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Grażyna Neunert 1 , Jolanta Tomaszewska-Gras 2 , Aneta Baj 3 , Marlena Gauza-Włodarczyk 4,
Stanislaw Witkowski 3 and Krzysztof Polewski 1,*

����������
�������

Citation: Neunert, G.;

Tomaszewska-Gras, J.; Baj, A.;

Gauza-Włodarczyk, M.; Witkowski, S.;

Polewski, K. Phase Transitions and

Structural Changes in DPPC

Liposomes Induced by a

1-Carba-Alpha-Tocopherol Analogue.

Molecules 2021, 26, 2851. https://

doi.org/10.3390/molecules26102851

Academic Editor: Emanuela Zanardi

Received: 11 March 2021

Accepted: 4 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics and Biophysics, Faculty of Food Science and Nutrition,
Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland;
grazyna.neunert@up.poznan.pl

2 Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition,
Poznan University of Life Sciences, Wojska Polskiego 31/33, 60-637 Poznan, Poland;
jolanta.tomaszewska-gras@up.poznan.pl

3 Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K,
15-245 Bialystok, Poland; aneta.baj@uwb.edu.pl (A.B.); wit@uwb.edu.pl (S.W.)

4 Department of Biophysics, Faculty of Medical Sciences, Poznan University of Medical Sciences,
Grunwaldzka 6, 60-780 Poznan, Poland; mgauza@ump.edu.pl

* Correspondence: krzysztof.polewski@up.poznan.pl; Tel.: +48-61-848-7501

Abstract: Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-
diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to character-
ize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations
in the DPPC structure for CT concentrations as low as 2 mol%. The main phase transition peak
was broadened and shifted to lower temperatures in a concentration-dependent manner, and pre-
transition was abolished. Increasing CT concentrations induced the formation of new phases in the
DPPC structure, leading to melting at lower temperatures and, finally, disruption of the ordered
DPPC structure. Hydration and structural changes of the DPPC liposomes using ANS and DPH
fluorescent probes, which are selectively located at different places in the bilayer, were studied. With
the increased concentration of CT molecules in the DPPC liposomes, structural changes with the
simultaneous formation of different phases of such mixture were observed. Temperature studies of
such mixtures revealed a decrease in the temperature of the main phase transition and fluidization
at decreasing temperatures related to increasing hydration in the bilayer. Contour plots obtained
from concentration–temperature data with fluorescent probes allowed for identification of different
phases, such as gel, ordered liquid, disordered liquid, and liquid crystalline phases. The CT molecule
with a modified chromanol ring embedded in the bilayer led to H-bonding interactions, expelling
water molecules from the interphase, thus introducing disorder and structural changes to the highly
ordered gel phase.

Keywords: ANS fluorescence; DPH emission polarization; alpha-tocopherol carba analogue; phase
transition; liposome melting

1. Introduction

Vitamin E (α-tocopherol) is regarded as one of the most effective natural lipophilic
chain-breaking antioxidants, protecting the integrity of lipids and phospholipid bilayers
of biomembranes [1]. It also exhibits a broad spectrum of nonantioxidant biological
functions [2,3]. The most widely accepted biological function of vitamin E is its antioxidant
activity [4]. This functionality is fulfilled by stereoelectronic features of the chroman-
6-ol system which contributes to the stabilization of the tocopheroxyl radicals that are
formed. Their stability arises from the overlapping of the p-type lone pairs of the oxygen
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atom O1 and the π-electrons of the fully substituted chroman-6-ol ring, rendering the
formed phenoxy radical relatively unreactive [5–7]. In search of a new synthetic, more
efficient tocopherol analogues and for better evaluation of the tocopheroxyl radical (TocO·)
stabilization mechanism, a few tocopherol analogues have been synthesized. However,
among them, the most interesting seems to be a new molecule of 1-carba-α-tocopherol
(CT) since, in this molecule, the heterocyclic oxygen O1 present in chromanol ring of
α-tocopherol (α-T) was replaced with a methylene group. This modification changed the
electronic effects in the chroman-6-ol system (important for antioxidant function), which
has recently been recognized quantitatively [8]. The obtained results of calculating the
concentration required causing 50% of maximum effect (EC50), the antioxidant activity
toward peroxyl radicals (ROO·), and the ability of the studied compounds to reduce the
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical using EPR spectroscopy confirmed that
1-carba analogues are much less effective scavenging agents than the parent chroman-6-
ols. The newly synthesized carba analogue of α-T, which is devoid of the heterocyclic
oxygen atom O1, may not only influence its antioxidant properties but also interfere with
the intermolecular interactions with fatty-acid chains due to it lacking two nonbonding p
orbitals, leading to changes in conformational dynamics and the structure of the membrane.

Numerous studies have shown the strong influence of α-T on the phase behavior of
phospholipid bilayers in membranes [9–11]. It is common knowledge that those changes are
mainly related to the type of fatty-acid chains, their saturation, and their length. However,
it has been confirmed that the head groups and attached moieties also influence the
membrane phase behavior [1]. Thus, taking into account already presented results [8]
and possible interactions of modified chromanol ring with fatty-acid chains, we applied
fluorescent probes embedded in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
liposome as reporters of changes in the biophysical properties of the membrane [12–14].

Temperature studies of liposomes and membranes with embedded cholesterols or
drugs have shown that the measured fluorescence properties of environmentally sensitive
hydrophobic dyes, providing estimates of fluorophore location, intensity, and polarization
in the membrane, reflect the changing properties of membranes in terms of chain order,
fluidity, hydration, or phase transitions [15].

Fluorescent dyes due to their various chemical structures and physicochemical prop-
erties are widely used to measure the physical properties of membranes [16]. Fluorophores
are located in different regions of the membrane, revealing information regarding chain
order, hydration, fluidity, electric potential of the inner part or surface of the membrane,
dynamics, and phase transitions [14,17]. Fluorescence anisotropy studies with 1,6-diphenyl-
1,3,5-hexatriene (DPH) were applied to determine the fluidity of the bilayer [18,19]. The
fluorescent properties of 1-anilino-8-naphthalene sulfonate (ANS), such as the blue shift
of fluorescence, increasing intensity, and fluorescence lifetime, are related to dye interac-
tion in the hydrophobic environment of proteins or lipids [13]. ANS and DPH are used
as reporters of the changing organization and dynamics of the bilayer induced during
the interaction of two- or three-component systems of liposomes or membranes with
embedded ligands [15,20,21].

To determine and understand the mechanism of the interactions between newly
synthesized CT and phospholipids, we applied DPPC liposomes as a simple model of
biological membranes to evaluate the influence of CT on membrane biophysical proper-
ties. The analysis was carried out using steady-state emission spectroscopy of ANS and
fluorescence anisotropy of DPH to monitor hydration, dynamics, and bilayer order. Both
fluorescent dyes have different binding depths and locations in the liposome. The ther-
modynamic parameters of the investigated samples were measured using the differential
scanning calorimetry (DSC) method.
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2. Results
2.1. ANS Fluorescence
2.1.1. ANS Fluorescence Intensity

ANS emission is affected by solvent polarity, the viscosity of the medium, and electro-
static ion pair formation [22]. The latter process increases the emission intensity, with a blue
shift of the emission maximum when the negatively charged sulfonate group of ANS binds
nonspecifically to the cationic site of the headgroup molecules, which, in the case of DPPC,
is a positively charged choline group. In less polar solvents, the intermolecular electron
transfer lowers the intensity and shifts the maximum to lower energies. In aqueous solu-
tions, another efficient radiationless process occurs, leading to very low quantum yield [23].
In nonaqueous polar solvents, the intensity increases with increasing hydrophobicity. NMR
and X-ray diffraction studies have shown that, in lipid layers, ANS is localized in the
vicinity of the lipid glycerol backbone, where the center of the aromatic ring penetrates at
least to the level of the chain’s initial carbonyl group [24,25].

Figure 1a presents the temperature dependences of ANS fluorescence intensity at the
emission maxima (FImax) during heating of the sample with the increasing presence of CT
embedded in the DPPC membrane.
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Figure 1. Changes in the ANS fluorescence intensity at the emission maximum (FImax) versus temperature with the
increasing presence of CT in 0.08 mg/mL DPPC: (a) during heating from 20 ◦C to 60 ◦C; (b) plot of fitted parameters to
Equation (1) of transition temperature (Tm) and slope obtained during heating versus CT concentrations. ∆T = 0.5 ◦C.

During heating in pure DPPC, the ANS emission varied depending on temperature.
The lowest FImax was observed in the gel phase below 28 ◦C, whereas a sharp increase
in the intensity of FImax was observed with a shoulder at 37 ◦C, reaching a maximum
at around 42 ◦C. Further temperature increases caused a slow decrease in FImax. The
increasing presence of CT in the bilayer increased FImax in the gel phase, widened the
trace, and flattened the curves with simultaneous loosening of its structure, including
disappearance of the shoulder at 37 ◦C. The positions of FImax maxima remained relatively
constant, except at 20 mol%, where the shape changed significantly, indicating changes in
the liposome structure. The maximum at 42 ◦C was ascribed to the main phase transition
from the gel to the liquid phase, where FImax decreased with increasing temperature, with
similar slopes for low CT concentration traces. The traces of 20 mol% CT showed different
behavior, suggesting substantial changes in structural organization in the liquid crystalline
phase of DPPC. The observed FImax quenching in this phase was ascribed to the increasing
influx of water into this region. Such an explanation is supported by the fact that ANS
emission was efficiently quenched by water molecules and, in the liquid crystalline phase,
it was distorted by the presence of a high CT concentration; thus, a significant change
in membrane ordering and increasing surface areas per lipid occurred, allowing water
molecules to enter this area.



Molecules 2021, 26, 2851 4 of 18

Figure 1b shows the relationship between the concentration of CT present in DPPC
and the transition temperature (Tm) or the slope obtained during fitting to Equation (1).
The Tm obtained for pure DPPC from the ANS sensor, located in the interphase region, was
41.2 ◦C, which is similar to that reported for other DSC measurements [26,27]. This plot
shows that decreases in Tm were linearly related to the CT concentration, which indicates
that changes in the interface region, as detected by ANS fluorescence, also participated in
the main phase transition. The value of the slope is mathematically related to the width of
the transition that is correlated to the transition cooperativity, which is used as a measure
of bilayer order [28]. The plot of the slope shows a sudden decrease at 2 and 5 mol% and
minor changes at higher CT concentrations. Such behavior reflects the structural changes
connected with increasing bilayer disorder. An indication of such changes is clearly visible
in Figure 1a for 10 and 20 mol% traces, which have significantly different shapes compared
to those of pure DPPC or 2 and 5 mol% CT.

2.1.2. Position of ANS Emission Maxima (λmax) and Kinetics

During our temperature experiments, it appeared that considerable changes in the po-
sitions of ANS emission maxima (λmax) with increasing CT concentrations were observed.
To estimate the relationship between λmax and the microenvironment, we obtained cali-
bration measurements of ANS emission in solvents with different protic and hydrophobic
properties, from water to hexane (data not shown). It appeared that microenvironment
changes of ANS from hydrophobic to aqueous were connected with the shift of λmax to
longer wavelengths. Figure 2a presents the changes in the positions of λmax acquired
during heating of the sample. It shows that, for pure DPPC in the gel phase, λmax was
located at 477 nm, indicating that emission originated from ANS molecules residing in an
aqueous environment. Increasing temperature caused λmax to shift to shorter wavelengths,
reaching the lowest value at 42 ◦C, indicating that ANS molecules experienced a hydropho-
bic environment due to a shift into the membrane interior induced by the changing location
of the choline group. Increasing temperature leading to phase transition shifted λmax back
to longer wavelengths, indicating that the ANS microenvironment became more aqueous.
Increasing access of water molecules into the membrane interior occurred very probably
due to loosening of the membrane structure in the liquid crystalline phase. We may also ob-
serve that the shape of the temperature profile mimics that obtained from ANS fluorescence
intensity studies (see Figure 1a), showing a maximum at 42 ◦C and a pronounced shoulder
at 35 ◦C. These temperatures are characteristic of main phase transition and pretransition
in DPPC liposomes, as measured by the DSC method [28].
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Figure 2. (a) Positions of ANS emission maxima (λmax) versus temperature with increasing presence of CT in 0.08 mg/mL
DPPC during heating from 20 ◦C to 60 ◦C; (b) kinetics of ANS transport into the DPPC membrane at 25 ◦C. The concentration
of CT is given in the legend.
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In the gel phase, increasing CT concentrations shifted λmax to lower wavelengths,
indicating that ANS molecules progressively populated the deeper, more hydrophobic
interior of the bilayer. The lowest wavelength was measured at a CT concentration of
10 mol%, whereas λmax increased at a CT concentration of 20 mol%, indicating that ANS
molecules were located in the less hydrophobic environment. This is clear evidence that
the 20 mol% CT concentration induced significant structural changes in the DPPC bilayer.

For the 10 and 20 mol% CT concentrations, there was no structure to the traces,
which monotonically increased during the entire range of applied temperatures. However,
one can observe that both CT traces exhibited a type of two-state phase transition in the
modified membrane structure at around 32 ◦C. Such behavior indicates that the presence
of more than 10 mol% CT in DPPC led to the formation different or modified bilayer
structures. The plots also show that the new structures exhibited much better water inflow
into the bilayer interior than pure DPPC liposomes.

Figure 2b shows temporal traces of ANS transfer into the DPPC membrane with
increasing CT concentration. In pure DPPC, the process of binding was very fast, which was
ascribed to parallel adsorption of ANS on the membrane surface in bulk water environment.
With increasing CT concentration, the kinetic traces became two-component. The faster
component was ascribed to the interactions between the membrane surface and ANS. The
much slower component was ascribed to the diffusion of ANS molecules into the bilayer
interior. The equilibrium observed at longer times was related to the accessible number of
binding places and depended on the CT concentration. The fitting function for pure DPPC
was monoexponential, whereas those with the presence of CT were double-exponential.
The short-component lifetime was in the range of one-tenth of a second, whereas that of the
longer component was in the range of 100 to a few hundred seconds. One may also notice
that the shapes of the recorded kinetics were different, reflecting the different structural
changes formed with different CT concentrations in DPPC. The kinetic measurements of
ANS transport also confirmed the destructive effect of CT on DPPC membrane organization.
The biphasic characteristic of ANS binding to liposomes has also been reported [27,29].

2.2. DPH Fluorescence Polarization

DPH is a fluorescent probe used to determine structural and dynamic properties of
lipid bilayers. Emission anisotropy of DPH is interpreted as an indicator of lipid order or
of the viscosity of the bilayer interior of the acyl chain and is also called fluidity [30–33]. In
this study, DPH fluorescence anisotropy was used to determine DPPC membrane fluidity
in the presence of CT.

Figure 3a displays the effects of temperature changes on the fluorescence anisotropy
of DPH with increasing concentration of CT in the DPPC liposome. The obtained data
were fitted with the Boltzmann function (Equation (1)), and calculated parameters of
Tm and the slope are plotted in Figure 3c. The plot of pure DPPC shows a sigmoidal
shape with an abrupt change between 40 ◦C and 43 ◦C and the Tm of DPPC at 41.4 ◦C.
At increasing CT concentrations, the plots shifted to lower temperatures and flattened.
Simultaneously, the onset of transitions in the gel phase shifted to lower temperatures.
For up to 5 mol% CT, a consistent phase transition profile was observed. There were
noticeable changes in the shape and slope of the traces recorded with 10 and 20 mol% CT.
In particular, the trace for 20 mol% lost its sigmoidal shape, and the anisotropy decreased
almost linearly with increasing temperature. Figure 3a also shows that, in the gel phase,
the amount of incorporated CT did not significantly influence anisotropy, except at the
20 mol% concentration. At temperatures above Tm with increasing CT concentrations, the
anisotropy values increased compared to pure DPPC, indicating increased viscosity in the
formed structures.
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DPPC at increasing concentrations of CT are given in the legend; (b) changes in DPH anisotropy in the gel phase at 25 ◦C
and in the liquid crystalline phase at 48 ◦C; (c) plot of parameters fitted to Equation (1); Tm, the temperature of the phase
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The obtained temperature profile of anisotropy reflected the changes in the molecular
order of packing of aliphatic alkyl chains induced by the presence of CT embedded in
the DPPC bilayer. In the gel phase, the DPH molecule was located in the hydrophobic
environment of lipid acyl tails, and its motion was restricted, leading to high anisotropy
values. With increasing temperature, the rotational motion of DPH increased, leading to
decreased anisotropy.

Figure 3b shows changes in DPH anisotropy in the gel phase (25 ◦C) and liquid
crystalline phase (48 ◦C). In the gel phase, at increasing CT concentrations, there was very
small progressive anisotropy lowering (0.01), indicating that membrane fluidity remained
almost constant. This may indicate that embedded CT with its hydrophobic phytyl chain
does not interrupt the ordered, rigid structure of the membrane phospholipids. In the
liquid crystalline phase, with increasing CT concentration, an increase in the anisotropy
amplitude of 0.05 compared to pure DPPC was observed. Thus, the presence of embedded
CT in DPPC membranes in the LC phase decreased its fluidity. A similar effect of increasing
anisotropy in the LC phase of DPPC was observed for α-T [34,35] and cholesterol [36,37].

The effect of increasing CT concentrations on slope values of fitted traces is presented
on the left axis of Figure 3c, showing that this parameter linearly decreased with increasing
CT up to 10 mol%. The first derivative of fitting function showed that the width of the
band is inversely related to the slope of the original trace. Increasing the width of the band,
i.e., lowering the value of the slope parameter, results in rising disorder in the bilayer and
decreasing cooperativity during phase transitions. Thus, this suggests that inserted CT
molecules induced disorder in the packing of alkyl chains, making the structure less rigid
and, finally, lowering membrane fluidity.
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The other plot in Figure 3c (right axis) presents the dependence of Tm versus CT
concentration, showing that increasing the concentration of CT lowered the temperature of
phase transition starting from 41.4 ◦C for pure DPPC. The temperature decrease was almost
linear in the whole concentration range; however, at 10 mol% concentration, a parallel shift
of this line was observed at 38.5 ◦C. Such a phenomenon indicates that a new structure
was formed.

2.3. DSC Measurements

Differential scanning calorimetry is a widely used technique to accurately determine
thermodynamic parameters during aggregation, phase transitions, or structural changes in
proteins, biopolymers, and membranes. Liposomes undergo phase transition at specific
temperatures Tm, which strongly depends on the lipid composition forming the liposome.
The presence of other ligands in the membrane introduces interactions leading to changes in
its thermodynamic properties [38,39]. Therefore, we used this method to study interactions
of CT, a tocopherol derivative, with a DPPC membrane.

2.3.1. Thermodynamic Parameters

Figure 4a presents DSC scans of pure DPPC (2 mg/mL) and with 2, 5, and 10 mol%
concentrations of CT. Pure DPPC exhibited two characteristic peaks at 36 ◦C and 42 ◦C,
ascribed to pretransition and main phase transition, respectively. At 2 mol%, we can
observe decreasing intensity and widening of the main peak, as well as the formation of
a shoulder with a maximum at 40 ◦C. Presence of 5 mol% CT led to further changes in
DSC shape. The intensity of the main peak decreased, and a new peak with a maximum at
39.5 ◦C appeared. The presence of 10 mol% CT led to 10 times lower intensity, a shift of
the main maximum to 40 ◦C, its widening, and buildup of another peak with a maximum
at 38 ◦C. This shows that the increasing presence of CT in DPPC caused a progressive
decrease in intensity, increasing the width, and shifting the main phase transition to lower
temperatures. At all CT concentrations, a pretransition peak was not detected. Attempts
to record a DSC trace in the presence of 20 mol% CT failed; thus, it was not possible to
register any phase transition in such a mixture.

Thermodynamic parameters which characterize interactions between CT and DPPC,
such as Tm, width of the main peak, and enthalpy of transition (∆Hm), were obtained
from DSC measurements. The results are presented in Figure 4b, showing that, at low
concentration, Tm changed slowly, and a significant shift toward lower temperatures can
be observed at 10 mol% CT. The order–disorder behavior of acyl chains in the bilayer is
related to Tm; thus, its decreasing value, especially at higher CT concentrations, indicates
that its presence led to disruption of the membrane structure as a result of diminishing
van der Waals interactions between acyl chains. We may also assume the contribution
arising from polar interactions between phospholipid head groups and chromanol ring of
CT devoid of heterocyclic oxygen.

The width of the main peak is related to the cooperativity of the phase transition;
accordingly, cooperativity was highest in pure DPPC, whereas the increasing presence
of CT significantly decreased the cooperativity. For DPPC, it was assumed that the main
transition from the gel phase to the liquid phase is a two-state process; thus, the transition
was sharp and occurred with high cooperativity. Incorporation of CT into DPPC signif-
icantly increased the width of the main peak, indicating lowered cooperativity during
the phase transition. The increasing presence of CT changed the shapes of the DSC scans,
indicating their multicomponent structure connected with the formation of intermediate
states or domains.

The results of the enthalpy calculations (Figure 4b) show a linear decrease with
increasing CT concentration from 42 to 6 kJ/mol. The calculated ∆Hm associated with
the melting of acyl chains in DPPC decreased with increasing CT concentration. Enthalpy
is mainly related to melting of the acyl chain during transformation rearrangement from
trans to gauche conformation; therefore, such progressive lowering of enthalpy indicates
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a decreasing number of trans molecules, i.e., the gel state, and an increasing number of
gauche conformers, forming a liquid phase. Such a behavior indicates membrane melting
due to the formation of liquid phases at lower temperatures.
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Figure 4. (a) Smoothed DSC traces of DPPC liposomes (2 mg/mL), with an increasing concentration of CT, given in the plot.
The plot also shows the fitted components to the total DSC trace. Please note the decreasing intensity on the ordinate axis;
(b) effect of incorporation of different concentrations of CT into DPPC on the main phase transition temperature, Tm, the
width of the main peak, and the enthalpy of transition, ∆Hm. Please note decreasing values on y-axis plots.

The simultaneous decrease in intensity, widening of the peak, lowering of Tm, and
decrease in ∆Hm indicate increasing disorder in the membrane. Broadening of DSC peaks is
associated with disrupting the membrane structure, increasing packing disorder, and signif-
icantly lowering the cooperativity of the phase transition. Thus, such symptoms confirmed
that the increasing presence of CT led to membrane fluidization at lower temperatures
compared to pure DPPC.

2.3.2. Fitting of DSC Traces into Individual Components

The investigated system was complex; thus, to retrieve realistic data from measured
thermograms, it was necessary to connect them with a known physical model of confor-
mational transitions. In this approach, two-state and multistate transition mechanisms
were used, and the applied model allowed for a detailed characterization of the obtained
thermograms, providing descriptive parameters based on accepted thermally induced con-
formational transitions in membranes. Nevertheless, the deconvolution of thermograms
into components allowed for qualitative determination of the mechanism occurring during
melting of the membrane structure with increasing CT concentrations.

Figure 4a shows the DSC traces and their deconvolution into individual transitions
obtained using the phenomenological model. The goal in this method was to use a combi-
nation of the appropriate number of peak logistic curves to reproduce the experimental
curve. The traces were simulated assuming the two-state model for each fitted compo-
nent. The height of the peak is related to the concentration and enthalpy of this transition.
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The fitting results show that increasing concentrations of CT widened the main peak and
formed other phases with a simultaneous shift to lower temperatures of Tm. We may
observe that the gel–crystalline phase transition was present even at 5 mol% CT, with
significantly decreasing intensity. At 10 mol% CT, this transition disappeared from the
DSC trace, indicating fluidization of the membrane and the formation of other structures.
We may also notice that, with the increasing presence of CT, the coexistence of different
structures could be observed. Widening of the main phase transition peak observed at
2 mol% reflected the decreasing cooperativity of the transition due to the presence of CT.
At 5 mol% CT embedded in the DPPC bilayer, another component with a maximum at
39.5 ◦C was observed, suggesting the formation of another phase or structure. The addition
of greater than 10 mol% CT led to the appearance of another structure with a maximum
at 38 ◦C. As shown, CT has a preference to form mixed structures with phase transition
temperatures lower than that observed for pure DPPC.

During fitting procedures of the obtained DSC traces, we found different maxima
ascribed to newly formed structures. Using this phenomenological approach, we could
not assign those peaks to specific structures; however, taking into account the obtained
results with possible interactions of components, we could ascribe them to the formation
of CT-enriched domains, CT–phospholipid domains, and the formation of CT micelles.

2.4. Zeta Potential (ZP) Measurements

The value and the sign of the zeta potential (ZP) are measures of the net charge on
the membrane surface; in the case of DPPC with its zwitterionic head, the sign and the
magnitude of ZP depend on the ionic strength [40]. Thus, in buffer solutions at low ionic
strength, the liposomes presented a small negative potential due to the exposed phosphate
group, whereas, under a high ionic strength, the ZP was slightly positive.

Figure 5 shows the ZP of the DPPC surface with increasing concentrations of CT.
In the given experimental conditions, pure DPPC exhibited a slightly negative potential
of −4.2 mV, with similar values reported by others [41–43]. The addition of 2 mol% CT
decreased ZP to a value of −2.0 mV, and its value did not change significantly with further
increasing concentrations of CT, showing a slight decrease to −2 mV at 20 mol% CT. The
shape of the concentration dependence and its values are comparable to those observed for
tocopherol embedded in the DPPC bilayer, as reported in previous studies [42]. Surface
charge properties are determined by the hydration shell. This effect can be observed for
zwitterionic lipids where their net charge is equal to zero. Both moieties in the head group
possess lone-pair electrons, thereby polarizing the water around them. Depending on the
orientation of water molecules, they can modulate the orientation of the phosphate group.
The observed small increase in ZP indicated the rearrangement of head-group moieties in
the interface area, induced by the presence of CT [44,45].
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Figure 5. Zeta potential (ZP) of the 0.08 mg/mL DPPC membrane in the presence of increasing
amounts of CT. Error bars are SDs calculated for three different repetitions.
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2.5. Antioxidant Properties of CT

The performed measurements with the DPPH method confirmed the antioxidant
properties of the carba analogues of α-T. The antiradical properties that allow for scaveng-
ing of the DPPH radicals of CT are presented in Figure 6. The results obtained for CT were
compared with the original α-T sample. For the CT sample, after 15 min of incubation, the
absorbance value decreased compared to the control sample, but its activity was much
less effective than that observed for the original α-T sample. A similar observation for the
carba analogues of Trolox was reported in our previous studies [8]. For both α-T and CT,
longer incubation did not significantly affect the absorbance value.
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Figure 6. Absorbance at 517 nm of DPPH radicals in methanol in the presence of CT or α-T after 15 and
30 min of incubation. Indicated values represent the means ± SD arising from triplicate experiments.

3. Discussion

Application of calorimetric and spectroscopic techniques revealed that the presence of
CT in a DPPC membrane changed its thermodynamic and structural parameters, which
were measured as a function of temperature and concentration. Applied fluorescent probes
bind at different positions in the membrane structure; thus, they report the modifications in
the lipid microenvironment, reflecting changes induced by the presence of CT. To explore
and interpret the results obtained from the fluorescence studies, in the framework of
membrane phase transitions, the data were transformed into contour plots (Figure 7),
where points with the same emission intensity were merged. The fast changes in colors
and the contour lines indicate changes in the given parameter, signaling transitions or the
formation of new phases. In all plots in Figure 7, along the ordinate at 0% CT we may
observe three regions: (1) below 32 ◦C, ascribed to the gel phase, Lβ; (2) from 35 ◦C to
42 ◦C, ascribed to the ripple phase, Pβ’; (3) above 42 ◦C, ascribed to the fluid phase, Lα. In
Figure 7a, the maximum at 42 ◦C is anticipated as the main phase transition. The values
are compatible with the data obtained from the DSC measurements (see Figure 4a).

The increasing ANS fluoresce intensity with the increasing presence of CT was related
to the increasing number of binding sites in the interface membrane region, where loosening
of the membrane structure due to inclusion of CT molecules provided access to more
binding sites, whereas quenching of ANS FImax was related to the increasing penetration
of water molecules into the bilayer interior. The information from these data was used as a
measure of packing density, which is understood as the distance between lipid molecules
in the bilayer (Figure 7a). As shown in Figure 7a, the contour plot indicates a complex
relationship between temperature and CT concentrations, indicating features not observed
directly from Figure 1a. Above the transition temperature and at low CT concentrations,
its presence decreased membrane packing density. This shows that fluorescence intensity
was mostly affected at lower temperatures within the gel phase range, with the obvious
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formation of a new structure at 10 mol% CT. Interestingly, at higher CT concentrations and
temperatures, the packing density increased, suggesting the formation of the ordered liquid
phase. Similar results in the DPPC membrane with increasing cholesterol concentration
were reported by Wang et al. [46].
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Figure 7. Contour plots of ANS and DPH; (a) packing density, using ANS FImax data from Figure 1a;
(b) hydrophobicity, using ANS λmax data from Figure 2a; (c) order–disorder, using data from DPH
emission anisotropy given in Figure 3a.

The λmax of ANS was related to the hydrophobicity of the microenvironment in the
interphase/glycerol region (Figure 7b). The observed red shift of emission indicates de-
creasing hydrophobicity. Due to the strong sensitivity of ANS to water molecules, it served
as an indicator of the presence of water molecules inside the bilayer interphase region.
The hydrophobicity contours show that, in the gel phase, increasing CT concentration
shifted ANS molecules into a more hydrophobic environment, revealing the formation
of a new phase at 10 mol% CT. Above 35 ◦C, with increasing CT concentration, the ANS
microenvironment became progressively less hydrophobic, indicating an influx of water
molecules into the interface region, leading to fluidization of the bilayer with increasing
temperature and concentration. This shows that the degree of hydration increased very
sharply with increasing CT concentration. The significant role of water in the acyl chain
region of liposomes has been confirmed by others [44,47].

Figure 7c shows the contour plot of DPH fluorescence anisotropy, which may be
considered a representation of the membrane order–disorder transition described as con-
formational order in the acyl chain region, since the DPH molecule was located inside the
acyl chain region where the main phase transition took place. It shows that increasing
the presence of CT linearly decreased the temperature of the membrane order–disorder
transition. We may notice that, at low CT concentrations, the transition temperature range
between ordered and disordered phases was narrow, whereas, at higher CT concentrations,
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this range was much wider. The manifestation of nearly parallel lines to the abscissa above
35 ◦C in mixed and liquid phases indicates that the influence of the CT concentration on
the degree of disorder was negligible, whereas it depended on increasing temperature.

The contour plots presented above indicate that embedded CT caused membrane
disorder, leading to its fluidization, which increased with temperature and concentration.
Similar results were obtained from the DSC measurements, as shown in Figure 4a, where
the presence of CT decreased the main phase transition temperature, and the formation of
new phases occurred. Additionally, we may notice that contour plots of DPH fluorescence
anisotropy show that this parameter was a very good indicator of membrane disordering
and fluidization processes; however, it could not detect any phase transitions. Phase
transitions were readily detected from the FImax contour plot of ANS since this molecule
distinguished between binding to a hydrophobic environment and the bulk solution. The
assignment of phase transitions from the λmax contour plot was not that obvious; however,
in this case, ANS signaled the presence of water molecules in its microenvironment. The
ANS molecule was located inside the interphase region; thus, it sensed phase transition
changes in this region. The decreasing Tm obtained from the ANS data indicates that
the structural changes related to the melting process in the interphase region contributed
during the main phase transition [15].

The presence of water molecules associated with lipids keeps the membrane in equi-
librium and forms a dipole potential, which prevents fusion or adhesion of the membrane.
The hydration process in the equilibrated membrane includes interaction with phosphate
and carbonyl groups. The total or partial exclusion of water molecules or the reorgani-
zation of water molecules from that region leads to decreasing potential, thus allowing
changes in bilayer geometry, leading to membrane structural changes. The results from the
ZP measurements indicate that the presence of CT reduced the polarity of the phospho-
lipid bilayer. Similar results were shown for the presence of cholesterol in phospholipid
bilayers, and we showed that it decreases the relaxation rate of water molecules at the
hydrophobic–hydrophilic bilayer interface [48].

The data from Figure 7a–c indicate that, at low CT concentrations and above Tm, the
mixture occurred in the most disordered state. At higher CT concentrations, the mixture
became more fluid with increased ordering. At temperatures below 30 ◦C, the mixture
was in the ordered gel phase, which decreased with increasing CT concentrations. This
behavior is similar to that observed in phospholipid bilayers with the increasing presence
of cholesterol and the formation of ordered liquid and disordered liquid phases and their
mixtures [48,49]. In the temperature range of 35 ◦C to 50 ◦C, we may identify the region of
two-phase coexistence related to the transition from ordered to disordered phases, which
evolved with increasing temperature and CT concentrations. Moreover, DSC traces of
CT:DPPC mixtures consisted of overlapped peaks (see Figure 4a), implying the coexistence
of different phases. Collected views of contour plots (see Figure 7), showing continuous
modification of measured parameters, confirmed the structural changes in the bilayer
induced by CT. These changes were pronounced at higher CT concentrations, clearly
indicating modification in the gel phase.

It is common knowledge that the presence of ligands in a bilayer structure leads to
changes in the temperature of the main phase transition Tm. Changes in this tempera-
ture were observed for ligands, which introduced disorder into the bilayer as a result of
interactions in the acyl chain and the head group regions, leading to decreased packing
density. The presented results show that increasing the CT concentration significantly
decreased the Tm temperature. Such a behavior may be ascribed to the fact that lacking
the heterocyclic oxygen atom of chromanol ring made this structure more hydrophobic
compared to tocopherol, which enabled the CT molecule to more deeply penetrate into the
DPPC interior. This modified configuration gave the CT molecule higher mobility, thus
introducing more disorder into the bilayer structure. Chain melting starts from a single
seed, which, in our case, could have been a CT molecule forming microdomains in the
bilayer structure. Due to its structural similarity to the tocopherol molecule, including
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the presence of a hydroxyl group at the 6-position, we may assume that, in the DPPC
membrane, CT located a modified chromanol ring in the vicinity of the glycerol backbone,
which is lower compared to that reported for α-T [1,50,51]. Thus, the phytyl chain was
embedded deeper in the hydrophobic region. This inclusion in the bilayer disturbed the
geometry in this region, leading to increased disorder, as measured by the DSC method
and DPH fluorescence. Deeper inclusion of the CT molecule is possible due to fact that
this vitamin E analogue, containing the 1,2,3,4-tetrahydronaphthalene skeleton in which
the heterocyclic oxygen atom is substituted by “nonparticipating” carbon atom at position
C-1, leads to flattening of the heterocyclic ring compared to the half-chair conformation
of the dihydropyranyl ring in tocopherol. Finally, CT expelled [52] water molecules from
this region. In the liquid crystalline phase, we observed that increasing presence of CT de-
creased membrane ordering and lowered packing density, leading to increased hydration.
The observed increased packing density and bilayer ordering at higher CT concentration
above Tm was ascribed to water molecules entering the acyl chain region, which stabilized
this region, potentially contributing to the observed increased bilayer stability [47,53].

As stated above, changes in the main phase transition reflected the interactions be-
tween acyl chains of phospholipids and embedded ligand. Changes in the measured
thermotropic parameters in the presence of tocopherols indicated interactions between
embedded tocopherols and the acyl chains of DPPC.

In DSC measurements, the increasing presence of tocopherols always led to broad-
ening of ∆T1/2, progressively decreasing Tm and diminishing ∆Hm and cooperativity,
together with the simultaneously formed new bands, thus indicating that the structural
changes in the liposomes were induced by the presence of tocopherols, leading to a fluidiza-
tion process at lower temperatures. Our studies in DPPC have shown that the presence
of α-T at low concentration affects the membrane’s physicochemical properties to a much
lesser degree than observed for other derivatives as oxalate, succinate, or CT [35,54,55].
Significant structural and morphological changes were observed at concentrations above 2
mol% in contrast to tocopherol derivatives, where membrane disordering was observed
even at 1 mol% concentration. Similar results were reported from X-ray diffraction where,
at very low concentrations, α-T had a negligible effect on the thermotropic properties of
DPPC [56]. DPH studies for investigated derivatives showed that membrane disordering
follows increasing concentrations, whereas, in the case of α-T, the membrane structure
eroded slowly and significant fluidization occurred at 20 mol%. Furthermore, in the case of
α-T [35] and CT, we noticed increasing ordering in the liquid crystalline phase, whereas
the ester derivatives showed the opposite effect, i.e., they introduced some disordering
into the gel phase [35,54].

In pure DPPC, a pretransition was also observed, corresponding to the transition from
the lamellar gel phase to a rippled gel phase, which was mainly related to the polar region of
the bilayer. In Figures 1a and 7a, this transition can be seen for pure DPPC, whereas, above
2 mol% CT, it disappeared; similar results were obtained during DSC scans (see Figure 4a).
Behavior similar to that of CT was observed in other tocopherol derivatives as oxalate or
succinate, where the disappearance of pretransition at concentrations as low as 2 mol%
was observed. In the case of α-T, the disappearance of pretransition was observed above
2 mol% [26]. The observed lower sensitivity to α-T compared to its derivatives is related to
the fact that the presence of the modified chromanol ring of CT induced interactions in the
polar region of DPPC. The observed efficient suppression of this pretransition, suggesting
that any interference into the chromanol ring of α-T changed its electronic distribution,
led to different organization and dynamics of the interfacial water molecules, leading to a
surface disordering effect.

Regarding potential applications of this CT analogue, it has been shown that its antiox-
idant properties are much less effective as a scavenging agent and much less effective as an
antioxidant than its parent compounds [8]. Biological activity is related to transport across
membranes, which depends on many factors, including fluidity or surface charge [52].
Since, as shown in this study, CT appeared as a very effective disruptor of membrane struc-
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ture, it may be used as a drug due to its similar properties to other tocopherol derivatives,
such as succinate or oxalate [35,54].

4. Materials and Methods
4.1. Reagents

1-Carba-α-tocopherol ((2,5,7,8-tetramethyl-2-(4,8,12-timethyltridecyl)-1,2,3,4-tetra
hydronaphtalen-6-ol)) (CT) and DL-α-tocopherol (α-T) were obtained according to a re-
cently published procedure [8]. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC),
1-anilino-8-naphthalene sulfonate (ANS), 1,6-diphenyl-1,3,5-hexatriene (DPH), and the
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, as well as chloroform and methanol (both
spectroscopic grade), were purchased from SIGMA Chemical Co. (St. Louis, MO, USA).
Double-deionized water produced with a MicroPure Water System (TKA, Niederelbert,
Germany) was used as a solvent. The chemical structures of the tocopherols are shown
in Figure 8.
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4.2. Preparation of Vesicles

For the liposome preparation, dry DPPC and the studied tocopherol analogue were
dissolved in chloroform and mixed in the required proportions (final concentrations of CT
were 0–20 mol%). Next, the solvents were removed under vacuum at 50 ◦C with a rotary
evaporator. The formed DPPC dry film was hydrated with double-distilled deionized
water (pH 5.3, conductivity of <60 nS/cm) and vortexed for 30 min at 50 ◦C. In the
subsequent step, all samples were extruded repeatedly 11 times through a 100 nm pore
polycarbonate filter using a LiposoFast Basic LF-1 extruder (Avestin, Mannheim, Germany).
For DSC measurements, the resultant liposomal suspension (2 mg/mL final phospholipid
concentration) was dispersed for 2 min by ultrasonication in an ultrasonic bath (with power
of 100 W) and stored at 0–4 ◦C for at least 12 h before the measurements. For ANS and
DPH fluorescence measurements, the final concentration of the lipids was 0.08 mg/mL,
with a mean liposome size of 100 nm which did not change significantly in the presence of
CT, as confirmed by dynamic light scattering (DLS) measurements (data not shown) using
a Zetasizer Nano (Malvern Instruments, Worcestershire, UK) at 20 ◦C at an angle of 90◦.
The zeta potential (ZP) was measured using the same Zetasizer by Malvern Instruments
(Malvern Instruments, Worcestershire, UK) at 20 ◦C.

During the measurements, the lipid-to-ANS and lipid-to-DPH ratios were in the range
of 100:1 or less, which is substantially lower than the binding capacity of DPPC for ANS or
DPH. The obtained results demonstrated that bound ANS introduced negligible changes
to the measured physicochemical and thermotropic properties of DPPC.
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4.3. Spectroscopic Measurements

The steady-state emission spectra were obtained using a Shimadzu RF 5001PC flu-
orimeter (Shimadzu Corp., Kyoto, Japan) with an excitation wavelength of 380 nm. All
spectroscopic measurements were performed in a 1 × 1 cm quartz cuvette in the tempera-
ture range of 20–60 ◦C. The temperature of the sample in the fluorimeter was controlled
using a temperature unit adapter. During heating of the samples in the abovementioned
range, the emission spectra of ANS were measured every 2 ◦C. Steady-state fluorescence
anisotropy of DPH in liposomes (excitation at 360 nm and emission at 430 nm) was per-
formed using a PerkinElmer LS555 (Perkin Elmer Corp., Norwalk, CT, USA), according to
the included anisotropy procedure. The measurements were undertaken in the temper-
ature range of 25–50 ◦C, with 0.5 ◦C steps. Each anisotropy readout was taken from 5 s
measurements, and at least three such readouts were determined to calculate the mean
value and its error at each temperature.

4.4. DPPH Method

The antioxidant activity was determined using a method involving DPPH free radi-
cals [57]. One milliliter of the DPPH methanol solution (300 µM) was mixed with 4 mL of
a methanol solution of α-T or CT (25 µM). The mixture was then incubated for a 30 min
at room temperature in the dark. During incubation, a reduction of part of the DPPH
free radical occurred, and the absorbance at 517 nm just after mixing, after 15 min of
incubation, and after 30 min of incubation was measured. The absorbance was measured
against methanol as a blank using a Shimadzu UV 1202 spectrophotometer (Shimadzu,
Kyoto, Japan).

4.5. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry was performed using a DSC 7 (Perkin Elmer Corp.,
Norwalk, CT, USA) equipped with an Intracooler II and Pyris Software 10.1. Details of
the performance of these experiments were published previously [35]. The sample pan
was placed in the calorimeter and isothermally held at 10 ◦C for 5 min, before heating to
60 ◦C with a scanning rate of 2 ◦C/min. A series of three consecutive scans of the same
sample was performed to ensure scan-to-scan reproducibility. The parameters of the peak
temperature (Tm), enthalpy (∆Hm, J/g), and the width of the main peak, correlated to the
cooperativity of the phase transition, were determined from the DSC curve.

4.6. Data Analysis and Fitting Procedures

All plots, figures, calculations, contour plots, and fitting procedures, including statis-
tics of the plotted data, were prepared using the Origin program (ver. 8.5, OriginLab Corp.,
Northampton, MA, USA). All experiments were repeated at least in triplicate for samples
from different series.

The fluorescence parameters of ANS or the fluorescence anisotropy of DPH plotted as
a function of temperature generated a sigmoidal shape dependence, which was fitted by a
Boltzmann equation curve (Equation (1)).

F(T) = Fg +
FL − Fg

1 + exp
(

Tm−T
a

) , (1)

where Tm is the transition temperature, Fg and FL are the upper and lower limit of fluores-
cence intensity, respectively, and a is the slope.

5. Conclusions

In the gel phase, each CT molecule embedded in the DPPC bilayer changed its hy-
dration by expelling water molecules, creating a cluster with neighboring phospholipids.
Increasing the CT concentration generated more such clusters, which eventually joined
together with phospholipids, forming a new structure. This process of new structure gen-
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eration was observed as the formation of composed traces of DSC, lowering the intensity,
enthalpy, cooperativity, and temperature of the main phase transitions. On a molecular
level, the DPH anisotropy data indicated that the presence of CT induced changes in the
acyl chain region by decreasing the order in this region. ANS fluorescence data indicated
changes in packing density due to the evacuation of water from the interface region in
the gel phase, whereas, in the liquid phase, quenching of ANS fluorescence was due to
the increased influx of water molecules into this region. We may summarize that changes
in physical membrane properties indicated that interactions between CT and membrane
phospholipids occurred in the fatty-acid chain region, as well as in the interface region,
with a significant presence of mobile water molecules. Comparisons between α-T and its
derivatives indicated that, very probably, changes in electronic distribution in the chro-
manol ring induced different organization and dynamics of the interfacial water molecules,
leading to a surface disordering effect.
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