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ABSTRACT

In the human genome, it has been estimated that
considerably more sequence is under natural selec-
tion in non-coding regions [such as transcription-
factor binding sites (TF-binding sites) and
non-coding RNAs (ncRNAs)] compared to protein-
coding ones. However, less attention has been
paid to them. To study selective pressure on non-
coding elements, we use next-generation sequenc-
ing data from the recently completed pilot phase of
the 1000 Genomes Project, which, compared to
traditional methods, allows for the characteriza-
tion of a full spectrum of genomic variations, incl-
uding single-nucleotide polymorphisms (SNPs),
short insertions and deletions (indels) and structural
variations (SVs). We develop a framework for com-
bining these variation data with non-coding elem-
ents, calculating various population-based metrics
to compare classes and subclasses of elements,
and developing element-aware aggregation proced-
ures to probe the internal structure of an element.
Overall, we find that TF-binding sites and ncRNAs
are less selectively constrained for SNPs than
coding sequences (CDSs), but more constrained
than a neutral reference. We also determine that
the relative amounts of constraint for the three
types of variations are, in general, correlated, but
there are some differences: counter-intuitively, TF-
binding sites and ncRNAs are more selectively con-
strained for indels than for SNPs, compared to
CDSs. After inspecting the overall properties of a
class of elements, we analyze selective pressure

on subclasses within an element class, and show
that the extent of selection is associated with the
genomic properties of each subclass. We find, for
instance, that ncRNAs with higher expression levels
tend to be under stronger purifying selection, and
the actual regions of TF-binding motifs are under
stronger selective pressure than the corresponding
peak regions. Further, we develop element-aware
aggregation plots to analyze selective pressure
across the linear structure of an element, with the
confidence intervals evaluated using both simple
bootstrapping and block bootstrapping techniques.
We find, for example, that both micro-RNAs (par-
ticularly the seed regions) and their binding targets
are under stronger selective pressure for SNPs than
their immediate genomic surroundings. In addition,
we demonstrate that substitutions in TF-binding
motifs inversely correlate with site conservation,
and SNPs unfavorable for motifs are under more se-
lective constraints than favorable SNPs. Finally, to
further investigate intra-element differences, we
show that SVs have the tendency to use distinctive
modes and mechanisms when they interact with
genomic elements, such as enveloping whole
gene(s) rather than disrupting them partially, as
well as duplicating TF motifs in tandem.

INTRODUCTION

Only 1.5% of the human genome is protein-coding (1),
and the vast genomic regions of non-coding DNA have
long been thought as ‘junk’ DNA. However, 5% of the
human genome is estimated to be under natural selection
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(2), suggesting that more sequences in non-coding DNA
are under selection than protein-coding regions.
Moreover, analyses on conserved non-coding elements
(CNCs) and genome-wide association studies (GWAS)
have shown that non-coding DNA is involved in biologic-
al functions and disease associations (3). The recent
ENCODE Project (Encyclopedia of DNA Elements) has
also elucidated a variety of ways in which non-coding
elements can be biochemically active within the genome,
such as interacting with transcription factors (TFs) (4,5).
Despite the work described above, much less effort
has been invested in the functional analysis of non-
coding elements, compared to the extensively studied
protein-coding regions.

One way to evaluate the functional relevance of non-
coding elements is to examine the levels of naturally
occurring genomic variations therein (i.e. DNA poly-
morphism within populations). A reduction of poly-
morphism in non-coding elements, compared to
sequences under neutral evolution, suggests non-coding
elements are subject to natural selection or lower
mutation rates. Polymorphism naturally co-varies with di-
vergence between species regardless of the mutation rate
(6). Thus, to see if varying diversity is a mark of selection,
one may test whether it is not varying proportionally to
divergence—the regime of the McDonald–Kreitman test
(MK test) (7). In addition, selective constraints maintain
deleterious mutations at low frequencies in a population,
resulting in a skew of the derived allele frequency
spectrum towards the low-frequency alleles; whereas
positive selection raises advantageous alleles to high
frequencies. We have studied these signatures of natural
selection using genomic variation data provided by the
1000 Genomes Project (8). The Project has recently
completed its pilot phase, in which whole genome
next-generation sequencing data of 2–6� of genomic
coverage has been generated from 179 unrelated individ-
uals within three population groups. The data include 60
individuals of European ancestry in Utah (CEU), 59 indi-
viduals of Yoruban ancestry from Nigeria (YRI) and 60
individuals of Han Chinese ancestry from Beijing and
Japanese ancestry from Tokyo (CHBJPT) (8).

There are two major advantages in using this dataset to
study the impact of genomic variations on non-coding
elements. First, the 1000 Genome Project provides a
more comprehensive catalog of genomic variations than
previous studies. Previous efforts, such as the HapMap,
utilize the array-based single-nucleotide polymorphism
(SNP) genotyping method by designing probes at certain
genomic loci (9,10). However, this type of study is limited
to SNPs already identified previously, and SNPs adjacent
to probed SNPs are typically missing [inference through
linkage disequilibrium (LD) has limited power for rare
variants]. However, using next-generation sequencing
technology, the 1000 Genomes Project generates reads
from the genome in a relatively unbiased and uniform
fashion, allowing for a more complete identification and
genotyping of genomic variations. Another type of study
exploits Sanger sequencing to obtain genomic variations
within targeted local regions in the genome (11). In

contrast, the 1000 Genomes Project achieves shotgun
sequencing at a genome-wide scale.
A second advantage of the 1000 Genomes data is the

discovery of genomic variations spanning a full spectrum,
instead of merely SNPs. Variation between two random
copies of the human genome was initially estimated to be
�0.1%, most of which was attributed to SNPs (12).
Nonetheless, taking into account SNPs, short deletions
and insertions (indels), as well as structural variations
(SVs) that include large deletions, duplications, insertions
and inversions, two copies of the human genome differ by
0.5% of the DNA sequence (13). Moreover, indels and
SVs are also found to contribute considerably to pheno-
types and diseases (14–19). In this regard, the 1000
Genomes Project has systematically identified and geno-
typed all three types of variations—SNPs, indels and SVs.
Hitherto, little has been known about the significance of
functional relevance of the latter two types of variations.
Previously, there have been studies that identify various
types of genomic variations in several personal genomes
(13,20–22). However, the 1000 Genomes Project has pro-
foundly advanced in SV detection in terms of number,
size-range and breakpoint-precision beyond these studies
(8,23). In addition, the scale of the 1000 Genomes data
enables us to apply population-based approaches in our
analyses.
In this study, we examine the functional impact of

genomic variations on non-coding elements to elucidate
selective pressures acting on them. We investigate this at
three progressive levels: comparing classes of elements,
comparing subclasses within an element class and inspect-
ing the internal structure of a given element.

Comparing classes of elements

Through studying levels of polymorphism and divergence,
as well as the allele frequency spectrum, we find that TF-
binding sites and non-coding RNAs (ncRNAs) are less
constrained for SNPs than are coding sequences (CDSs),
but more constrained than a neutral reference. We also
determine that the levels of constraint for the three types
of variations (SNPs, indels and SVs) are, in general, correl-
ated, but there is some heterogeneity: counter-intuitively,
TF-binding sites and ncRNAs are relatively more select-
ively constrained for indels than for SNPs, compared to
CDSs. Further investigation reveals that this difference is
largely attributed to relaxed constraints for in-frame indels
in CDSs.

Comparing subclasses within an element class

After examining the overall properties of a class of elem-
ents, we analyze the selective pressure upon various sub-
classes within an element class, and show that the extent of
selection can be rationalized in terms of genomic proper-
ties of each subclass, e.g. the exact sequences of the TF-
binding motifs are under stronger selective pressure than
the corresponding peak regions, and ncRNAs with higher
expression levels tend to be under stronger purifying
selection.
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Intra-element differences of a given element

In order to make further statements about the selection on
non-coding elements, we have developed element-aware
aggregation techniques to investigate the differences
across the linear genomic structure of a given element.
We find that a similar level of additional selective
pressure for SNPs is imposed on TF-binding motifs
relative to their surrounding regions. We also demonstrate
that substitutions in TF-binding motifs inversely correlate
with site conservation, and SNPs unfavorable for motifs
are under more selective constraints than favorable SNPs.
Moreover, both the micro-RNAs (miRNAs) (particularly
the seed regions) and their binding targets are under
stronger selective pressure than their surroundings.
Finally, we show that SVs have a tendency to use distinct-
ive modes and mechanisms when they interact with
genomic elements, such as enveloping whole gene(s)
rather than disrupting them partially, as well as
duplicating TF motifs in tandem.

MATERIALS AND METHODS

Overall framework for integrating genomic variation data
and non-coding elements

We have developed a framework, ncVAR, for an integra-
tive analysis of genomic variation data and non-coding
elements (schematics shown in Figure 1A). We first
compile datasets of annotations for various types of
genomic variations (SNPs, indels and SVs), and datasets
of different non-coding elements annotations (TF-binding
sites, ncRNAs, pseudogenes, etc.). We further subdivide
each class of non-coding elements into subclasses, based
on their genomic properties.
We then carry out integrative analysis of the two data

sources using two strategies. In the first strategy, we
annotate genomic variations within non-coding elements,
and compute population genetics metrics, such as the
global mean of nucleotide diversity and divergence, for
each class or subclass of elements. This allows comparison
of functional impact of various types of genomic vari-
ations in different classes or subclasses of genomic
elements. In the second strategy, we develop techniques
of element-aware aggregations for genomic variations
within non-coding elements. This enables evaluation of
the functional relevance of the internal structures of
each element. Results from the two strategies are repre-
sented in the form of X–Y plots and aggregation plots,
respectively.

Data preparation for genomic variation

SNP, indel and SV annotations, and allele frequency data
are obtained from the pilot release of the 1000 Genomes
Project (8) (Supplementary Table S1). Since indels and
SVs have only been genotyped for the autosomes, we
have carried out all our analyses only on the autosomes.
For the 10 871 SVs in the data release, we further limit
them to genotyped SVs across all three populations, a
non-zero allele frequency, and at least 50% of the individ-
uals passing the genotyping quality filter, which leaves

6379 SVs. Among these SVs, 4470 have been polarized
(i.e. inferring the ancestral allele of the variant by
comparing to the other primate genomes—also known
as rectification) as deletions (8,24).

Data preparation for genomic elements

The non-coding elements we survey include genome-wide
annotations of nine TF-binding sites and related sites (i.e.
DNase I hypersensitive sites), ncRNAs, pseudogenes and
non-coding domains of protein-coding genes, that is,
introns, 30 untranslated regions (30UTRs) and 50UTRs
(Figure 1B and Supplementary Table S1).

TF-binding sites. For TF-binding sites, we use peak
signals from a variety of chromatin immunoprecipitation
with sequencing (ChIP-seq) experiments. Although the
precision of the ChIP-seq method is no longer limited by
the spacing of probes of array-based methods, it has yet to
detect the boundaries of TF-binding sites at single-
nucleotide resolution. In fact, the ChIP system pulls
down DNA, up to hundreds of base pairs, away from
the actual interacting sites (25). To better represent the
DNA–protein interaction sites, we scan the TF peaks
with consensus sequences of corresponding motifs to
obtain sites representing TF-binding motifs
(Supplementary Data). Eight TF-binding sites and the
DNase sites (26) are downloaded from the UCSC
genome browser (27). See specific file names and other
information at the website to supplement this study
http://info.gersteinlab.org/NCVAR. The TF-binding
sites include CTCF (26), STAT1 (28), NFkB (29), c-Myc
(30), c-Fos (30), c-Jun (30), JunD (30) and PolII (29). The
NRSF binding peaks and motifs are obtained from the
original publication (31), with genomic coordinates
mapped from NCBI build 35 to build 36 using the
Liftover tool from the UCSC genome browser. Analyses
throughout this study use NCBI build 36 of the human
reference genome and the GENCODE gene set version 3b
for gene annotations (32). We intersect TF-binding peaks
with genes and retain the peak and motif regions that fall
into the intergenic regions for analyses, truncating the
peaks and discarding the motifs if they partially overlap
with genes.

ncRNAs. ncRNAs are genes that are transcribed but not
translated into proteins. They have diverse regulatory
functions, including regulation of transcription
(miRNA), RNA splicing (small nuclear RNA—snRNA),
translation (messenger RNA—mRNA, transfer RNA—
tRNA and ribosomal RNA—rRNA) and chemical modi-
fication of other RNA molecules (small nucleolar RNA—
snoRNA) (33). The ncRNA annotations are obtained
from Ensembl release 53 (33) and GtRNAdb (34).

Non-coding domains of the protein-coding
genes. Non-coding domains of the protein-coding genes
may play various regulatory roles. For instance, UTRs
contain structured regions, such as the riboswitches and
the internal ribosome entry sites (IRES), which modulate
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Figure 1. (A) Flowchart for the overall framework, ncVAR, for an integrative analysis of genomic variation data and non-coding elements.
(B) Overview of the genomic elements surveyed. The shape and color of the icon preceding each element represents the legend used throughout
Figures 1–4 and Supplementary Figures S1–S3. The numbers in parenthesis represent the total number of sequences of each class of elements
included in the study. On the right-hand side of each class of elements, the specific features used for their subclassification are shown.
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gene expression (36,37). 30UTRs also provide binding
sites to miRNAs, which inhibits translation (33).
Moreover, introns have been found to harbor sites that
are associated with disease (38). CDS, intron and UTR
annotations are obtained from the longest transcript of
each gene with annotated start and end codons. 50UTRs
are extracted as sequences from the transcription start site
(TSS) to the start codon (exclusive). 30UTRs are extracted
as sequences from the stop codon (inclusive) to the tran-
scription end site (TES).

Pseudogenes. Finally, pseudogenes are usually disabled
gene homologues, and are thus not functional (39).
Hence, we use them as a neutral reference in this study.
In addition to pseudogenes, we have considered a number
of other candidates as a neutral reference, such as ances-
tral repeats (ARs) and random intergenic regions.
Pseudogene annotations are obtained from the Ensembl
53 build at Pseudogene.org database (40). ARs are ob-
tained by intersecting the repeat elements in the human
genome (annotated by the RepeatMasker program) with
human–mouse alignments. Both the repeat element and
alignment annotations are downloaded from the UCSC
genome browser. Those regions that can be aligned and
are 100 bp or larger are extracted. A set of random inter-
genic regions of 500 bp is generated from the intergenic
regions of the human reference genome, and 200 kb
away from any gene. The set of random regions also
excludes annotations of TF-binding sites, ncRNAs, ARs
and pseudogenes.

Calculation of population-based statistics

SNP diversity and divergence analysis. The SNP diversity
(�) of a region is estimated as the per-site heterozygosity
(2pq) across the portion of the region that is ‘accessible’
(passing all the filters for SNP detection, including
depth-of-sequence coverage, uniqueness of mapping, and
gaps in the human reference genome), where p is the allele
frequency, and q=1�p. The ‘accessible’ genome annota-
tions for the three population groups are obtained from
the 1000 Genomes pilot release (8).
Denote d as the number of nucleotide differences per

site between the human and the chimp reference genomes,
excluding gaps across the accessible and alignable region.
Divergence (Dxy) is then obtained by applying to d the
Jukes-Cantor correction for multiple hits (6). The
human-chimpanzee alignment is between the human
build 36 and the chimp panTro2 assembly, and is
obtained from the UCSC genome browser.

MK test for neutrality. Polymorphism (P) denotes the
number of SNPs across the accessible and alignable
region. The number of fixed differences (D) is obtained
by computing ðd� �Þ � l, followed by the Jukes–Cantor
correction, where d is the per-site number of differences
between human and chimp, and l is the total length of the
accessible and alignable region. To carry out the MK test,
a 2� 2 contingency table is formed from P and D in a
region i under study and a neutral reference n, respectively.

Fisher’s exact test is used to assess the significance of the
MK test. The neutrality index (NI) is calculated as

Pi=Di

Pn=Dn
:

Allele frequency spectrum analysis. A derived allele fre-
quency (DAF) is computed for each polarized SNP,
indel and SV from the genotyping allele frequency and
ancestral allele information. SNPs and indels have been
identified and genotyped for each of the three populations
separately. Therefore, we assess the allele frequency
spectrum for each population. The SVs have been
genotyped across all three populations. Thus, we effective-
ly use the average allele frequency of the three popula-
tions to evaluate the DAF of an SV (see Supplementary
Data for more details).

To quantify the intensity of natural selection using allele
frequency, traditional tests such as Tajima’s D and the Fu
and Li tests draw comparisons to the standard neutral
coalescence model (6). However, due to the low sequence
coverage (2�6�) in the 1000 Genomes pilot dataset, there
is a severe bias towards common alleles—even neutrally
evolving sequences display a depletion of rare variants
compared to the standard neutral model. Therefore, to
overcome this intrinsic variant detection bias, we have
sought to derive a measurement that quantifies the inten-
sity of selection compared to a relative neutral reference.
We define the Excess of low-frequency variants within a
region relative to a neutral reference as

eð%Þ ¼
100� Ni �Nnð Þ

Nn
,

where Ni is the fraction of variants in the region i that have
a DAF< 0.05, and Nn is the fraction of variants in the
neutral reference n that have a DAF< 0.05.

Element-aware aggregation of nucleotide diversity

Basic aggregation procedure. In element-aware aggrega-
tions, we aggregate both SNP and indel diversity in an
element-aware fashion. For simplicity, we just refer to nu-
cleotide diversity, but the same logic applies to indels. To
develop the aggregation procedure, each sequence of an
element annotation is divided into a fixed number of bins
with uniform size. For a given annotation, sequences with
different lengths might be chosen to have different bin
sizes, but the number of bins is fixed in all the sequences
for the annotation. A nucleotide diversity measure for
each bin, in each sequence, is calculated as described
above. The diversity measures for each bin are then aver-
aged across all the sequences to obtain an overall measure
for the bin, which is represented by one data point in the
element-aware aggregation plot. An aggregation mean is
then calculated from all the data points within an anno-
tation. Sequences shorter than the number of bins are
discarded.

Block bootstrapping. To estimate the standard deviation
(SD) of the aggregation within an element, we apply
bootstrapping methods. In the human genome,
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neighboring variants can be co-inherited, which results in
the association of these variants in the population. This
property is termed as LD (41). As a result, the nucleotide
diversity we calculate for genomic elements that are suffi-
ciently close to each other can be dependent. To overcome
the dependence between the observations, we apply a
block bootstrapping procedure to gene annotations and
their surrounding regions—a procedure extended from
the traditional simple bootstrapping (Supplementary
Data).

For each element annotation, we randomly resample
n=1000 000 blocks from the genome. For each block
resampled, the basic aggregation procedure described
above is applied to all the sequences of the element
within the block. Those blocks for which the nucleotide
diversity cannot be calculated are discarded. Denote x1,
x2, . . . , xn as the aggregation mean from resampled blocks
1, 2, . . . , n, respectively. Let w1, w2, . . . , wn be the number
of sequences of the element within blocks 1, 2, . . . , n, re-
spectively. Then,

x ¼

Pn
i¼1 wixPn
i¼1 wi

and

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 wiPn

i¼1 wi

� �2
�
Pn

i¼1 w
2
i

�
Xn

i¼1
wi xi � xð Þ

2

s
,

where the bootstrapping mean x is calculated as the
weighted average of the aggregation means, and S0 is an
unbiased estimator of the SD (42) for weighted samples of
blocks. S0 is then renormalized according to the effective
genome size G and the block size L to obtain the
bootstrapping SD for the whole genome (S):

S ¼
S0ffiffiffiffiffiffiffiffiffi
G=L
p :

The effective genome refers to the portion of the genome
where resampled blocks contain at least one sequence of
the element (i.e. excluding deserts in the genome for the
element). A 95% confidence interval (CI) of the aggrega-
tion is then calculated from x� 1:96S: Since LD extends
to up to 1Mb in the human genome (41), we use 1Mb
as the block size L, which is designed to capture the
dependence between the sequences.

Randomization test for SVs interacting with genomic
elements

We use the 10 871 SVs with single-nucleotide resolution
mentioned in the data preparation section for the random-
ization test. SV formation mechanisms are classified using
the BreakSeq tool (24). The association of SVs with a class
of elements is determined by calculating the number
of SVs overlapping the elements. The enrichment and
P-value for each association are computed from a non-
parametric randomization test. A global background is
obtained by randomly shuffling the SV locations within
the human genome. This procedure is repeated 10 000
times. The enrichment measure is calculated as the ratio

of the observed statistic to the average of the statistics
taken from the background measures. The P-value is com-
puted by fitting a Gaussian model to the background
measures, and calculating the area under the density
curve corresponding to Z-scores as extreme as, or more
extreme than, the observed one. A local background is
obtained by randomly shuffling the SV locations within
a 10Mb window around them. The calculations for the
local background that follow are the same as those for the
global background. The association is reported to be sig-
nificant for a P-value <0.05.

RESULTS

Nucleotide diversity, divergence and allele frequency
spectrum in non-coding elements

non-coding elements are under selective constraints. First,
we examine the levels of SNP diversity within humans and
divergence between the human and the chimpanzee
genomes in non-coding elements (‘Materials and
Methods’ section). We compare the global means of di-
versity and divergence in non-coding elements to those in
the neutral reference and CDSs. We find that, with the
exception of diversity in tRNA, non-coding elements
exhibit a lower level of diversity and divergence than the
neutral reference, and a higher level of both measures than
CDSs (Figure 2, Table 1 and Supplementary Table S2).
For the CEU population, on an average, SNP diversity in
TF-binding sites and ncRNAs is about double that of
CDSs (208 and 202% that of CDSs, respectively), and
about one-fifth lower than the neutral reference (22 and
24%, respectively); divergence in TF-binding sites and
ncRNAs is about double that of CDSs (194 and 193%
that of CDSs, respectively), and approximately one-third
lower than the neutral reference (33 and 34%, respective-
ly). We interpret these results as a display of purifying
selection on non-coding elements. The MK test also
shows that, relative to the neutral reference, all non-
coding elements are under selective constraints, as indi-
cated by NI> 1, and significant P-values in most classes
of elements (Table 1 and Supplementary Table S2). As a
control, a set of accelerated elements in human, identified
in a previous study (43), shows clear signatures of positive
selection in our analysis (i.e. an elevated level of diver-
gence and a reduced level of diversity compared to the
neutral reference, NI< 1 and the MK test P-
value=3.6E-57; Figure 2 and Table 1).

Relative strengths of selective constraints. Since the diver-
sity of indels and SVs is not as straightforward to assess as
for SNPs (Supplementary Data), likewise for divergence
(due to complications in alignment), we examine another
signature of selection—the allele frequency spectrum of
SNPs, indels and SVs collectively. In CEU, TF-binding
sites and ncRNAs, respectively, display a 4 and 16%
excess of low-frequency SNPs (DAF< 0.05) compared
to the neutral reference (Wilcoxon rank-sum test
P-value=2.8E-5 and 5.4E-7, respectively), and a 21 and
12% reduction of fraction of low-frequency SNPs
compared to CDSs (Wilcoxon test P-value <2.2E-16 and
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7.5E-4, respectively, see Figure 3A and Supplementary
Table S3). A similar pattern is observed for UTRs and
introns (Figure 3A and Supplementary Table S3). This
confirms the results from the previous section: the extent
of selective constraints on non-coding elements is higher
than the neutral reference, but lower than CDSs.
Moreover, among the gene domains, 30UTRs are more
selectively constrained than 50UTRs and introns
(Wilcoxon test P-value=9.4E-23 and 2.5E-28, respective-
ly), but less than CDSs (Wilcoxon test P-value=5.8E-38),
indicating that 30UTRs might include a larger fraction of
functionally important sequences than the other non-
coding gene domains. It is also noted that there are no
evident elevations of high DAF SNPs (DAF> 0.95) in the
allele frequency spectra (Figure 3A), implying that
positive selection is not prevalent in non-coding elements
in humans.

As mentioned previously, we have also considered an-
cestral repeats and random intergenic regions as candi-
dates for a neutral reference in addition to pseudogenes
(‘Materials and Methods’ section). We choose pseudo-
genes, however, because they show signatures that are
the most consistent with neutral sequences. In other
words, the alternative candidates still display some signa-
tures of purifying selection compared to pseudogenes
(Supplementary Tables S2 and S3). Although pseudogenes
have been reported in individual cases to be involved in
functionality (44), they are mostly deactivated and
nonfunctional gene fossils. Even if some pseudogenes are
under slight selective constraints, our analyses of purifying
selection in non-coding elements will be conservative.

We have obtained similar results for YRI and CHBJPT
populations (Supplementary Figures S1–S3, and
Supplementary Tables S2 and S3). Altogether, these results

Figure 2. Levels of SNP diversity within humans and divergence between the human and the chimpanzee genomes. The diversity and divergence are
calculated only for the accessible and alignable regions. The dashed line represents data points with the same ratio of diversity to divergence as for
the neutral reference. Data is shown for CEU.

Table 1. Diversity, divergence, and test of neutrality in genomic elements in CEU

Element SNP diversity
(�� 1000)

Divergence
(Dxy� 100)

Polymorphism
(P)

Number
of fixed
differences (D)

Neutrality
index (NI)

McDonald–Kreitman
test P-value

Pseudogene 1.02 2.02 46 122 206 922 1.00 –
CDS 0.38 0.69 49 636 181 193 1.23 2.38E-179
Intron 0.69 1.22 2 244 675 8 610702 1.17 3.03E-205
30UTR 0.61 1.12 60 129 232 581 1.16 3.53E-103
50UTR 0.70 1.22 293 916 1 116 579 1.18 3.78E-202
TF peak 0.80 1.34 111 140 417 405 1.19 5.30E-186
TF motif 0.67 1.11 2409 8545 1.26 2.13E-22
ncRNA 0.78 1.33 2254 8023 1.26 1.42E-20
Accelerated element 0.60 2.30 701 5656 0.56 5.07E-55
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A

B

C

Figure 3. The derived allele frequency spectra for (A) SNPs, (B) indels and (C) SVs. SNP and indel allele frequencies are shown for CEU, and SV
allele frequencies represent the average of the three populations. Black boxes highlights the low-frequency alleles (DAF< 0.05).
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suggest that, in the human genome, non-coding elements
are under different levels of selective constraints for SNPs.
The constraint levels usually fall between those of neutral
sequences and coding regions.

Allele frequency spectrum of indels and SVs, and
comparison to SNPs

As previously mentioned, the 1000 Genomes Project
provides the first dataset that includes annotations of
indels and SVs alongside SNPs at a population level in
humans. It is thus appealing to examine the properties
of indels, SVs and SNPs simultaneously, and make com-
parisons. We investigate the allele frequency spectrum for
indels in CEU and find that, overall, non-coding elements
demonstrate an excess of low-frequency indels compared

to the neutral reference (Figure 3B)—a similar finding to
that for SNPs. However, the most prominent increase in
the fraction of indels in CDSs compared to non-coding
elements occurs within a DAF range of 0.05–0.20,
whereas that of SNPs occurs within a DAF range of 0–
0.05 (Figure 3A and B).

For SVs, pseudogenes no longer show the lowest
fraction of low-frequency alleles as for SNPs and indels
(Figure 3C). Rather, the fraction of low-frequency SVs in
pseudogenes is comparable to, or larger than, that of in-
trons, 50UTRs and 30UTRs (Wilcoxon test P-value=
0.37, 0.43 and 0.81, respectively). Why would pseudogenes
lose neutrality for SVs? Referring to the formation mech-
anisms of SVs might provide a clue. SVs formed by
the non-allelic homologous recombination mechanism

A B

C D

Figure 4. Comparison of the excess of low-frequency variants, e, relative to a neutral reference between (A) SNPs and indels, (B) SNPs and SVs and
(C) SVs and indels. (D) Size distribution of indels up to 20 bp in the genomic elements. A tri-nucleotide periodicity for indels in CDSs is shown. The
inset shows e for indels of size 1–3 bp. Digits ‘1’, ‘2’, and ‘3’, respectively, represent 1, 2 and 3 bp indels. The solid circles represent the overall e of
SNPs and indels for a class of elements. Black dashed lines in A–D represent e=0. SNP and indel allele frequencies are shown for CEU, and SV
allele frequencies represent the average of the three populations. Elements with fewer than five variants for the corresponding variation type are not
shown.
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(NAHR) exploit sequences of extensive homologies at the
two breakpoints (45). Hence, repeat elements associated
with pseudogenes may mediate NAHR events by
providing homologous stretches at the breakpoints.
Then, selection in sequences around pseudogenes
may place the associated SV events under selective
constraints.

Figure 4A–C draw pair-wise comparisons of the excess
of low-frequency alleles (e) among SNPs, indels and SVs
(‘Materials and Methods’ section). Correlations between
the fractions of low-frequency variants are calculated using
the data points representing the average for each of the
seven major classes of elements: pseudogenes, TF-binding
sites, ncRNAs and four gene domains (Correlation=0.75
between SNP and indel, 0.64 between indel and SV, and
0.11 between SNP and SV). The results show that selective
constraints for the three types of variants are, in general,
correlated in non-coding elements, especially between
SNP and indel, and between SV and indel. Nevertheless,
we also see differences.

Within CDSs, compared to SNPs and in-frame indels
that only modify one or two local amino acids, a
frame-shift indel alters all the amino acid sequences that
follow, and may introduce premature stop codons that
truncate the protein products, which is very detrimental
to, and therefore expected to be quickly removed from, the
genome. Thus, one might expect that selective pressure
against indels in CDSs to be stronger than that against
SNPs, compared to the other functional elements. To our
surprise, we find that TF-binding sites and ncRNAs are,
on average, relatively even more constrained for indels
than for SNPs, compared to what we observe for CDSs
(Figure 4A–C). In fact, the ratio of low-frequency indel
fraction to low-frequency SNP fraction is increased by
8 and 22% in TF-binding sites and ncRNAs relative to
CDSs, respectively (P-value=8.9E-2 and 1.1E-1, respect-
ively, by bootstrapping).

To further explore the above observations, we consider
the differences between in-frame and frame-shift indels.
The size distribution of indels shows a periodic peak of
3 nts for CDSs but not for non-coding elements (i.e. the
fraction of indels of size 3, 6, 9 bp. . . is elevated for CDSs,
see Figure 4D). Since the majority of the indels are no
larger than 3 bp, we extract the indels of size 1, 2 and
3 bp, and examine the excess of low-frequency indels, re-
spectively. We find that frame-shift indels (1 and 2 bp)
have more low-frequency alleles than in-frame indels
(3 bp) in CDSs (e is 160 and 116% higher than 3 bp
indels, respectively), consistent with a relaxed constraint
for the in-frame indels compared to frame-shift indels
(Figure 4D). However, even for 1 bp indels, which intro-
duce frame-shifts, we do not see an elevated level of con-
straint for indels relative to SNPs in CDSs, compared to
non-coding elements (Figure 4D). Therefore, the selective
pressure for indels relative to SNPs in TF-binding-sites
and ncRNAs is as much as, if not more than, in CDSs.
Taken together, comparisons of the allele frequency
spectrum between SNPs, indels and SVs reveal heterogen-
eity in the selective pressure for the three types of vari-
ations in non-coding elements, despite an overall
correlation.

Differences in selective pressure between subclasses within
an element class

Instead of treating each class of elements as a whole as
described in the proceeding section, we further analyze the
mode and extent of selection with respect to subclasses of
elements having different genomic properties, such as the
genomic locations, RNA expression levels, number of
binding targets, sequence divergence, conservation of sec-
ondary structure, etc. (Supplementary Data).

TF-binding sites

Bound versus unbound motifs. We first compare TF-bound
motifs (i.e. those motifs within TF peaks from ChIP-seq
experiments, thus having physical interaction with TFs)
to unbound motifs (i.e. without physical interaction with
TFs) in the genome. We find that, in bound motifs,
the SNP diversity and divergence are lower than those
in unbound motifs (P-value< 1.0E-4, in CEU, see
Figure 5A). Moreover, there are also more low-frequency
SNPs and SVs in bound motifs compared to unbound
motifs (P-value=1.2E-3 and <1.0E-4, respectively, in
CEU). These results suggest that bound motifs are under
stronger purifying selection than unbound motifs. This
functional importance of bound motifs is consistent with
their direct chemical interactions with TFs.

TF-binding motif versus peak. Next, we compare TF-
binding motifs to their corresponding broader peak
regions. In TF motifs, we find the allele frequency
spectra of SNPs, indels and SVs are skewed towards the
low-frequency alleles, and the levels of nucleotide diversity
and divergence decline, relative to the TF peaks
(P-value=2.1E-2 for SNP DAF, and P-value< 1.0E-4
for diversity and divergence in CEU, see Figure 5A).
The results indicate that TF-binding motifs tend to be
more selectively constrained than their corresponding
peak regions. This suggests that scanning for motifs
better pinpoints DNA–protein interacting sites
(Supplementary Data).

Proximal versus distal to genes. We then explore TF-
binding sites with respect to their proximity to genes.
We examine the distance between a TF-binding motif
and the TSS of genes, and find that TF-binding motifs
proximal to genes show a decreased level of diversity
compared to distal motifs (P-value=4.0E-4 in CEU, see
Figure 5A). However, the variant allele frequencies are not
significantly different. Positive selection in some sequences
in proximal TF-binding motifs might contribute to the
pattern for diversity, but it is frequently masked by the
prevalent negative selection in the human genome.
Alternatively, proximal motifs might be sufficiently close
to genes and thus under background selection (i.e. elimin-
ation of an allele tightly linked to a deleterious allele),
which reduces the level of nucleotide diversity but does
not alter variant allele frequencies.

Strong versus weak TF-binding peaks. Next, we explore
whether there is difference in selective constraints for TF
peak signals with differential strengths (stronger peaks
have peak detection P-value <1.0E-4). The variant allele
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frequencies are comparable between the stronger and
weaker peaks (P-value=0.48, 0.49 and 0.36 for SNP,
indel and SV DAF, respectively, in CEU), whereas the
diversity and divergence levels are lower in stronger
peaks (P-value< 1.0E-4 in CEU, see Figure 5A). These
results indicate that stronger peaks might contain a
larger fraction of regions with lower mutation rates.
Another explanation is that the stronger peaks are more
proximal to genes, and are therefore under background
selection. In fact, when we examine the distance to the
TSS of genes, we find that the stronger peaks are signifi-
cantly closer to genes than the weaker peaks
(P-value=9.1E-76).

ncRNAs

High- versus low-expression levels. We have shown above
that ncRNA regions are, in general, under purifying selec-
tion. We now relate the extent of selective constraints in
ncRNAs to the expression levels. ncRNAs with higher
expression levels tend to have an excess of low-frequency
SNPs (P-value< 1.0E-4 in CEU, see Supplementary
Figure S4), which suggests a positive correlation between
the levels of RNA expression and selective constraints.
For protein-coding genes, it has been previously shown
that highly expressed genes tend to evolve slowly and
are essential for the organism viability (46,47). Here, we
demonstrate a parallel pattern for ncRNAs, which is,
highly expressed ncRNAs tend to be under more selective
pressure and play a more important role in biological
function than lowly expressed ncRNAs.

More versus fewer miRNA binding targets. Among
ncRNAs, miRNAs have emerged as an important novel
silencing mechanism for gene transcription by strongly
binding to 30UTRs of transcripts with their 50-ends. We
predict the miRNA binding targets (Supplementary
Data), and discover that those miRNAs with a larger
number of binding targets (>500) tend to have a
reduced level of nucleotide diversity, an elevated level of
nucleotide divergence, and an elevated average DAF of
SNPs compared to those with fewer targets (Figure 5B).
The MK test further reveals that the miRNAs with more
binding targets show signatures of positive selection
(NI=0.31 and P-value=1.78E-3 in CEU), whereas
those with fewer targets are under slight purifying selec-
tion (NI=1.08> 1 in CEU), although this is not statis-
tically significant (P-value=0.76). These results indicate
that miRNAs with a larger number of binding targets
contain more sequences selected for adaptive evolution.

Non-coding gene domains

More- versus Less-structured regions. We have also
studied the more and less structured regions in the
introns and the UTRs of coding genes by examining the
folding energies of secondary structures in the correspond-
ing mRNA sequences (Supplementary Data). We do not
see significant differences in the extent of selective con-
straints between non-coding gene regions with more
stable secondary structures (with Z-score <�2) and
those with less stable secondary structures (with Z-score
��2, see Figure 5C and Supplementary Figure S4),
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Figure 5. Comparison of the SNP diversity, divergence and DAF of three types of variations between subclasses of elements with different genomic
features. The elements shown include (A) TF-binding sites, (B) miRNAs, (C) 30-UTRs, and (D) pseudogenes. Feature annotations for the first and
second subclasses of each element are separated by a slash in the legends below each bar. The height of each bar represents the bootstrapping mean
of the ratio of the corresponding measures in the first subclass to the second subclass (Supplementary Data). The dashed line represents a same level
of measurement between the two subclasses. Error bars represents the 95% confidence interval (CI) obtained from the empirical distribution of
bootstrapping. The asterisks denote a significant difference in the corresponding measure between the two subclasses of elements (i.e. bootstrapping
mean not included in the 95% CI). SNP diversity and divergence are calculated for each region in a subclass of elements (‘Materials and Methods’
section). DAF is obtained from the variants in the union of the regions (no double counting for overlapping regions). The SV allele frequencies
shown are the average of the three populations and the other measures are shown for CEU. Element subclasses with fewer than four variants for the
corresponding variation type are not shown.
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although non-coding gene domains are, on average, under
more constraints than the neutral reference (NI=1.16,
and the MK test P-value=3.5E-103 for 30UTRs, in
CEU). This indicates that the selective constraints in the
primary sequences of UTRs and introns do not clearly
correlate with the regions of conserved secondary
structure.

Pseudogenes

Transcribed versus untranscribed. Although pseudogenes
are not translated into functional protein products, some
of them retain the machinery to be transcribed into RNA
products (48). However, the functional relevance of the
transcribed pseudogenes is not well understood. We
explore the difference between transcribed and untransc-
ribed processed pseudogenes, and find that transcribed
pseudogenes exhibit signatures of stronger selective pres-
sure than untranscribed pseudogenes (lower nucleotide di-
versity and divergence with P-value=1.6E-2 and <1.0E-
4, respectively, lower average SNP and SV DAF with
P-value=6.0E-3 and <1.0E-4, respectively, in CEU).
This result suggests that some transcribed pseudogenes
might be involved in coding-independent functions, such
as ‘buffering’ the binding of miRNAs to the parent gene
transcripts (44).

Old versus young. We further subgroup pseudogenes ac-
cording to their age (Supplementary Data). We find that
older duplicated pseudogenes are more selectively con-
strained for SNPs compared to younger pseudogenes
(P-value=3.8E-2, <1.0E-4 and=3.1E-3 for SNP diversity,
divergence and DAF in CEU, respectively, see Figure 5D).
However, the older duplicated pseudogenes also show
higher average indel DAFs (Figure 5D). These differences
in variant DAFs between older and younger duplicated
pseudogenes may reflect the possibility that, for older
pseudogenes, some pseudogenization events may take
place far later than the time of the duplication events,
whereas young pseudogenes are dead on arrival by defin-
ition of pseudogenes. Processed pseudogenes, on the other
hand, do not show significant differences between older
and younger pseudogenes (Supplementary Figure S4),
which is consistent with their formation mechanism that
almost renders all of them dead on arrival. Sensitivity
analysis further shows that analysis of older/younger
duplicated pseudogenes is sensitive to the cutoff used to
divide pseudogenes into the two subgroups, and much less
so for processed pseudogenes, which further suggests het-
erogeneity in duplicated pseudogenes (Supplementary
Figures S6H and S6I). We have also carried out sensitivity
analysis for the other analyses on subclasses within an
element class above, and they are not sensitive to the
cutoffs that we have chosen (Supplementary Data and
Supplementary Figure S6).

Intra-element patterns of selective pressure in non-coding
elements

So far, we have shown that the mode and extent of select-
ive pressures are associated with the genomic properties of
different classes and subclasses of elements. What we will
discuss in the following section is the intra-element

patterns of selective forces (i.e. within the internal linear
genomic structure of a given element and its immediate
surroundings). We first address this by developing
element-aware aggregations of SNP and indel diversity
across a given element (‘Materials and Methods’ section
and Supplementary Data).

Aggregation in protein-coding genes and surrounding
regions. Since many non-coding elements are located in,
or proximal to, protein-coding genes, it is useful to
examine how they are related to each other, along with
the spatial information within gene regions. We therefore
study the aggregation of the diversity of SNPs and 1 bp
indels across protein-coding genes and their surrounding
regions (‘Materials and Methods’ section and
Supplementary Data). We discover that, within genes,
CDSs show the lowest level of SNP diversity, followed
by UTRs and introns (Figure 6). In the upstream
regions of genes, the average SNP diversity level first in-
creases by 16–22% in upstream 250 bp regions relative to
50UTRs. In the more distal regions, the average diversity
level is reduced by 1–2% in upstream from 250 bp to
2.5 kb relative to 50UTRs, and is then increased by 28–
29% in upstream 2.5–25 kb relative to 50UTRs. Notably,
the TF-binding motifs within each of the three upstream
regions show a drop of diversity relative to their surround-
ing areas. Moreover, although the average level of diver-
sity is largely different in the three upstream regions, the
decline in diversity within the motifs relative to their sur-
rounding regions is comparable in the three regions, vary-
ing between 7 and 15% (Figure 6). This suggests that a
similar level of additional selective pressure for SNPs may
be imposed on TF-binding motifs relative to their sur-
rounding regions. At the 30-ends of genes, the average
SNP diversity is 30–56% higher in 30UTRs relative to
the last CDS, rises by 12–34% in the 2.5 kb downstream
regions of genes relative to 30UTRs, and rises further in
the more distal regions. Within 30UTRs, the two terminals
of 30UTRs have a 7–16% lower SNP diversity than the
central parts of 30UTRs, implying the potential of a more
active involvement of functionality in the terminal regions
of 30UTRs. We aggregate diversity in 30UTRs by using
one miRNA target site within each of the three parts of
30UTRs as an anchor locus. The sites in which a miRNA
target is predicted typically show a 10–16% reduced
average level of SNP diversity relative to the immediate
surroundings (except for between the last target anchor
and its 50 neighboring region).
For indels, we argue that it is only meaningful to calcu-

late conventional diversity measure for 1 bp indels
(Supplementary Data). Unlike SNPs, the average 1 bp
indel diversity does not vary significantly between differ-
ent upstream regions of genes. In addition, TF-binding
motifs only show a significant drop of indel diversity
relative to their surroundings within the upstream 250 bp
region, but not the further distal regions. Moreover,
unlike what we observe for SNPs, indels show a similar
level of diversity in 30UTRs to the downstream regions,
and the diversity in miRNA binding targets are slightly
elevated or unnoticeable relative to their surroundings.
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Overall, we see a low level of SNP diversity within
genes, and background selection maintains a lower SNP
diversity level in the surrounding regions that are closer to
genes. But this effect is less evident for indels. Moreover,
we show that SNP diversity within functional elements,
such as TF-binding motifs and miRNA target sites, is
further reduced relative to this general background. A
lower level of nucleotide diversity might suggest higher
levels of selective pressure. The results also suggest hetero-
geneous selection (i.e. different patterns between SNPs
and indels) in promotor regions and 30UTRs of genes.
To estimate the CIs of the aggregations, we have applied

both the simple bootstrapping and block bootstrapping
procedures to the aggregations within and around gene
regions (Figure 6, ‘Materials and Methods’ section and
Supplementary Data). The thought process of block
bootstrapping has been extensively used in the genome
structure correction (GSC) procedure in the ENCODE
project (4). Here, we extend block bootstrapping to de-
veloping element-aware aggregation techniques. As
indicated in the ‘Materials and Methods’ section, block
bootstrapping overcomes the dependence between neigh-
boring sequences, whereas simple bootstrapping assumes
independence between observations. Therefore, simple
bootstrapping tends to underestimate the standard devi-
ation of the aggregations, which is consistent with our
observations (Figure 6).
However, note that using block bootstrapping to

estimate the standard deviation for aggregations is only
suitable for elements that are relatively abundant in the

human genome, such as, in this case, genes and surround-
ing regions (4). With respect to elements that are sparse,
such as miRNAs, a large proportion of the sampled blocks
may not contain any element annotations. It then imposes
problems with the renormalization step. For the following
analyses of aggregations in TF-binding motifs
and miRNAs, only simple bootstrapping has been
carried out.

Aggregation in TF-binding motifs. After obtaining a broad
picture of TF-binding motifs with respect to their sur-
rounding areas around genes, we further zoom in to
studying the diversity levels within TF motifs. Figure 7A
shows the aggregation of the SNP and indel diversity
across the STAT1 motifs. We find a notable pattern of
anti-correlation between the information content (a
measure of conservation) of the STAT1 motifs and the
SNP diversity across the element (correlation=�0.63,
P-value=1.9E-3, in CEU). The correlation between the
information content and indel diversity is not significant.
A similar pattern has been observed for the other six TF
motifs (Supplementary Table S4). These results show that
the more conserved sites in motifs tend to have lower SNP
diversity, and they might undergo stronger positive or
negative selection.

We further subgroup SNPs occurring in TF-binding
motifs into those that are favorable or unfavorable for
the motifs. We define a SNP favorable for a motif as a
substitution with the count of the derived allele higher
than its ancestral allele in the position weight matrix

Figure 6. Aggregation of nucleotide diversity across protein-coding genes and the surrounding regions. Each data point represents the average
diversity in a certain bin across all the sequences of an annotation (Supplementary Data). The number of bins within an annotation is constant for all
sequences. Solid lines represent bootstrapping means and 95% confidence intervals from the block bootstrapping procedure (‘Materials and Methods’
section). Note that the solid lines for 1-bp indel diversity are scaled by a multiple of 10 relative to the other measures in the aggregation plot (see the
legend at the top right corner of the plot). Red boxes compare a section of the aggregation plot produced from the block bootstrapping procedure
(main figure) to the simple bootstrapping procedure (the blow-out section, see full plot in Supplementary Figure S7), and show an underestimation of
the standard deviation using simple bootstrapping. TSS, transcription start site. TES, transcription end site. m, TF-binding motif. t, miRNA binding
target. Data is shown for CEU.
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(PWM) of the motif, and vice versa. We find that the un-
favorable SNPs tend to be more selectively constrained
than the favorable SNPs, indicated by a lower average
DAF (Supplementary Table S4). Moreover, in some
motifs, the selective constraints are relaxed for the favor-
able SNPs relative to the unfavorable SNPs; in other
motifs, the favorable SNPs further display signs of
positive selection. STAT1 is an example of the former:
the favorable and unfavorable SNPs both have a lower
average DAF than the neutral reference (Wilcoxon test
P-value <2.2E-16), but we find relaxed selective con-
straints for the favorable SNPs compared to the

unfavorable SNPs (Wilcoxon test P-value=1.7E-2,
Figure 7B). c-FOS may be used as an example for the
latter situation: the favorable SNPs tend to have a
higher average DAF (0.41) than the neutral reference
(0.33) (Wilcoxon test P-value=3.3E-89), and their allele
frequency spectrum is skewed towards the high-frequency
alleles (Figure 7C), implying positive selection; the un-
favorable SNPs tend to have a lower average DAF
(0.20) than the neutral reference, and their allele frequency
spectrum is skewed towards the low-frequency alleles
(Wilcoxon test P-value <2.2E-16, see Figure 7C), which
is consistent with signatures of purifying selection.

A

B C

Figure 7. (A) Aggregation of nucleotide diversity across STAT1 motifs. Each data point represents the average diversity at a nucleotide position
across all the sequences of the motif (Supplementary Data). The sequence logo of STAT1 motifs is shown at the bottom. The height of the sequence
logo at each nucleotide position corresponds to the information content. (B) Derived allele frequency spectrum for the SNPs favorable and
unfavorable to the STAT1 motif. (C) Derived allele frequency spectrum for the SNPs favorable and unfavorable to the c-Fos motif. Data is
shown for CEU.
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Hence, a mutation unfavorable for the motif is deleteri-
ous and is removed from the population or kept at low
frequencies, whereas a mutation favorable for the motif
tends to be less selectively constrained and/or positively
selected.

Aggregation in miRNA mature sequences and surrounding
regions. We have shown in the aggregation within
protein-coding genes that miRNA binding targets have a
reduced level of SNP diversity relative to their surround-
ings; now we further explore the regions where miRNA
genes are encoded.
Mature miRNAs are �22 bp single-stranded RNA mol-

ecules that silence gene expression by binding to 30UTRs.
Aggregating across the mature miRNAs and their 2 kb
surrounding regions reveals signals of decreased SNP di-
versity within miRNA sites (by 67% relative to surround-
ings, see Figure 8). Zooming into the 22 bp mature
miRNA sequences, we find that the first 2–8 bp, which is
the seed region requiring strong complementary base-pair

binding, has a further 53% reduction in the level of
average SNP diversity relative to the remaining sites in
mature miRNA sequences (Figure 8). The 1 bp indel
diversity does not show significant differences across
miRNA and surrounding regions (Figure 8).

These results suggest that miRNAs, especially their seed
regions, play functional roles. Thus far, we have shown
that both the miRNAs and their binding targets have
lower SNP diversity levels than surrounding areas. The
binding interaction between miRNA and its target
requires strong base-pair complementarity for relevant
functions, which might render substitutions in either site
deleterious. On the other hand, there is also the potential
for some miRNAs and their targets to undergo positive
selection or co-evolution, such as shown in the case of
miRNAs with a large number of binding targets (as
described above). Both negative and positive selection
can result in a decrease in diversity.

Modes and mechanisms of SVs interacting with
functional elements

Overview of different modes of interaction and SV
formation mechanisms. To further explore the intra-
element differences, we investigate the different modes of
SVs interacting with each class of non-coding elements.
Due to the large variant size, SV have more diverse
modes of interaction with an element than SNPs and
smaller indels (either within or outside of an element).
For instance, an SV can ‘envelop’ a whole element, that
is, the element is completely deleted or inserted by the SV
and the SV breakpoints do not fall within the element.
Alternatively, an SV may partially disrupt an element,
with one or both of the breakpoints cutting
the element. Furthermore, an SV may overlap with
multiple elements simultaneously and with different
modes for each element involved. In addition, there are
various mechanisms in the formation of SVs, and we have
previously developed a computational pipeline for system-
atically classifying SVs according to their mutational
mechanisms (24). These mechanisms include non-allelic
homologous recombination (NAHR) mediated by recom-
bination at homologous stretches at the breakpoints,
nonhomologous recombination (NHR) mediated by
double strand break repair (NHEJ/MMEJ) or replication
associated (MMBIR/FoSTeS) processes, variable number
of tandem repeats (VNTRs) resulting from the expansion
or contraction of simple tandem repeat units, and trans-
posable element insertions (TEIs) involving mostly long
and short interspersed elements (LINEs and SINEs) and
combinations thereof. In the following section, we analyze
the interaction between SVs and the genomic elements,
and investigate the modes and mutational mechanisms
involved.

Overall interaction of SVs and genomic elements. By
randomly shuffling the SVs within the human genome,
as well as within their local 10Mb regions, we assess
whether the association between SVs and an element is
enriched or depleted compared to this random back-
ground (‘Materials and Methods’ section). Note that this

Figure 8. Aggregation of nucleotide diversity across mature miRNA
sequences and their surrounding 2 kb regions. Each data point repre-
sents the average diversity in a given bin across all the sequences of an
annotation. The number of bins within an annotation is constant for all
sequences. Solid lines represent bootstrapping means and 95% confi-
dence intervals from the simple bootstrapping procedure for upstream
1kb, mature miRNA and downstream 1kb, respectively
(Supplementary Data). Dashed lines represent bootstrapping means
and 95% confidence intervals for the seed regions (2–8 bp) and the
remaining sites in the mature miRNA sequence. Data is shown for
CEU.
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background is different from the neutral background
that we used in the previous sections. As a baseline,
we find that, consistent with previous studies, SVs tend
to be depleted from protein-coding genes (Table 2 and
Supplementary Table S5) (49). SVs are also depleted
from the CDSs and 30UTRs, whereas introns and
50UTRs are not significantly associated with SVs
(Table 2 and Supplementary Table S5). Therefore, SVs
overlapping with CDSs and 30UTRs are more deleterious
than those overlapping other gene domains. Moreover,
SVs are significantly depleted from TF-binding motifs,
whereas they are not significantly associated with
ncRNAs. On the other hand, SVs are enriched in pseudo-
genes (Table 2 and Supplementary Table S5).

Modes of interaction between SVs and genomic elements,
and in relation to the formation mechanisms. Next, we
probe the details of the different modes of SVs interacting
with the genomic elements. First, regardless of an overall
depletion of SVs in genes, we detect a bias towards SVs
interacting with whole gene(s) (enrichment=1.41 and
P-value=9.0E-3) instead of partially disrupting genes
(enrichment=0.90 and P-value=1.1E-20), suggesting a
relaxed constraint for SVs interacting with whole gene(s).
Similar patterns largely follow when we subdivide SV
interactions with whole genes into those with a single
whole gene or multiple whole genes (2, 3, 4, or �5 whole
genes) (Supplementary Table S5). This phenomenon,
however, is not observed for the non-coding elements or
coding exons (Table 2 and Supplementary Table S5).
There is even a slight enrichment of SVs interacting with
partial ncRNAs (Table 2 and Supplementary Table S5).
Nonetheless, TF-binding motifs and ncRNAs are notably
distinct from protein-coding genes, in that they have much
smaller element sizes. In fact, each of the two classes of

elements has only 10 SVs that interact with them partially
(Supplementary Table S5). As we obtain substantially
more SV annotations in the future, we might be able to
assess different interaction modes between SVs and non-
coding elements more comprehensively.
As might be expected, we then analyze whole/partial

gene interactions against SVs of different formation mech-
anisms and find that the enrichment for whole-gene inter-
action is only present for SVs mediated by NAHR and
VNTR mechanisms, but not for NHR and TEI mechan-
isms (Table 2). NAHR and VNTR mechanisms tend to
involve genomic regions that are duplicated and repetitive,
in which copy numbers frequently exceed two (23,49–51).
Moreover, since protein-coding genes tend to contain
unique sequences, the homologous sequences at the break-
points that facilitate formation of NAHR SVs are more
likely to be found within the intergenic regions than within
the genes themselves. This potentially results in the enrich-
ment of NAHR events for whole-gene interactions.

Interaction between SVs of different formation mechanisms
and non-coding elements. Further, in spite of an overall
depletion, SVs mediated by VNTR are enriched for TF-
binding motifs, but this is not the case for the other mech-
anisms (Table 2). This suggests that these TF-binding
motifs may function together in tandem to enhance the
transcription of corresponding genes. ncRNAs are not
found to particularly associate with specific formation
mechanisms. On the contrary, all mechanisms but TEI
are significantly enriched for pseudogenes (Table 2). This
characteristic relationship between SVs and pseudogenes
may first be explained by referring to the formation mech-
anisms of pseudogenes: duplicated pseudogenes are
created from genomic duplication or unequal
crossing-over, and processed pseudogenes are reverse

Table 2. Randomization test for SVs interacting with genomic elements

Element All SVs NAHR VNTR NHR TEI

Enrichment P-value Enrichment P-value Enrichment P-value Enrichment P-value Enrichment P-value

Gene 0.90 8.68E-20 1.13 4.98E-08 0.84 6.50E-06 0.83 8.28E-27 0.87 6.96E-09
CDS 0.37 8.72E-85 0.68 1.94E-06 0.07 3.40E-11 0.37 5.82E-53 0.04 3.47E-24
50UTR only 0.96 2.17E-01 1.03 3.86E-01 0.83 1.44E-01 0.97 3.45E-01 0.95 3.11E-01
30UTR only 0.72 3.47E-03 1.06 3.90E-01 0.80 2.75E-01 0.68 1.76E-02 0.46 6.16E-03
Intron only 1.02 7.60E-02 1.25 5.92E-13 0.91 4.39E-02 0.96 4.50E-02 0.99 3.57E-01
Whole gene(s) 1.41 8.96E-03 1.92 1.72E-03 2.76 2.89E-02 1.18 2.06E-01 0.00 2.34E-01
Partial gene(s) 0.90 1.06E-20 1.12 3.54E-07 0.83 3.66E-06 0.83 3.43E-27 0.87 7.75E-09
Whole CDS(s) 0.39 3.94E-61 0.73 2.26E-04 0.08 1.73E-07 0.35 4.63E-44 0.00 1.24E-14
Partial CDS(s) 0.33 8.30E-23 0.56 1.74E-03 0.06 3.03E-05 0.41 1.22E-09 0.09 1.17E-10
ncRNA 1.08 2.06E-01 1.21 1.25E-01 0.97 4.76E-01 1.04 3.67E-01 0.76 3.13E-01
Whole ncRNA(s) 1.03 3.94E-01 1.18 1.64E-01 0.76 3.41E-01 0.99 4.83E-01 0.37 1.51E-01
Partial ncRNA(s) 1.83 2.58E-02 1.73 2.17E-01 2.10 2.26E-01 1.96 6.28E-02 1.59 2.54E-01
Motif 0.73 3.74E-13 0.87 3.86E-2 1.44 5.70E-03 0.71 5.91E-10 0.13 8.45E-10
Whole motif(s) 0.73 5.58E-13 0.90 7.35E-02 1.39 1.48E-02 0.71 2.52E-10 0.14 4.11E-09
Partial motif(s) 0.75 1.74E-01 0.00 4.66E-02 2.48 5.03E-02 1.11 3.93E-01 0.00 4.10E-02
Pseudogene 1.24 1.11E-05 1.56 3.37E-07 1.54 1.73E-02 1.24 6.94E-04 0.50 3.58E-03
Whole pseudogene(s) 1.51 1.15E-12 1.95 3.98E-13 2.50 1.22E-04 1.33 1.44E-04 0.51 1.63E-01
Partial pseudogene(s) 0.93 2.39E-01 0.97 4.40E-01 1.05 4.37E-01 1.10 2.16E-01 0.50 6.26E-03

SVs are shuffled in the whole genome, i.e. a global background. See Supplementary Table S5 for results in a local background. Significant P-values
(<0.05) are represented in bold. Significant enrichments are represented in green. Significant depletions are represented in red. CDS(s) refer to coding
exons excluding UTRs.
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transcribed from mRNA products, which are then
inserted into the genome by hijacking the reverse tran-
scription mechanism of LINE elements (53). Hence, the
formation of pseudogenes per se involves duplication or
insertion of large segments of the genome, which, by def-
inition, are SVs if still segregating in the population. To
this end, we have indeed observed instances of three pro-
cessed pseudogenes still segregating as SVs in humans in a
previous study (24). In addition, pseudogenes have been
found to be significantly associated with segmental dupli-
cations in the human genome (50), which, together with
other repeat contents in pseudogenes, may serve as hom-
ologous sequences at the breakpoints of SVs mediated by
the NAHR mechanism.

DISCUSSION

Using next-generation sequencing technology, the 1000
Genomes Project is pioneering in comprehensively iden-
tifying and genotyping a whole spectrum of genomic vari-
ations, including SNPs, indels, and SVs, in a genome-wide
fashion at the population level. While previous studies
have been primarily limited to localized regions or the
use of the ‘tagging’ SNPs, the 1000 Genomes Project has
allowed us to study the selective pressure on non-coding
elements using whole-genome annotations of all three
types of genomic variations. Some of our novel findings
from quantitative and/or qualitative analyses were not ap-
proachable with previous methods. A notable example is
the study of the genome-wide properties of TF-binding
motifs, miRNAs and their seeds, and miRNA binding
sites, which are all non-coding elements of small size
(<30 bp). Only when nearly every nucleotide within the
elements is surveyed, will we have sufficient number of
variants to study their genome-wide properties in a rela-
tively unbiased way. Some other findings have previously
been addressed qualitatively, but are only now possible to
approach quantitatively. One such example is that the
1000 Genomes data has enabled, for the first time, the
calculation of average genome-wide levels of SNP and
indel diversity within elements.
In summary, we have developed a framework, ncVAR,

for the integrative analysis of three types of genomic vari-
ations in a number of different types of non-coding
elements (TF-binding sites, ncRNAs, pseudogenes, etc.).
We have examined differences between classes of each
element, between subclasses within an element class, and
between the internal genomic structures of a given
element. Overall, our analysis has shown that each of
the non-coding elements has a very distinct variation
profile.
For TF-binding sites, we find that they are less

constrained for SNPs than are CDSs and more
constrained than are neutral sequences. However, the
selective pressure on TF-binding sites is even stronger
for indels than SNPs, compared to what we observed for
CDSs, which, after further inspection, is largely due to the
relaxed constraints for in-frame indels. Moreover, motifs
that are bound by TFs are under stronger purifying selec-
tion than unbound motifs. TF-binding motifs are also

more constrained than corresponding TF peaks. Within
a TF-binding motif, the site conservation is reversely
correlated with SNP diversity. SNPs favorable for the
motif tend to undergo positive selection or relaxed
selective constraints. Lastly, the enrichment of VNTR
events for TF-binding motifs reveals a propensity of TF
motifs to function in tandem.

For ncRNAs, we find, that they are less constrained for
SNPs than CDSs but more constrained, on average, for
indels than CDSs. Further, miRNAs that are highly ex-
pressed tend to be under stronger purifying selection than
the lowly expressed ones. Moreover, miRNAs with a
larger number of binding targets tend to be under
positive selection. Finally, miRNAs (especially seed
regions) and their binding targets are both under more
constraints for SNPs relative to surrounding regions.

For the non-coding gene domains, we find that they are
more constrained than the neutral reference, with 30UTRs
being more functionally relevant than 50UTRs and introns.
In addition, SVs have a tendency to envelop whole gene(s)
instead of partially disrupting them, and this mode of
interaction is only enriched for SVs mediated by NAHR
and VNTR mechanisms.

For pseudogenes, we find that they lose their neutral
property regarding SVs. Although most pseudogenes lack
functionality, transcribed pseudogenes, as well as some
older pseudogenes, appear to be under constraints and
retain certain functional roles.

In recent years, although an increasing number of
studies have aimed to detect, genotype, and characterize
SVs, technical difficulties remain for identifying and
genotyping SVs with high-resolution breakpoints (24).
The 1000 Genomes Project pilot phase has identified and
genotyped by far the largest set of SVs with single-
nucleotide resolution at the population level. Only at
this resolution can we reliably study the mode and extent
of SVs interacting with genomic elements.

One limitation in using the current 1000 Genomes
pilot data is that SNPs and indels have been identified
and genotyped only within each population, which pre-
cludes the use of allele frequency information from all
the populations simultaneously (Supplementary Data).
Additionally, different ascertainment biases remain in dif-
ferent variant calling algorithms. For indels and SVs,
biases are particularly evident for polarized variants and
for large variants. Hence, efforts still need to be made in
new algorithms towards minimizing the biases in identify-
ing and genotyping genomic variants from next-
generation sequencing data.

Looking to the full production phase of the 1000
Genomes Project, we expect that a more complete cata-
logue of genomic variations, both in terms of quantity and
allele frequency spectrum, will enable a more compre-
hensive characterization of the nature and strength of se-
lective pressure on non-coding elements (the 1000
Genomes Project aims at detecting variants with a minor
allele frequency of> 0.01 in 2500 individuals) (7).
Additionally, the ENCODE Project is currently
generating a more extensive annotation of the functional
elements in the human genome (4). We foresee that, in the
near future, there will be a rapid increase in
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next-generation sequencing data for personal genomes,
wherein annotations such as ChIP-seq signals, indels,
and SVs will be made available. To this end, this paper
presents a prototype for the integrative analyses for
population-based studies using a variety of
high-throughput data sources.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank B. Brown, P. Bickel, H. Huang,
H. Zhao, A. Molinaro, K. Kidd, L. Habegger,
J. Rozowsky, A. Abyzov, E. Khurana, J. Leng,
C. Cheng and S. Chong for helpful comments and discus-
sions, and the authors also thank D. Clarke for proofread-
ing the manuscript. The authors acknowledge the 1000
Genomes Project for the datasets.

FUNDING

National Institutes of Health and the Albert Lynn
Williams Professorship funds. Funding for open access
charge: National Institutes of Health.

Conflict of interest statement. None declared.

REFERENCES

1. Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,
Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al.
(2001) Initial sequencing and analysis of the human genome.
Nature, 409, 860–921.

2. Waterston,R.H., Lindblad-Toh,K., Birney,E., Rogers,J.,
Abril,J.F., Agarwal,P., Agarwala,R., Ainscough,R.,
Alexandersson,M., An,P. et al. (2002) Initial sequencing and
comparative analysis of the mouse genome. Nature, 420, 520–562.

3. Alexander,R.P., Fang,G., Rozowsky,J., Snyder,M. and
Gerstein,M.B. (2010) Annotating non-coding regions of the
genome. Nat. Rev. Genet., 11, 559–571.

4. Birney,E., Stamatoyannopoulos,J.A., Dutta,A., Guigo,R.,
Gingeras,T.R., Margulies,E.H., Weng,Z., Snyder,M.,
Dermitzakis,E.T., Thurman,R.E. et al. (2007) Identification and
analysis of functional elements in 1% of the human genome by
the ENCODE pilot project. Nature, 447, 799–816.

5. The ENCODE Project Consortium. (2011) A User’s Guide to the
Encyclopedia of DNA Elements (ENCODE). PLoS Biol., 9,
e1001046.

6. Hartl,D.L. and Clark,A.G. (2007) Principles of Population
Genetics. Sinauer Associations Inc. Publishers, Sunderland, MA.

7. McDonald,J.H. and Kreitman,M. (1991) Adaptive protein
evolution at the Adh locus in Drosophila. Nature, 351, 652–654.

8. The 1000 Genomes Project Consortium. (2010) A map of human
genome variation from population-scale sequencing. Nature, 467,
1061–1073.

9. Frazer,K.A., Ballinger,D.G., Cox,D.R., Hinds,D.A., Stuve,L.L.,
Gibbs,R.A., Belmont,J.W., Boudreau,A., Hardenbol,P., Leal,S.M.
et al. (2007) A second generation human haplotype map of over
3.1 million SNPs. Nature, 449, 851–861.

10. Altshuler,D.M., Gibbs,R.A., Peltonen,L., Dermitzakis,E.,
Schaffner,S.F., Yu,F., Bonnen,P.E., de Bakker,P.I., Deloukas,P.,
Gabriel,S.B. et al. (2010) Integrating common and rare genetic
variation in diverse human populations. Nature, 467, 52–58.

11. Quach,H., Barreiro,L.B., Laval,G., Zidane,N., Patin,E.,
Kidd,K.K., Kidd,J.R., Bouchier,C., Veuille,M., Antoniewski,C.

et al. (2009) Signatures of purifying and local positive selection in
human miRNAs. Am. J. Hum. Genet., 84, 316–327.

12. Sachidanandam,R., Weissman,D., Schmidt,S.C., Kakol,J.M.,
Stein,L.D., Marth,G., Sherry,S., Mullikin,J.C., Mortimore,B.J.,
Willey,D.L. et al. (2001) A map of human genome sequence
variation containing 1.42 million single nucleotide polymorphisms.
Nature, 409, 928–933.

13. Levy,S., Sutton,G., Ng,P.C., Feuk,L., Halpern,A.L., Walenz,B.P.,
Axelrod,N., Huang,J., Kirkness,E.F., Denisov,G. et al. (2007) The
diploid genome sequence of an individual human. PLoS Biol., 5,
e254.

14. Chuzhanova,N.A., Anassis,E.J., Ball,E.V., Krawczak,M. and
Cooper,D.N. (2003) Meta-analysis of indels causing human
genetic disease: mechanisms of mutagenesis and the role of local
DNA sequence complexity. Hum. Mutat., 21, 28–44.

15. Ball,E.V., Stenson,P.D., Abeysinghe,S.S., Krawczak,M.,
Cooper,D.N. and Chuzhanova,N.A. (2005) Microdeletions and
microinsertions causing human genetic disease: common
mechanisms of mutagenesis and the role of local DNA sequence
complexity. Hum. Mutat., 26, 205–213.

16. Korbel,J.O., Tirosh-Wagner,T., Urban,A.E., Chen,X.N.,
Kasowski,M., Dai,L., Grubert,F., Erdman,C., Gao,M.C.,
Lange,K. et al. (2009) The genetic architecture of Down
syndrome phenotypes revealed by high-resolution analysis of
human segmental trisomies. Proc. Natl Acad. Sci. USA, 106,
12031–12036.

17. McCarroll,S.A., Huett,A., Kuballa,P., Chilewski,S.D., Landry,A.,
Goyette,P., Zody,M.C., Hall,J.L., Brant,S.R., Cho,J.H. et al.
(2008) Deletion polymorphism upstream of IRGM associated
with altered IRGM expression and Crohn’s disease. Nat. Genet.,
40, 1107–1112.

18. Gonzalez,E., Kulkarni,H., Bolivar,H., Mangano,A., Sanchez,R.,
Catano,G., Nibbs,R.J., Freedman,B.I., Quinones,M.P.,
Bamshad,M.J. et al. (2005) The influence of CCL3L1
gene-containing segmental duplications on HIV-1/AIDS
susceptibility. Science, 307, 1434–1440.

19. de Cid,R., Riveira-Munoz,E., Zeeuwen,P.L., Robarge,J., Liao,W.,
Dannhauser,E.N., Giardina,E., Stuart,P.E., Nair,R., Helms,C.
et al. (2009) Deletion of the late cornified envelope LCE3B and
LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet.,
41, 211–215.

20. Wheeler,D.A., Srinivasan,M., Egholm,M., Shen,Y., Chen,L.,
McGuire,A., He,W., Chen,Y.J., Makhijani,V., Roth,G.T. et al.
(2008) The complete genome of an individual by massively
parallel DNA sequencing. Nature, 452, 872–876.

21. Wang,J., Wang,W., Li,R., Li,Y., Tian,G., Goodman,L., Fan,W.,
Zhang,J., Li,J., Guo,Y. et al. (2008) The diploid genome sequence
of an Asian individual. Nature, 456, 60–65.

22. AhnS,M., Kim,T.H., Lee,S., Kim,D., Ghang,H., Kim,D.S.,
Kim,B.C., Kim,S.Y., Kim,W.Y., Kim,C. et al. (2009) The first
Korean genome sequence and analysis: full genome sequencing
for a socio-ethnic group. Genome Res., 19, 1622–1629.

23. Mills,R.E., Walter,K., Stewart,C., Handsaker,R.E., Chen,K.,
Alkan,C., Abyzov,A., Yoon,S.C., Ye,K., Cheetham,R.K. et al.
(2011) Mapping copy number variation by population-scale
genome sequencing. Nature, 470, 59–65.

24. Lam,H.Y., Mu,X.J., Stutz,A.M., Tanzer,A., Cayting,P.D.,
Snyder,M., Kim,P.M., Korbel,J.O. and Gerstein,M.B. (2010)
Nucleotide-resolution analysis of structural variants using
BreakSeq and a breakpoint library. Nat. Biotechnol., 28, 47–55.

25. Zhang,Y., Liu,T., Meyer,C.A., Eeckhoute,J., Johnson,D.S.,
Bernstein,B.E., Nusbaum,C., Myers,R.M., Brown,M., Li,W. et al.
(2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol.,
9, R137.

26. McDaniell,R., Lee,B.K., Song,L., Liu,Z., Boyle,A.P., Erdos,M.R.,
Scott,L.J., Morken,M.A., Kucera,K.S., Battenhouse,A. et al.
(2010) Heritable individual-specific and allele-specific chromatin
signatures in humans. Science, 328, 235–239.

27. Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H.,
Zahler,A.M. and Haussler,D. (2002) The human genome browser
at UCSC. Genome Res., 12, 996–1006.

28. Rozowsky,J., Euskirchen,G., Auerbach,R.K., Zhang,Z.D.,
Gibson,T., Bjornson,R., Carriero,N., Snyder,M. and
Gerstein,M.B. (2009) PeakSeq enables systematic scoring of

Nucleic Acids Research, 2011, Vol. 39, No. 16 7075

http://nar.oxfordjournals.org/cgi/content/full/gkr342/DC1


ChIP-seq experiments relative to controls. Nat. Biotechnol., 27,
66–75.

29. Kasowski,M., Grubert,F., Heffelfinger,C., Hariharan,M.,
Asabere,A., Waszak,S.M., Habegger,L., Rozowsky,J., Shi,M.,
Urban,A.E. et al. (2010) Variation in transcription factor binding
among humans. Science, 328, 232–235.

30. Raha,D., Wang,Z., Moqtaderi,Z., Wu,L., Zhong,G., Gerstein,M.,
Struhl,K. and Snyder,M. (2010) Close association of RNA
polymerase II and many transcription factors with Pol III genes.
Proc. Natl Acad. Sci. USA, 107, 3639–3644.

31. Johnson,D.S., Mortazavi,A., Myers,R.M. and Wold,B. (2007)
Genome-wide mapping of in vivo protein-DNA interactions.
Science, 316, 1497–1502.

32. Harrow,J., Denoeud,F., Frankish,A., Reymond,A., Chen,C.K.,
Chrast,J., Lagarde,J., Gilbert,J.G., Storey,R., Swarbreck,D. et al.
(2006) GENCODE: producing a reference annotation for
ENCODE. Genome Biol., 7(Suppl. 1), S4, 1–9.

33. Huttenhofer,A., Schattner,P. and Polacek,N. (2005) Non-coding
RNAs: hope or hype? Trends Genet., 21, 289–297.

34. Flicek,P., Amode,M.R., Barrell,D., Beal,K., Brent,S., Chen,Y.,
Clapham,P., Coates,G., Fairley,S., Fitzgerald,S. et al. (2010)
Ensembl 2011. Nucleic Acids Res., 39, D800–D806.

35. Chan,P.P. and Lowe,T.M. (2009) GtRNAdb: a database
of transfer RNA genes detected in genomic sequence.
Nucleic Acids Res., 37, D93–D97.

36. Ray,P.S., Jia,J., Yao,P., Majumder,M., Hatzoglou,M. and
Fox,P.L. (2009) A stress-responsive RNA switch regulates
VEGFA expression. Nature, 457, 915–919.

37. Pickering,B.M. and Willis,A.E. (2005) The implications of
structured 5’ untranslated regions on translation and disease.
Semin. Cell Dev. Biol., 16, 39–47.

38. Allen,N.C., Bagade,S., McQueen,M.B., Ioannidis,J.P.,
Kavvoura,F.K., Khoury,M.J., Tanzi,R.E. and Bertram,L. (2008)
Systematic meta-analyses and field synopsis of genetic association
studies in schizophrenia: the SzGene database. Nat. Genet., 40,
827–834.

39. Zhang,Z. and Gerstein,M. (2003) Patterns of nucleotide
substitution, insertion and deletion in the human genome inferred
from pseudogenes. Nucleic Acids Res., 31, 5338–5348.

40. Karro,J.E., Yan,Y., Zheng,D., Zhang,Z., Carriero,N., Cayting,P.,
Harrrison,P. and Gerstein,M. (2007) Pseudogene.org: a
comprehensive database and comparison platform for pseudogene
annotation. Nucleic Acids Res., 35, D55–D60.

41. Ardlie,K.G., Kruglyak,L. and Seielstad,M. (2002) Patterns of
linkage disequilibrium in the human genome. Nat. Rev. Genet., 3,
299–309.

42. Galassi,M., Davies,J., Theiler,J., Gough,B., Jungman,G.,
Alken,P., Booth,M. and Rossi,F. (2009) GNU Scientific Library
Reference Manual. Network Theory Ltd, Bristol, UK.

43. Prabhakar,S., Noonan,J.P., Paabo,S. and Rubin,E.M. (2006)
Accelerated evolution of conserved noncoding sequences in
humans. Science, 314, 786.

44. Poliseno,L., Salmena,L., Zhang,J., Carver,B., Haveman,W.J. and
Pandolfi,P.P. (2010) A coding-independent function of gene and
pseudogene mRNAs regulates tumour biology. Nature, 465,
1033–1038.

45. Hastings,P.J., Lupski,J.R., Rosenberg,S.M. and Ira,G. (2009)
Mechanisms of change in gene copy number. Nat. Rev. Genet.,
10, 551–564.

46. Subramanian,S. and Kumar,S. (2004) Gene expression intensity
shapes evolutionary rates of the proteins encoded by the
vertebrate genome. Genetics, 168, 373–381.

47. Krylov,D.M., Wolf,Y.I., Rogozin,I.B. and Koonin,E.V. (2003)
Gene loss, protein sequence divergence, gene dispensability,
expression level, and interactivity are correlated in eukaryotic
evolution. Genome Res., 13, 2229–2235.

48. Harrison,P.M., Zheng,D., Zhang,Z., Carriero,N. and Gerstein,M.
(2005) Transcribed processed pseudogenes in the human
genome: an intermediate form of expressed retrosequence
lacking protein-coding ability. Nucleic Acids Res., 33,
2374–2383.

49. Conrad,D.F., Pinto,D., Redon,R., Feuk,L., Gokcumen,O.,
Zhang,Y., Aerts,J., Andrews,T.D., Barnes,C., Campbell,P. et al.
(2010) Origins and functional impact of copy number variation in
the human genome. Nature, 464, 704–712.

50. Kim,P.M., Lam,H.Y., Urban,A.E., Korbel,J.O., Affourtit,J.,
Grubert,F., Chen,X., Weissman,S., Snyder,M. and Gerstein,M.B.
(2008) Analysis of copy number variants and segmental
duplications in the human genome: evidence for a change in the
process of formation in recent evolutionary history. Genome Res.,
18, 1865–1874.

51. Korbel,J.O., Urban,A.E., Affourtit,J.P., Godwin,B., Grubert,F.,
Simons,J.F., Kim,P.M., Palejev,D., Carriero,N.J., Du,L. et al.
(2007) Paired-end mapping reveals extensive structural variation
in the human genome. Science, 318, 420–426.

52. Kidd,J.M., Cooper,G.M., Donahue,W.F., Hayden,H.S.,
Sampas,N., Graves,T., Hansen,N., Teague,B., Alkan,C.,
Antonacci,F. et al. (2008) Mapping and sequencing of structural
variation from eight human genomes. Nature, 453, 56–64.

53. Zhang,Z. and Gerstein,M. (2004) Large-scale analysis of
pseudogenes in the human genome. Curr. Opin. Genet. Dev., 14,
328–335.

7076 Nucleic Acids Research, 2011, Vol. 39, No. 16


