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Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ), is a transcription factor that governs

pathways, such as lipid metabolism and immune response, that have been implicated in the

etiology of LOAD. Previously, we established HepG2-derived cell-lines with stable knock-

down of PPARγ gene, and showed an increase in mRNA levels of genes mapped in the

APOE linkage disequilibrium (LD) region on chromosome 19q13.32, with the greatest effect

observed for APOE-mRNA. Here, we extended the analysis using our PPARγ knockdown

model system and investigated the broader effect on expression changes of genes impli-

cated in LOAD via genome wide association studies (GWAS). We applied the nCounter

gene expression assay (NanoString) using a panel of twenty-four LOAD-associated genes

inferred by proximity to the top significantly associated SNPs. Two independent PPARγ
knockdown cell-lines showed changes in mRNA levels of a total of seven genes compared

to a control HepG2 cell-line; six of which, ABCA7, APOE, CASS4, CELF1, PTK2B, and

ZCWPW1, were upregulated and one, DSG2, was downregulated upon PPARγ knockdown.

Our results propose that PPARγ may act as a master regulator of the transcription of several

genes involved in LOAD pathogenesis. Our study provided the premise for further analyses

including a larger set of genes positioned within a wider range of linkage disequilibrium (LD)

regions tagged by all LOAD significantly associated SNPs.

Introduction

Large multi-center genome-wide association studies (GWAS) found associations between late-

onset Alzheimer’s disease (LOAD) and over twenty genomic loci [1–6]. Subsequent studies

have mapped pathways on which the genes within LOAD-associated regions participate, and

identified diverse biological pathways, including lipid metabolism, immune and inflammatory

response, and endocytosis [7–9]. The involvement of various pathways supports the concept of

LOAD as a system-wide disorder. However, the molecular mechanisms through which the

LOAD-associated loci exert their pathogenic effects remain to be fully elucidated.
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It has been suggested that alteration in the levels of normal (wild-type) genes that are

important in maintaining normal brain function can lead to neurodegenerative diseases,

including LOAD [10–13]. Furthermore, expression quantitative trait loci (eQTLs) within

LOAD-associated regions were described in brain regions vulnerable to LOAD [14, 15]. These

studies strengthened the important role of the regulation of gene expression in LOAD etiology.

Thus, it is imperative to better understand the mechanisms such as transcription regulation,

that mediate the expression levels of the LOAD-associated genes.

The ligand-activated nuclear transcription factor, peroxisome proliferator-activated recep-

tor-γ (PPARγ), has been shown to regulate the transcription of numerous genes playing key

roles in adipocyte differentiation, inflammation and immune response, insulin sensitivity, and

lipid and glucose metabolism [16–18]. Intriguingly, PPARγ governed pathways overlap, to

some extent, with the biological pathways implicated in LOAD pathogenesis via GWAS, epide-

miological studies, and other evidence [7–9, 19].

The APOE linkage disequilibrium (LD) region on 19q13.32 is the strongest genetic risk fac-

tor for LOAD [20–31]. Recently, using the short hairpin RNA (shRNA) method in HepG2

cells, we measured the effects of PPARγ knockdown on mRNA expression of genes within the

chr19q13.32 region, and demonstrated increases in the levels of TOMM40-, APOE-, and

APOC1-mRNAs; APOE-mRNA was the most responsive, showing a 50% increase in expres-

sion relative to control [32]. As a complementary approach, we applied PPARγ agonists and

demonstrated that PPARγ activation decreased the levels of all three transcripts, with the

strongest effect on APOE-mRNA as well [32]. These observations further established a role for

PPARγ in the transcriptional regulation of the most significant LOAD genetic risk factor. The

intersection between biological processes regulated by PPARγ and those involved in LOAD

pathogenesis may be mediated through a master role of PPARγ in the transcriptional modula-

tion of additional LOAD-associated genes. Here, we extended our previous analysis to other

genes implicated in LOAD, and focused on the genes inferred by proximity to the LOAD-asso-

ciated SNPs (Table 1). We applied NanoString technology to characterize the effect of PPARγ
knockdown on the expression of twenty-four LOAD-GWAS genes involved in various physio-

logical pathways.

Materials and methods

Cell lines

HepG2 derived cell-lines with stable PPARγ knockdown were generated by lentiviral shRNA

transduction as previously described [32]. Two clones ID TRCN0000001673 (PPARγ 1673)

[32] and ID TRCN0000001674 (PPARγ 1674), were selected for further analysis. The PPARγ
knockdown cell-lines are referred as ‘PPARγ-KD1’ and ‘PPARγ-KD2’, respectively. To control

for the effect of viral transduction and general shRNA expression, we used a control HepG2

derived cell line expressing shRNA targeting green fluorescent protein (GFP) as previously

described [32], hereafter referred as ‘GFP’. In addition, we used the control un-transduced

HepG2 cell-line, hereafter referred as ‘U’. The efficiency of PPARγ knockdown at the RNA

level was previously validated by quantitative reverse transcription PCR (qRT-PCR) using the

TaqMan system [32].

Cell culture

The transduced HepG2 cell-lines were cultured in Eagle’s minimum essential medium

(MEM), supplemented with 10% fetal bovine serum, 2 mM GlutaMAX, 1 mM sodium pyru-

vate, 0.1 mM non-essential amino acids, penicillin streptomycin (10,000 units/mL penicillin
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and 10,000 μg/mL streptomycin), and puromycin dihydrochloride (2 μg/mL). Cells were

maintained in a humidified incubator at 37 ˚C and 5% CO2.

Four HepG2 derived cell-lines were studied: PPARγ-KD1, PPARγ-KD2, GFP, and un-

transduced. For each HepG2 derived cell-line 1.5 × 105 cells were plated onto each well of a

6-well plate and were cultured for thirty-six hours in puromycin-free media prior to harvest-

ing for molecular evaluations. We repeated this experiment four times for each HepG2

derived cell-line, i.e., cells were cultured for thirty-six hours and harvested in four indepen-

dent experiments.

RNA extraction and sample preparation

Total RNA was extracted from cells using TRIzol reagent (Invitrogen, Carlsbad, CA), and

purified using RNeasy Mini Kits (QIAGEN, Valencia, CA) according to the manufacturer’s

protocol. The concentration of RNA samples was determined spectrophotometrically by

NanoDrop, and the quality of the RNA and lack of significant degradation was confirmed uti-

lizing an Agilent Bioanalyzer. For all samples used, the RNA Integrity Number (RIN) was

greater than eight, considered high quality RNA.

Table 1. LOAD-risk genes located ± 100 kb of the top SNP.

Closest gene Top SNP� Chr. Position�� OR (95% CI) P value mRNA expression

HepG2

CR1 rs6656401 1 207,692,049 1.18 (1.14–1.22) 5.7×10−24 n.a.

BIN1 rs6733839 2 127,892,810 1.22 (1.18–1.25) 6.9×10−44 +

INPP5D rs35349669 2 234,068,476 1.08 (1.05–1.11) 3.2×10−8 ++

MEF2C rs190982 5 88,223,420 0.93 (0.90–0.95) 3.2×10−8 n.a.

CD2AP rs10948363 6 47,487,762 1.10 (1.07–1.13) 5.2×10−11 +++

TREM2/TREML2 rs9381040 6 41,154,650 0.93 (0.91–0.96) 6.3×10−7 n.a.

HLA-DRB5–HLA-DRB1 rs9271192 6 32,578,530 1.11 (1.08–1.15) 2.9×10−12 n.a.

NME8 rs2718058 7 37,841,534 0.93 (0.90–0.95) 4.8×10−9 n.a.

ZCWPW1 rs1476679 7 100,004,446 0.91 (0.89–0.94) 5.6×10−10 +

EPHA1 rs11771145 7 143,110,762 0.90 (0.88–0.93) 1.1×10−13 +

PTK2B rs28834970 8 27,195,121 1.10 (1.08–1.13) 7.4×10−14 +

CLU rs9331896 8 27,467,686 0.86 (0.84–0.89) 2.8×10−25 n.a.

CELF1 rs10838725 11 47,557,871 1.08 (1.05–1.11) 1.1×10−8 ++

MS4A6A-MS4A1 rs983392 11 59,923,508 0.90 (0.87–0.92) 6.1×10−16 n.a.

PICALM rs10792832 11 85,867,875 0.87 (0.85–0.89) 9.3×10−26 ++

SORL1 rs11218343 11 121,435,587 0.77 (0.72–0.82) 9.7×10−15 ++

FERMT2 rs17125944 14 53,400,629 1.14 (1.09–1.19) 7.9×10−9 ++

SLC24A4-RIN3 rs10498633 14 92,926,952 0.91 (0.88–0.94) 5.5×10−9 n.a.

DSG2 rs8093731 18 29,088,958 0.73 (0.62–0.86) 1.0×10−4 ++

ABCA7 rs4147929 19 1,063,443 1.15 (1.11–1.19) 1.1×10−15 +

APOE# rs4420638 19 45,422,945 3.58 (3.37–3.80) 1.1×10−300 +++

CD33 rs3865444 19 51,727,962 0.94 (0.91–0.96) 3.0×10−6 n.a.

CASS4 rs7274581 20 55,018,260 0.88 (0.84–0.92) 2.5×10−8 +

Adapted from the largest meta analysis (Lambert et al, 2013).

�SNPs showing the best level of association after meta-analysis of stages 1 and 2;

��Build 37/ hg19;
#Naj et al (2011); relative mRNA expression levels in HepG2 derived cell-lines: n.a.’ not detected; +, low; ++, intermediate; +++, high

https://doi.org/10.1371/journal.pone.0196943.t001
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For each HepG2 derived cell-line, RNA was extracted from four independent experiments,

and then was pooled such that each RNA sample represents four independent experiments

(i.e., four biological replicates) for a particular HepG2 derived cell-line.

NanoString nCounter gene expression analysis

Gene expression was quantified digitally using the nCounter Gene Expression Assay (Nano-

String Technologies, Seattle, WA). We developed a custom probe set termed CodeSet contain-

ing reporter and capture probes for twenty-five target genes and three housekeeping genes

(GAPDH, B2M, and LDHA) (S1 Table). The CodeSet was designed and validated by Nano-

String such that each target-specific probe would cover all known transcript isoforms of a par-

ticular gene and (each probe sequence provided in S1 Table). Assay was performed using the

NanoString protocols according to the manufacturer’s instructions. Briefly, for each pooled

RNA sample 100ng was hybridized to the CodeSet overnight at 65˚C. The hybridized samples

underwent automated processing on the nCounter Prep Station, nCounter Master Kit reagents

were added to remove the excess probes, and the purified target/probe complexes were immo-

bilized in the nCounter cartridge for data collection. Data collection for digital quantification

was carried out in the nCounter Digital Analyzer by processing the digital images of the color-

coded barcodes on the surface of the cartridge, and tabulating the barcode counts for each tar-

get mRNA in each sample. The raw counts expression data was analyzed using nSolver Analy-

sis Software (NanoString). Briefly, we normalized samples according to six positive and eight

negative control probes and the geometric mean of the three housekeeping genes. For each

sample, the background threshold was set using the geometric mean of the eight negative con-

trol probes plus two standard deviations, and the background subtraction was performed.

Next, data was normalized using the geometric mean of the six positive control probes and

three housekeeping genes as follows: The normalization factor for each sample was calculated

using the geometric mean of the six positive control probes, specifically by dividing the arith-

metic mean of the geometric mean by the geometric mean value. This was followed by a tech-

nical normalization using the geometric mean of the three housekeeping genes included in

each run (GAPDH, B2M, and LDHA). The normalized data was log2 transformed and fold

expression changes were calculated.

Results

We analyzed the levels of PPARγ-mRNA in both PPARγ knockdown cell-lines, PPARγ-KD1

and PPARγ-KD2 (four biological replicates each), by the NanoString nCounter method. We

evaluated the reduction in PPARγ expression, and found that the levels of PPARγ-mRNA in

PPARγ-KD1 were reduced to 23% and 36% compared to the GFP and the untransduced con-

trol HepG2 cell-lines, respectively (Fig 1). These results reproduced our previous data using

TaqMan qRT-PCR that demonstrated >2-fold lower PPARγ-mRNA levels upon PPARγ
knockdown in this cell-line [32]. Similarly, the levels of PPARγ-mRNA in PPARγ-KD2 cell-

line were decreased to 17% and 26% relative to the GFP and the untransduced controls (Fig 1).

For validation we repeated PPARγ-mRNA expression analysis using qRT-PCR (S1 Fig).

Next, we examined the expression of twenty-four LOAD susceptibility genes inferred by

the proximity to the most significant LOAD-associated SNPs (Table 1). Ten genes resulted in

counts below the background threshold for all four HepG2 derived cell-lines and were consid-

ered as not expressed in our system (Table 1). We assessed the fold-change in mRNA levels for

all fourteen remaining genes expressed in our HepG2 cells, by comparing the mRNA levels in

PPARγ-KD1 and PPARγ-KD2 cell-lines relative to the GFP cell-line, using a pool of 4 biologi-

cal replicates for each cell-line. A total of seven genes were found to be affected by PPARγ
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knockdown and demonstrated a consistent direction of the effect on mRNA levels, reproduc-

ible in both PPARγ-KD1 and PPARγ-KD2 cell-lines, that was 10% or more (Table 2, Fig 2).

We observed that knockdown of PPARγ led to either increase or decrease in mRNA expression

levels. Six genes were upregulated in PPARγ-KD cells: ATP binding cassette subfamily A mem-

ber 7 (ABCA7), APOE (validated by qRT-PCR, S1 Fig, and consistent with our previous results

[32]), Cas scaffolding protein family member 4 (CASS4), CUGBP Elav-like family member 1

Fig 1. Validation of the reduction in PPARγ-mRNA expression in HepG2-derived PPARγ-KD1 and -KD2 cells. RNA was extracted from four HepG2 derived

cell-lines: PPARγ-KD1, PPARγ-KD2, GFP, and untransduced (U). For each cell-line, RNA samples from four biological replicates were pooled. The levels of

PPARγ-mRNA relative to the geometric mean of GAPDH, B2M, and LDHA -mRNAs was assessed by nCounter NanoString technology. The different HepG2

derived cell-lines are indicated on the X-axis, and the fold change of mRNA (log2 transformed) is indicated on the Y-axis. PPARγ-mRNA were decreased in both

PPARγ-KD cell-lines compared to the GFP cells (by ~4–5 fold), and compared to ‘U’ cells (~3–4 fold).

https://doi.org/10.1371/journal.pone.0196943.g001
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(CELF1), protein tyrosine kinase 2 beta (PTK2B), and zinc finger CW-type and PWWP

domain containing 1 (ZWPW1) (Table 2, Fig 2). Only one gene, desmoglein 2 (DSG2), was

downregulated in the PPARγ-KD cell-lines compared to GFP cell-line (Table 2, Fig 2). These

results reinforced the broad role of PPARγ as transcriptional activator and repressor [33], and

demonstrated the effects on down- and up-regulation for LOAD-associated genes. Two genes,

BIN1 and EPHA1, showed opposites effects in PPARγ-KD1 compared to PPARγ-KD2. While

Table 2. PPARγ knockdown effects on mRNA levels of LOAD-genes.

Gene PPARγ-KD1

mRNA fold change

PPARγ-KD2

mRNA fold change

GO terms: Biological Process (GO ID)

ABCA7 1.39 1.75 transport (GO:0006810)

phagocytosis (GO:0006909)

aminophospholipid transport (GO:0015917)

APOE 1.35 1.20 response to dietary excess (GO:0002021)

lipid metabolic process (GO:0006629)

transport (GO:0006810)

lipid transport (GO:0006869)

cellular calcium ion homeostasis (GO:0006874)

response to oxidative stress (GO:0006979)

steroid metabolic process (GO:0008202)

regulation of gene expression (GO:0010468)

low-density lipoprotein particle remodeling (GO:0034374)

lipoprotein metabolic process (GO:0042157)

lipoprotein biosynthetic process (GO:0042158)

vasodilation (GO:0042311)

positive regulation of catalytic activity (GO:0043085)

artery morphogenesis (GO:0048844)

negative regulation of inflammatory response (GO:0050728)

maintenance of location in cell (GO:0051651)

lipid homeostasis (GO:0055088)

cardiovascular system development (GO:0072358)

negative regulation of triglyceride metabolic process (GO:0090209)

regulation of plasma lipoprotein particle levels (GO:0097006)

cellular oxidant detoxification (GO:0098869)

CASS4 1.91 1.33 cell adhesion (GO:0007155)

CELF1 1.21 1.18 spermatid development (GO:0007286)

RNA splicing (GO:0008380)

mRNA processing (GO:0006397)

negative regulation of translation (GO:0017148)

positive regulation of multicellular organism growth (GO:0040018)

DSG2 0.71 0.71 cell adhesion (GO:0007155)

homophilic cell adhesion via plasma membrane adhesion molecules (GO:0007156)

response to progesterone (GO:0032570)

maternal process involved in female pregnancy (GO:0060135)

PTK2B 1.71 1.62 �MAPK cascade (GO:0000165)

response to reactive oxygen species (GO:0000302)

oocyte maturation (GO:0001556)

response to hypoxia (GO:0001666)

adaptive immune response (GO:0002250)

immune system process (GO:0002376)

regulation of leukocyte chemotaxis (GO:0002688)

response to osmotic stress (GO:0006970)

actin filament organization (GO:0007015)

cell adhesion (GO:0007155)

ZCWPW1 6.56 5.34 None

Fold change in mRNA levels for each PPARγ knockdown cell-line, PPARγ-KD1 and PPARγ-KD2, were calculated relative to the control GFP cell-line. GO terms listed

here include the subset using the filter for evidence used in automatic assertion (Inferred from Electronic Annotation (IEA)).

�Showing the first 10 out of 54 GO IDs filtered using IEA evidence.

https://doi.org/10.1371/journal.pone.0196943.t002
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BIN1 and EPHA1 mRNA levels were higher in PPARγ-KD1 relative to the GFP cell-line, they

were lower in PPARγ-KD2. Five genes, CD2AP, FERMT2, INPP5D, PICALM and SORL1,

showed no effect (<10%) on expression levels upon PPARγ knockdown.

Discussion

Using NanoString technology, we analyzed the effect of PPARγ knockdown on expression of

twenty-four LOAD-associated genes in human hepatocyte-derived cell-lines and demon-

strated that PPARγ regulates the expression of seven LOAD-associated genes, including

APOE. It has been demonstrated that PPARγ can both activate and repress transcription, in

ligand-dependent or independent manners, via binding to coactivators or corepressors,

respectively [34]. Here we showed that PPARγ knockdown resulted in upregulation of six

genes (ABCA7, APOE, CASS4, CELF1, PTK2B, and ZCWPW1) and downregulation of one

gene (DSG2). Annotation of these genes using GO terms for biological processes (Table 2)

indicated the involvement of these genes in diverse biological processes including pathways

related to lipid metabolism, immune function, and cellular stress response, suggesting a role

for PPARγ in these aspects of LOAD etiology.

Fig 2. The effect of PPARγ knockdown in HepG2 cells on mRNA levels of LOAD-GWAS genes. RNA was extracted from four HepG2 derived cell-lines:

PPARγ-KD1, PPARγ-KD2, GFP, and untransduced (U). For each cell-line, RNA samples from four biological replicates were pooled. The fold levels of (A) APOE-

mRNA—represents highly expressed genes, (B) DSG2, and CELF -mRNA—represent medium expressed genes, and (C) ABCA7, CASS4, PTK2B, and ZCWPW
-mRNA—represent lower expressed genes, compared to the geometric mean of GAPDH, B2M, and LDHA -mRNAs were assessed by nCounter NanoString

technology. The different HepG2 derived cell-lines are indicated on the X-axis, and the fold change of mRNA (log2 transformed) is indicated on the Y-axis. The

expression levels of ABCA7, APOE, CASS4, CELF1, PTK2B, and ZCWPW1 -mRNAs were increased (A, B, C), and that of DSG2-mRNA (B) was decreased in

PPARγ-KD1 and -KD2 cells compared to GFP and U cells.

https://doi.org/10.1371/journal.pone.0196943.g002
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PPARγ is the most extensively studied member of the PPARs family; it is well known for its

role in peripheral metabolism, and has been implicated in the pathology of numerous diseases

including diabetes, stroke, cancer, and obesity [18]. Accumulating evidence has also suggested

the involvement of PPARγ in the pathogenesis of various disorders of the central nervous

system (CNS) and several brain neuropathologies including LOAD [16, 17, 19, 35]. PPARγ
exhibits a wide range of activities related to Alzheimer’s pathology. Studies using animal mod-

els of Alzheimer’s suggested that PPARγ exerts direct and indirect effects on Aβ metabolism

(reviewed in [35]). Furthermore, the Pro12Ala mutation in PPARγ was associated with

LOAD risk and age-of-onset, however, other studies failed to detect any significant association

between the Ala12 variant and the genetic risk of LOAD [36]. Nonetheless, it was reported that

Ala12 carriers showed an increased risk of cognitive decline than non-carriers among diabetic

patients [36, 37]. Here we found that out of fourteen LOAD-associated genes expressed in

our cellular system, seven are regulated by PPARγ. Our study further strengthened the link

between PPARγ and neurodegeneration, in particular the development of LOAD. Collectively,

our research supports the potential beneficial impact of PPARγ agonists for ameliorating

LOAD-related phenotypes, reinforcing the concept that PPARγ agonists may represent

an attractive class of drugs for preventing or delaying the onset of LOAD. However, it is

important to note that one limitation of this study is the cellular system, as it derived from

hepatocytes and does not represent brain cell types relevant to LOAD. Therefore, further

investigations using the three major brain cell-types implicated in LOAD, neurons, astrocytes,

and microglia, are warranted. These follow up studies will provide insight into the regulatory

impact of PPARγ on the complete repertoire of LOAD-associated genes, in the context of the

intracellular environments of cell-types involved in LOAD pathogenesis.

PPARγ governs metabolism, immune response, and other biological processes that are also

critical for the resilience of human tissues and organs through life-span and aging ‘physiologi-

cal failure’. We hypothesize that the possible master role of PPARγ in tissue resilience underlies

its involvement in distinct diseases from cancer to LOAD. Here we found the effect of PPARγ
on genes that were implicated in both LOAD and cancer. The LOAD-associated genes, cas

scaffolding protein family member 4 (CASS4) and protein tyrosine kinase 2 beta (PTK2B),

have been studied primarily for their roles in the directly cancer-relevant processes of migra-

tion and survival signaling. CASS4 and PTK2B act as interacting partners regulating oncogene-

sis and metastasis, and are known to be active in the brain during development and in cancer

[38]. In addition, CELF1 has been associated with certain types of cancer [39, 40], and expres-

sion of ABCA7 significantly increased in ovarian carcinoma [41]. It has been reported that can-

cer survivors are at reduced risk for LOAD, and that people with LOAD may be at a reduced

risk of developing cancer [42, 43]. The identification of genetic associations of cancer genes

with LOAD risk suggested the intriguing hypothesis of mechanistic overlap between cancer

and Alzheimer’s disease; moreover, our findings that four of these common genes are co-regu-

lated by PPARγ suggest a possible role for PPARγ in the interplay between LOAD and cancer.

GWAS identified over twenty tagging SNPs associated with LOAD—however, the exact tar-

get genes that contribute directly to the disease within each of the LOAD associated genomic

regions have yet to be identified. For example, there are about ten genes in the region defined

by the LOAD associated-SNPs that has been inferred to as ZCWPW1. Here, we described the

expression analysis of LOAD GWAS genes inferred by the proximity to the most significantly

associated SNPs. In-depth exploration of the regulatory role of PPARγ in the context of LOAD

warrants further investigations evaluating an inclusive and unbiased list of genes that are posi-

tioned within +/-1Mb (a range proposed as a range of LD for mapping disease genes [44, 45])

surrounding the genome-wide significant associated-SNPs.
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S1 Fig. Validation of the mRNA expression changes using TaqMan based qRT-PCR assays.

RNA was extracted from four HepG2 derived cell-lines: PPARγ-KD1, PPARγ-KD2, GFP, and

untransduced (U). The levels of (A) PPARγ-mRNA, and (B) APOE-mRNA, relative to the geo-

metric mean of GAPDH- and PPIA -–mRNAs, were assessed by real-time PCR and analyzed

by the 2-ΔΔCt method. The different HepG2 derived cell-lines are indicated on the X-axis, and

the fold change of mRNA (log2 transformed) is indicated on the Y-axis. The values presented

here are means levels±SEM of 4 replicates. Student’s t-test analysis was used to determine sig-

nificant differences. (A) PPARγ-mRNA were significantly decreased (p<0.0001) in PPARγ-

KD1 and PPARγ-KD2 cells compared to GFP cells and U cells. (B) APOE-mRNA were signifi-

cantly increased in PPARγ-KD1 (p = 0.0003) and PPARγ-KD2 (p = 0.03) cells compared to

GFP cells.
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S1 Table. Genes analyzed with NanoString. Genes analyzed using NanoString technology,
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probe are described.
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