-to-occur mutations may
simply accumulate in numerous cancer samples without
providing advantages for cancer development. In the
future, when increased number of cancer genomes are
deposited to the COSMIC database, it is expected that
more and more such easy-to-occur passenger mutations
will pile up on the mutation histogram. Without con-
sidering relative mutational difficulty, these seemingly
“mutational peaks” may lead to erroneous assumptions
that they are cancer-driving mutations.
To functionally estimate the importance of novel cancer

mutations, the cancer types that host such mutations
should also be taken into consideration. As illustrated in
Supplementary Fig. S5, for many types of mutations, it is

(see figure on previous page)
Fig. 4 Functionally important amino acid residues and regions in p53. a–c On the left panels, original mutation counts of listed amino acid
residues are indicated by white boxes, whereas revised counts are indicated by red or pink boxes. Hotspot mutation sites such as R175 and G245 are
included as controls. On the right panels, a’ functionally important amino acid residues near hotspot mutation sites are labeled in purple. Hotspot
mutation sites are labeled in blue. b’, c’ Additional regions crucial for p53 function are labeled in purple. Regions that mediate DNA binding such as
AA270–282 and AA173–179 are labeled in blue. d The original and revised mutation counts for amino acid residues on the five conserved regions of
p53. Columns in red indicate amino acid residues that host hotspot mutations.
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much easier to generate them in skin, colorectal and
endometrial cancers. At the same time, some types of
mutations are relatively more difficult to generate in these
cancer types (Supplementary Fig. S5). Therefore, if the
original count of a cancer mutation is primarily con-
tributed by skin, colorectal, and endometrial cancer
samples, such mutations should be viewed with caution.
However, they should not be automatically overlooked
either.
A previous study by Cannataro et al.33 used notions

similar to ours. Selective pressure for a cancer mutation
was calculated through their observed frequency and
mutation possibility. However, our method differs sig-
nificantly with Cannataro et al. in how we calculate
mutation tendency. In the Cannataro study, mutation
possibility was calculated first by assigning mutations in a
cancer sample to Sanger mutation signatures. However,
for a number of cancer-causing factors including nitro-
samine and drinking hot water, Sanger mutation sig-
natures have not been established. In addition, in the

Cannataro study, only cancer samples with more than 50
mutations were used to calculate mutation possibility.
This would exclude about half of cancer samples in the
COSMIC database. For example, about 67% of breast
cancer samples and 90% of leukemia and lymphoma
samples carry less than 50 mutations per sample. Our
method also differs with Cannataro et al. in two additional
aspects. First, we excluded mutations that have been
strongly enriched during cancer formation (Fig. 1a), as
they could significantly skew our estimation of back-
ground mutation tendency (Supplementary Fig. S3). Sec-
ond, in our analysis we also considered the effect of +2
and −2 nucleotide, which could significantly impact
mutation difficulty34 (Fig. 1e).

Potential implications for cancer prevention
In addition to establishing a method that could help

evaluate individual cancer mutations in a sequence- and
cancer type-specific manner, we also asked whether our
method could help understand cancer etiology in general.

Fig. 5 Comparison of functional predictions based on different methods. a FATHMM annotation of p53 mutants are retrieved from individual
p53 mutation page on COSMIC site. PHANTM, phenotypic annotation of TP53 mutations (http://mutantp53.broadinstitute.org/) provides functional
assessment of individual p53 mutant based on the experimental results of Giacomelli et al.32. Prediction by our method are highly consistent with the
PHANTM results, with an 88% overlap. b Comparison of our method with other methods with regard to p53 mutant functional annotation.
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In our analysis of human cancer mutations, we noticed that
the vast majority of common mutations on tumor sup-
pressors, such as p53, PTEN, FBXW7, and SMAD4 are low-
difficulty mutations (Supplementary Fig. S11a). Totally, 77%
of these common, low difficulty mutations on tumor sup-
pressors are C→T or its complementary G→A mutations
on CpG sequence, which could be the results of sponta-
neous deamination, one of the most frequent type of DNA

damage in cells9,35,36. Our analysis also showed such kind of
C→T or G→A mutations on CpG sequence are the easiest
to occur types of mutations in human cancer (Supple-
mentary Fig. S4). From a cancer prevention point of view, it
will be rather difficult to prevent such type of deleterious
events on tumor suppressors.
In contrast, except for IDH1/2 and AKT1, common

mutations on oncogenes such as KRAS, BRAF, CTNNB1,

Fig. 6 Integrating relative mutational difficulty to assess the functional status of PTEN and INK4A mutations. a Original and revised counts of
indicated PTEN mutants. Expression of wild-type PTEN suppresses AKT signaling in 786-O cells, which do not express PTEN. PTEN Mutants with low
revised counts (in blue) behave like wild-type PTEN and suppress downstream AKT signaling. PTEN mutants with high revised counts (in black) lose
gene function and cannot suppress AKT signaling. The original and revised counts are listed below each mutant. b Expression wild-type INK4A
suppress growth of U251 cells, in which the INK4A locus is deleted. b’ INK4A mutants with low revised counts retain wild-type gene function and
suppressed U251 growth. b” CDKN2A mutants with high revised counts are defective in gene function and are well tolerated by U251 cells. The
original and revised counts are listed below each mutant. c INK4A mutants with high revised counts (in black) cannot induce cell cycle arrest in
U251 cells. CDKN2A mutants with low revised counts (in blue) behave like wild-type CDKN2A and induce G1/early S phase arrest in U251 cells.
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PI3KCA, and JAK2 are typically high-difficulty mutations
(Supplementary Fig. S11a’). Only 14% of common cancer-
promoting mutations on oncogenes are C→T or G→A
mutations on CpG sequences. About half of common
cancer-promoting mutations on oncogenes require purine
to pyrimidine changes or vice versa. Such type of drastic
changes is unlikely to be caused by simple chemical
reactions such as deamination of the nucleobase. Rather,
exogenous carcinogenic events are potentially needed to
damage DNA to eventually create such types of muta-
tion10. Limiting the exposure to environmental carcino-
gens, as well as managing long-term inflammation, among
many applicable measures, may significantly reduce the
chance of obtaining activating mutations on oncogenes in
general. This will significantly deplete the driving force of
cancer and impede cancer development. Therefore, even
though two-third of mutations in human cancer are
caused by spontaneous events37, avoiding environmental
carcinogenic factors holds great promises to significantly
reduce the incidence of many types of cancer.
On the other hand, certain types of cancers will still be

hard to prevent. For example, the driver mutations on the
oncogenes IDH1 and IDH2 are both low-difficulty, C→T
or G→A mutations (Supplementary Fig. S11a’). Therefore,
cancer cases associated with such mutations, including
certain subtypes of glioblastoma, cholangiocarcinoma,
and acute myeloid leukemia38,39 may be hard to prevent.
Similar to the argument by Tomasetti et al.37, for these
types of cancer early detection still holds more promise
than cancer prevention methods.
Lastly, it is apparent that low difficulty, spontaneous

mutations on tumor suppressors contribute to human
cancer, most significantly through several easy-to-mutate
hotspot sites on p53 (Supplementary Fig. S11a). From a
pure theoretical point of view, it is possible to introduce
synonymous mutations to these sites to render them more
resistant to deleterious mutations. We analyzed the
potential benefits of changing the nucleotide coding
sequence on p53 hotspot sites. For example, changing the
p53 R273 sequence from R(CGT) to R(AGA) will reduce
the chance of generating loss of function mutations on
this site by seven folds (Supplementary Fig. S11b). For
four other mutational hotspots on p53, similar codon
changes can also significantly reduce the chance of gen-
erating loss of function mutations (Supplementary Fig.
S11b) and are projected to greatly reduce cancer cases
involving these hotspot sites (Supplementary Fig. S12a, b).
Our analysis also showed that such codon changes will
have minimal impact on the chance of generating LOF
mutations at amino acid residues surrounding hotspot
sites (Supplementary Fig. S12c). If theoretically, sponta-
neous low-difficulty mutations on p53 can be limited by
such measures, and high-difficulty mutations on onco-
genes and other sites of p53 can be thwarted by avoiding

environmental carcinogens, it may dramatically reduce
cancer incidence.

Methods and material
Data acquisition
Mutation data from 26,154 cancer genomes were

retrieved from COSMIC website in January 2018. If a gene
has multiple isoforms, only the major form was included
in our analysis such that mutations on the same sites are
not counted multiple times. For 19,940 genes, 3,101,161
single-nucleotide substitutions were identified. In order to
calculate the natural mutational tendency, we first elimi-
nated mutational events that occur more than five times
in the dataset. These mutations may have been selectively
enriched during cancer development and could skew our
calculation of nature mutational tendency.
To assess the influence of neighboring sequences on

mutational tendency, sequences of the coding genome
corresponding to the 19,940 genes were downloaded from
Ensemble (GRCh38.p10). For each nucleotide mutation,
−2, −1, +1, +2 nucleotides were extracted from the
corresponding coding sequence.

Types of mutations
At the central position, there are 12 routes of inter-

change between A/G/T/C. The permutations at −2, −1,
+1, +2 nucleotides amount to 44. Therefore, we collated
all mutations into 12 × 44= 3072 groups.

Calculation of mutational tendency
For the aforementioned 3072 groups, we first coun-

ted how many mutations from the 26,154 cancer gen-
omes belong to each group. Next, we counted how
many times each penta-nucleotide sequence appears in
coding sequences of the 19,940 genes. For example,
there are 10,389 C→T mutations on TTCGT sequences
in 26,154 coding genomes. There are 21446 TTCGT
sequences per coding genome. Therefore, the muta-
tional tendency of C→T on TTCGT is approximately
10389/(21446 × 26154)= 1.85 × 10−5, which is the
highest amongst all 3072 combinations. We set the
“difficulty” score for such a mutation as 1. The muta-
tional tendency of A→C mutation in a CGATG
sequence is 0.93 × 10−7, and its relative difficulty score
is calculated as 1.85 × 10−5/0.93 × 10−7 = 200. Diffi-
culty scores for all other combinations were generated
using the similar method.
Of note, the numbers of different penta-nucleotides in

the coding genome vary greatly. For example, in the
coding genome there are 3001 TAGCG sequences and
more than 100,000 TGGAG sequences. Therefore, it is
necessary to divide the number of mutations by the
number of available sites to accurately understand the
relative mutational difficulty.
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The necessity to remove highly recurrent mutations
In the above analysis, we aim to estimate the mutational

tendency for each type of mutation in human cancer.
Certain cancer-promoting mutations on genes such as
KRAS and BRAF are strongly selected for during cancer
formation. The number of such mutations are sig-
nificantly increased in the dataset, not because they are
easy to generate, but because they are strongly enriched
by the tumorigenesis process. Therefore, their presence in
the dataset may skew our estimation of the natural
mutational tendency for each type of mutation. Con-
sidering this, in the above calculation, we excluded
mutations that occur in more than five cancer sample, in
order to achieve a closer estimate of mutational tendency.
Of note, about 2% all of mutations in the 26,000 cancer
genomes (Fig. 1a) occur in more than 5 cancer samples
and were excluded in our analysis.
Supplementary Fig. S3 shows the comparison of muta-

tional difficulties calculated with and without excluding
such recurrent mutations. In Supplementary Fig. S3a, if
no mutations are excluded, the mutational difficulty
scores for KRAS G12R, BRAF V600E, and HIF1A K213Q,
among many others, will be significantly lower. In Sup-
plementary Fig. S3b, if only excluding mutations that
occur in more than 20 samples, the mutational difficulty
scores for TP53 V157G, NOTCH1 D573A, CDKN2A
A36G, among others, will still be significantly lower. In
Supplementary Fig. S3c, if only excluding mutations that
occur in more than ten samples, the mutational difficulty
scores for TP53 Y126D, KDM6A T794P, PIK3CA V344G,
among others, will still be noticeably lower. Based on this,
we calculated mutational difficulty after excluding muta-
tions that occur in more than five samples.

Cancer type-specific mutational difficulty
To generate cancer type-specific mutational difficulty

scores, mutations were first grouped by cancer types, from
which mutation rates were calculated using similar
methods. For example, we observed 1195 C→T mutations
on TTCGT sequences in 296 endometrial cancer samples,
and the mutational tendency of C→T on TTCGT is
approximately 1.88 × 10−4 in endometrial cancer. Since in
previous calculation we set the mutational difficulty score
as 1 for a mutation rate of 1.85 × 10−5, we can calculate
the relative mutational difficulty for C→T on TTCGT as
0.1 (= 1.85 × 10−5/1.88 × 10−4) in endometrial cancer.

Analysis of p53, PTEN, and INK4A mutations
Mutational data for p53, PTEN, and INK4A was last

acquired from COSMIC on January 2018. At the time,
p53 mutation data were from 130,448 cancer samples,
PTEN from 72,199 samples and INK4A from
72,566 samples. Current numbers in COSMIC database
have slightly increased due to website updates.

Of note, the CDKN2A locus contains two genes, INK4A
and ARF. Previous studies showed that recurrent muta-
tions on the CDKN2A locus do not change the function of
the ARF gene40. In addition, U251 cells, which deleted the
CDKN2A locus, could tolerate ARF expression, but not
INK4A expression. Therefore, for later experimental
validation, we cloned and analyzed INK4A mutants in
this study.
For each mutation, we first extracted the penta-

nucleotide sequence surrounding the mutation site and
matched it with relative mutational difficulty scores. For
mutational sites that are adjacent to intron–exon junc-
tions, the genomic sequence was used to extract the
nucleotide sequences surrounding the mutational site.
Next, we calculated the revised mutational count based

on original mutation count and cancer type-specific
relative mutational difficulty. For example, if a p53
mutation occurs in 10 colorectal cancers and 5 lung
cancers, and the relative mutational difficulties for the
mutation is 1 in colorectal and 3 in lung cancer, the
revised count for such a mutation can be calculated as
10 × 1+ 5 × 3= 25. Revised counts calculated using this
method were used to predict the functional impact of p53,
PTEN, and INK4A mutations in our study.
Supplementary Fig. S6 shows the distribution of revised

mutation counts for all p53 synonymous mutation based
on COSMIC data. For most of these synonymous muta-
tions, the revised counts are below 700. Therefore, we
estimate that those missense p53 mutations with revised
count below 700 retain wild-type p53 function, which
were later validated with functional experiments. In
Supplementary Fig. S6, we also observed that the revised
counts of several p53 synonymous mutations exceeded
700. This is because certain seemingly synonymous
mutations abolish p53 function. For example, the p53
T125T mutation (c.375G to A/C/T) disrupts the adjacent
intron–exon splice site, and abolishes gene function41.
The revised count for T125T is 1353 and is predicted to
be a loss of function mutation by our method.
Supplementary Table S3 listed the original and revised

counts of p53 mutations based on COSMIC database. If a
mutation’s revised count is lower than 700, it is predicted
to retain wild-type function. If a mutation’s revised count
is higher than 900, it is predicted to be loss of function
mutation. A few exceptions exist and are explained below.
In the COSMIC database, the S149F mutation on p53 is

caused by single nucleotide substitution in 5 samples, and
the revised count is lower than 700. However, in one
additional cancer sample, a CC to TT nucleotide change
also caused the S149F mutation. Because of the rarity of
such double mutations, we did not assign relative muta-
tional difficulty score to such double mutations. There-
fore, we cannot make functional prediction for this
mutant, and an “*” is marked in the “revised count”
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column for S149F. Such phenomenon also occurred for
S166L, V218M, and R158C, and these mutations are
labeled similarly with an “*” in Supplementary Table S3.
Several other mutations (e.g., S127F) also exhibited such
double nucleotide substitution, however, their revised
counts calculated from single-nucleotide substitutions
already exceeded 900. Therefore, such mutations are
predicted to be loss of function mutations in Supple-
mentary Table S3.

GFP-based cell survival competition assay to determine
sensitivity change caused by p53 mutants
The experiment was carried out with a protocol mod-

ified from42. Briefly, Eμ-Myc p19Arf−/− cells are infected
with retrovirus that express GFP and mutant p53, such
that 20–50% of cells are GFP positive. Cells are treated
with DNA damage drug at doses that would kill 80–90%
of uninfected Eμ-Myc p19Arf−/− cells. In this assay, if
p53 mutant exerts dominant negative effects on endo-
genous wild-type p53, after DNA damage drug treatment
the GFP positive, p53 mutant-expressing cells will be
relatively more resistant than GFP-negative cells that only
express wild-type p53. At 72 h, treated and untreated cells
are analyzed by flow cytometry. GFP percentages of live
(PI-negative) cells are recorded and used to calculate
relative resistance index (RI).

Calculation of relative resistance/sensitivity from GFP-
based cell survival competition assay
The value of relative RI can be calculated as RI= (G2−

G1 ×G2)/(G1−G1 ×G2). G1 means how many percen-
tages of cells are GFP positive before drug treatment. G2
means how many percentages of cells are GFP positive
after drug treatment. The explanation for such calculation
was provided in ref. 43.
Relative RI larger than 1 means the corresponding p53

mutant displayed dominant negative effect, protected cells
from DNA damage, and the rate of GFP+ cells in sur-
viving cells increased after drug treatment. Relative RI
smaller than 1 means the corresponding p53 mutant
displayed wild-type function, sensitized cells to DNA
damage, and the rate of GFP+ cells in surviving cells
decreased.

Cell lines and drugs
Eμ-Myc p19Arf−/− cell was cultured in B-cell medium

(45% Dulbecco’s modified Eagle’s medium and 45%
Iscove’s modified Dulbecco’s media, supplemented with
10% fetal bovine serum (FBS), L-glutamate, and 5 μM
β-mercaptoenthanol). Phoenix, HCT116 p53−/−, Saos-2,
U251, A549, 293T, and 293A were cultured in Dulbecco’s
modified Eagle’s medium supplemented with glutamate
and 10% (v/v) FBS. 786-O cell was cultured in RPMI
medium supplemented with glutamate and 10% (v/v) FBS.

Saos-2, HCT116 p53−/−, U251, 786-O cells were
obtained from the Cell Bank, China Academy of Sciences
(Shanghai, China). Doxorubicin was purchased from
Selleck.

Antibodies
Antibodies against Phospho-Akt (Thr308) (D25E6)

(Cell signaling, #13038), Akt (pan) (C67E7) (Cell signal-
ing, #4691), Phospho-GSK-3β (Ser9) (D84E12) (Cell sig-
naling, #5558), Phospho-PDK1 (Ser241) (C49H2) (Cell
signaling, #3438), and PTEN (pan) (Y184) (Abcam,
#32199) were used for Western blot analysis.

Cloning of p53, PTEN, and INK4A mutants
Wild-type p53, INK4a, and PTEN expression vectors

were constructed as follows. The full-length open reading
frame of p53, INK4a, and PTEN cDNAs were amplified by
PCR using KOD plus neo DNA polymerase (Code No.
KOD-401 Lot No. 646300) and a pair of primers with
EcoRI and XhoI sites. The PCR product was cloned into
the EcoRI/XhoI sites of the pMSCV-IRES-GFP vector.
cDNAs with missense mutations were constructed by
overlap extension PCR. All mutation constructs were
sequenced to confirm that the appropriate mutations had
been incorporated and that no additional mutations were
generated.
All p53, INK4a, and PTEN mutants tested in this study

are listed in Supplementary Table S6.

Expression of mutants in cells
To test the functional status of p53 mutants, retrovirus

that expresses p53 mutants, puromycin resistance gene
and GFP was used to infect Saos-2 cells or
HCT116 p53−/− cells. Cells are infected with similar
virus MOI such that 30–50% of cells are GFP positive for
all experimental groups. We were able to determine the
expression level of p53 mutants in HCT116 p53−/− cells
since they can tolerate p53 mutants that retain wild-type
gene function. The results showed that under such
infection protocol, expression levels of different p53
mutants were comparable (Supplementary Fig. S9).

Colony formation assay
Forty-eight hour after infection, 5000 of GFP-positive

Saos-2 cells were resuspended in medium containing 10%
FBS and plated in 6-well plates. After 24 hours, they were
treated with 2 μg/ml puromycin. Twenty-four hours later,
puromycin-containing medium was replaced with fresh
complete culture medium. Five days later, 2 μg/ml pur-
omycin was again used to treat cells for 24 h before
removal. Cells are cultured for an additional 10 days.
Colonies were then fixed with 4% paraformaldehyde and
stained with 0.1% crystal violet for 30 min. Stained cell
colonies were washed with phosphate-buffered saline
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(PBS) for three times and dried. Images were obtained by
a digital camera. Similar protocols were used to test
INK4a mutants in U251 cells.

Mouse liver cancer model
The mouse liver cancer model was performed using

published protocol as published in Chen et al.21. Two
microlitre of plasmid solutions were injected into tail vein
of a mouse in about 7 s. This creates immediate high
pressure at the liver portal vein, and plasmids will enter
liver cells under such conditions. In this experiment,
sgRNA targeting PTEN was used to inactivate PTEN to
facilitate liver cancer development, similar to Yang et al.22.
cDNAs of c-Myc and different p53 mutants were cloned
into a sleeping beauty system, so that upon entering liver
cells, they will be stably integrated into host cell chro-
mosomes. In this experiment, p53 mutants were not
generated by CRISPR, but were introduced by cDNA to
avoid uncertainty with CRISPR mutagenesis.
Specifically, Myc cDNA and p53 mutants were cloned

into a transposon system using the PT3 vector21. Such
plasmids were mixed with sgPTEN–Cas9 plasmid22,
together with Sleeping Beauty transposase-expressing
plasmid in PBS. Gene mixture was delivered to mouse
by tail vain hydrodynamic injection. Concentrations of
Sleeping Beauty transposase and Myc-expressing plas-
mids were at 0.5 and 1.25 μg/ml, respectively. Other
plasmids or corresponding empty vectors were used at
5 μg/ml. The experiments were all done in female FVB
mice at 7 weeks of age. The mice were hosted in SPF
housing condition. The experimental was approved by the
institutional animal care and use committee.

Cell cycle analysis
U251 cells expressing wild type or mutant forms of

INK4A were analyzed. When grew to proper density
(about 70–80%), cells were collected and fixed overnight
in 70% ethanol. Cells were then treated with 0.2% Triton
X-100, 50 μg/ml propidium iodide and 100 μg/ml RNase
A for 40 min, then analyzed by FACS.

Quantitative real-time PCR assay
RNA was purified using GeneJET RNA Purification Kit

(thermo scientific) and qPCR was performed on a Ste-
pOne real-time PCR machine (BIO-RAD) using SYBR
Green PCR master mix (Promega). mRNA level of actin
was used as control. Primers used for qPCR analysis are
listed in Supplementary Table S8.

Statistics
Differences of event frequency between two groups

were analyzed using Student’s unpaired two-tailed t test. p
Values < 0.01 were marked as *** in figures, p values < 0.05
were marked as ** in figures.
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