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Abstract Mitochondria are morphologically dynamic organelles which undergo fission and fusion
processes. Our previous study found that arterial constriction was always accompanied by increased
mitochondrial fission in smooth muscle cells, whereas inhibition of mitochondrial fission in smooth
muscle cells was associated with arterial relaxation. Here, we used the typical vasorelaxants, verapamil
and phentolamine, to further confirm the coupling between arterial constriction and mitochondrial fission
in rat aorta. Results showed that phentolamine but not verapamil induced vasorelaxation in phenylephrine
(PE)-induced rat thoracic aorta constriction. Verapamil, but not phentolamine, induced vasorelaxation in
high Kþ (KPSS)-induced rat thoracic aorta constriction. Pre-treatment with phentolamine prevented PE-
but not KPSS-induced aorta constriction and pre-treatment with verapamil prevented both PE- and KPSS-
induced aorta constriction. Transmission electron microscopy (TEM) results showed that verapamil but
not phentolamine inhibited KPSS-induced excessive mitochondrial fission in aortic smooth muscle cells,
and verapamil prevented both PE- and KPSS-induced excessive mitochondrial fission in aortic smooth
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muscle cells. Verapamil inhibited KPSS-induced excessive mitochondrial fission in cultured vascular
smooth muscle cells (A10). These results further demonstrate that arterial relaxation is coupled to
inhibition of mitochondrial fission in arterial smooth muscle cells.

& 2017 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mitochondria are morphologically dynamic organelles which
undergo fission and fusion dynamic processes. Mitochondrial
dynamics are mainly regulated by mitochondrial fusion-related
proteins including the outer mitochondrial membrane (OMM)
proteins, mitofusin 1 (MFN1), mitofusin 2 (MFN2), the inner
mitochondrial membrane (IMM) protein, optic atrophy factor 1
(OPA1), and fission-related proteins including dynamin-related
protein 1 (DRP1), human fission factor-1 (Fis1), mitochondrial
fission factor (MFF), MiD49 and MiD511.

Mitochondrial fission has been reported to be involved in
apoptosis2, autophagy3, mitochondrial transport4, cell differentia-
tion5, embryonic development6 and metabolism7. Disorders of
mitochondrial fission contribute to a variety of pathological
processes. Mitochondrial fission has been implicated in diabetes8,
cardiomyocyte hypertrophy9, myocardial ischemia/reperfusion
injury10, heart failure11 and neurodegenerative disease12,13.
Recently, some literature showed that regulation of mitochondrial
fission might be a novel target to prevent cardiovascular diseases
including hypertension, pulmonary arterial hypertension, athero-
sclerosis, and intimal hyperplasia1,14–16.

Our previous study found that phenylephrine (PE)- and KPSS-
induced vasoconstriction was accompanied by increased mito-
chondrial fission in smooth muscle cells, and mitochondrial fission
inhibitors (mdivi-1 and dynasore) both inhibited vasoconstriction
induced by PE or KPSS17. Furthermore, Y27632 (a ROCK
inhibitor) and nitroglycerin relaxed KPSS-induced vasoconstric-
tion and inhibited KPSS-induced mitochondrial fission17. These
results indicated that there might be a coupling between arterial
constriction and mitochondrial fission in smooth muscle cells. In
order to confirm the hypothesis, we also used other typical
vasorelaxants, verapamil and phentolamine, to examine the
relationship between arterial constriction and mitochondrial fission
in smooth muscle cells from rat thoracic aorta. Here, the effects of
verapamil and phentolamine in vasoconstriction models induced
by PE or KPSS further demonstrate that arterial relaxation is
coupled to inhibition of mitochondrial fission in arterial smooth
muscle cells.
2. Materials and methods

2.1. Agents and animals

Acetylcholine chloride (Ach) was purchased from Sigma-Aldrich
Chemistry (Saint Louis, MO, USA). Mito-Tracker Green and
Hoechst were purchased from Life Technology (Invitrogen, OR,
USA). PE and verapamil were purchased from Harvest Pharma-
ceutical Co., Ltd. (Shanghai, China). Phentolamine was purchased
from Santa Cruz Biotechnology, Inc. (Shanghai, China). Arterial
smooth muscle cells (A10) were purchased from ATCC (VA,
USA). Adult male Sprague-Dawley rats were purchased from
Charles River (Charles River Laboratory Animal, Beijing, China).
All animal procedures and experiments were approved by the
Institutional Animal Care and Use Committee of Harbin Medical
University. High Kþ salt solutions containing 60 and 50 mmol/L
Kþ were used for treating arterial tissues and smooth muscle cells
respectively. The KPSS (60 mmol/L Kþ) solution was composed
of (mmol/L): NaCl, 74.7; KCl, 60; MgSO4 � 7H2O, 1.17; KH2PO4,
1.18; NaHCO3, 14.9; CaCl2, 1.6; D-glucose, 5.5; EDTA, 0.026.
The KPSS (50 mmol/L Kþ) solution was composed of (mmol/L):
NaCl, 84.7; KCl, 50; MgSO4 � 7H2O, 1.17; KH2PO4, 1.18;
NaHCO3, 14.9; CaCl2, 1.6; D-glucose, 5.5; EDTA, 0.026.

2.2. Aorta tension measurement

The experiments were carried out according to our previous
work17,18. Adult male Sprague-Dawley rats were sacrificed after
anesthesia with sodium pentobarbitone. The thorax was cut to
expose the aorta, and the descending thoracic aorta was rapidly
dissected and transferred to physiological salt solution (PSS) at
room temperature. After the perivascular tissue was carefully
removed, aortic rings were cut approximately 4 mm in length
and mounted between two stainless steel triangle hooks and then
transferred to an organ bath with 10 mL fresh PSS solution
oxygenated with 95% O2 and 5% CO2 (pH 7.4) at 37 1C. After
equilibration, the tension was measured by using a multichannel
acquisition and analysis system (Model BL-420E, Taimeng
Technology Instrument, Chengdu, China).

2.3. Measurements of mitochondrial networks

The experiments were carried out according to our previous
work17. Cultured arterial smooth muscle cells (A10) were loaded
with Mito-Tracker Green (50 nmol/L) for 20 min and Hoechst
(1 mg/mL) for 15 min at 37 1C. The cells were imaged by using the
Zeiss LSM 700 confocal microscope (Carl Zeiss, Jena, Germany).
All imaging was observed with a 40� oil immersion objective
lens. Mitochondrial fragmentation was analyzed according to
literature10. Mitochondrial length was determined by use of
Image-Pro Plus software.

2.4. Transmission electron microscopy (TEM)

The experiments were carried out according to our previous
work17. Samples were rinsed in buffer, and then fixed in 2.5%



Figure 1 Phentolamine but not verapamil induced vasorelaxation in PE-induced rat thoracic aorta constriction. (A) Verapamil (5 μmol/L) showed
no effect on PE (1 μmol/L)-evoked rat thoracic aorta constriction. (B) Phentolamine (1 μmol/L) relaxed PE (1 μmol/L)-induced rat thoracic aorta
constriction. **Po0.01 vs. control (DMSO), n¼8.

Figure 2 Verapamil but not phentolamine induced vasorelaxation in KPSS-induced rat thoracic aorta constriction. (A) Verapamil (5 μmol/L)
relaxed KPSS (60 mmol/L Kþ)-evoked rat thoracic aorta constriction. **P o 0.01 vs. control (PSS). (B) Phentolamine (1 μmol/L) showed no
effect on KPSS (60 mmol/L Kþ)-induced rat thoracic aorta constriction, n¼8.
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glutaraldehyde in PBS (pH 7.4) for 2–3 days. Specimens were
then post-fixed in PBS-buffered 1% OsO4 for 1–2 h, stained en
bloc in uranyl acetate, dehydrated in ethanol, and embedded in
epoxy resin by standard procedures. The ultrathin sections were
electron stained and observed under an electron microscope (JEM-
1220, JEOL Ltd., Tokyo, Japan).
2.5. Data analysis

Data are presented as mean7SEM. Significance was determined
by using Student's t-test or one-way ANOVA followed by Holm-
Sidak. Po0.05 was considered significant.
3. Results and discussion

3.1. Phentolamine induces vasorelaxation in PE-constricted rat
thoracic aorta

PE induces vasoconstriction through stimulating α1-adrenergic
receptors in plasma membrane of smooth muscle cells and the
subsequent activation of inositol 1,4,5-trisphosphate receptors
(IP3Rs) on sarcoplasmic reticulum. As shown in Fig. 1, phento-
lamine but not verapamil induced vasorelaxation in PE-induced rat
thoracic aorta constriction. Phentolamine is an α1-adrenergic
receptor antagonist, and induced vasorelaxation via inhibition of
PE-induced activation of α1-adrenergic receptors.



Figure 3 Phentolamine pretreatment prevented PE- but not KPSS-induced aorta constriction. (A) and (B) Phentolamine (1 μmol/L) pretreatment
inhibited PE (1 μmol/L)-induced aorta constriction. **Po0.01 vs. control (DMSO). (C) and (D) Phentolamine (1 μmol/L) pretreatment exerted no
effect on KPSS (60 mmol/L Kþ)-evoked constriction of rat thoracic aorta, n¼6.

Figure 4 Verapamil pretreatment prevented both PE- and KPSS-induced aorta constriction. (A) and (B) Verapamil (5 μmol/L) pretreatment
inhibited PE (1 μmol/L)-induced constriction of rat thoracic aorta. **Po0.01 vs. control. (C) and (D) Verapamil (5 μmol/L) pretreatment prevented
KPSS (60 mmol/L Kþ)-evoked constriction of rat thoracic aorta. **Po0.01 vs. control, n¼6.
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3.2. Verapamil induces vasorelaxation in KPSS-constricted rat
thoracic aorta

KPSS induces vasoconstriction by depolarizing membrane
potential of smooth muscle cells and the subsequent activation
of L-type Ca2þ channels. In the KPSS-induced rat thoracic aorta
constriction model, verapamil but not phentolamine induced
vasorelaxation (Fig. 2). Due to the different mechanisms of PE-
and KPSS-induced vasoconstriction, α1-adrenergic receptor
antagonist and Ca2þ channel blocker showed distinct effects
in these models.
3.3. The effect of pretreatment of phentolamine or verapamil on
PE- or KPSS-induced aorta constrictions

We further examined the preventive effects of phentolamine and
verapamil on PE- and KPSS-induced aorta constriction. As shown in
Fig. 3, pretreatment with phentolamine prevented PE- but not KPSS-
induced aorta constriction. However, pretreatment with verapamil
prevented both PE- and KPSS-induced aorta constrictions (Fig. 4).
Accordingly, we suggest that the primary origin of intracellular Ca2þ can
be traced to extracellular Ca2þ via Ca2þ channels in vascular smooth
muscle cells; hence the storage of intracellular Ca2þ is suppressed by



Figure 5 Phentolamine pretreatment inhibited PE- but not KPSS-induced excessive mitochondrial fission of aortic smooth muscle cells
and verapamil pretreatment inhibited both PE- and KPSS-induced excessive mitochondrial fission of aortic smooth muscle cells. (A) and (B)
The typical images of transmission electron microscopy and the analyzed data showed that verapamil (5 μmol/L) but not phentolamine (1 μmol/L)
pretreatment suppressed KPSS (60 mmol/L Kþ)-induced excessive mitochondrial fission in smooth muscle cells of aorta. The numbers of
mitochondria analyzed per group were shown in the bar. Aspect ratio, ratio between major and minor axes of an ellipse. **Po0.01 vs. control;
Po0.01 vs. KPSS, n¼6. (C) and (D) The typical images of transmission electron microscopy and the analyzed data showed that verapamil
(5 μmol/L) and phentolamine (1 μmol/L) pretreatments inhibited PE (1 μmol/L)-evoked excessive mitochondrial fission in smooth muscle
cells of aorta. The numbers of mitochondria analyzed per group were shown in the bar. Aspect ratio, ratio between major and minor axes of an
ellipse. **Po0.01 vs. control; Po0.01 vs. PE, n¼6.

Figure 6 Verapamil application after PE treatment had no effect on PE-induced excessive mitochondrial fission in smooth muscle cells of aorta.
(A) The typical images of TEM. (B) The quantity analysis of mitochondrial fission. The numbers of mitochondria analyzed per group were shown
in the bar. Aspect ratio, ratio between major and minor axes of an ellipse. **Po0.01 vs. control.
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inhibiting Ca2þ channel. Thus, pre-treatment with verapamil, which
reduced the store of intracellular Ca2þ, could weaken the effect of Ca2þ

release from sarcoplasmic reticulum induced by PE in smooth muscle
cells in aorta, thereby antagonizing constriction of the aorta. A previous
study reported that verapamil pretreatment reduced the rise of intracel-
lular Ca2þ induced by PI(3,5)P2 in isolated aortic smooth muscle cells
and accompanied by reductions in PI(3,5)P2-induced constriction19.
Such findings are in accord with the present findings.

3.4. The effect of pretreatment of phentolamine or verapamil on
PE- or KPSS-induced excessive mitochondrial fission of aortic
smooth muscle cells

Since we postulated that vasoconstriction is coupled with
mitochondrial fission in vascular smooth muscle cells17, we
used TEM to characterize mitochondrial morphology of smooth
muscle cell in aorta treated with verapamil or phentolamine,
followed by treatment of PE or KPSS. As shown in Fig. 5A and
C, verapamil (but not phentolamine) pretreatment inhibited
KPSS-induced excessive mitochondrial fission in smooth mus-
cle cells of aorta. Phentolamine pretreatment inhibited PE-
induced excessive mitochondrial fission in smooth muscle cells
of aorta. Moreover, verapamil pretreatment prevented both PE-
and KPSS-induced excessive mitochondrial fission of aortic
smooth muscle cells. The statistical results are shown in Fig. 5B
and D. The findings that verapamil pretreatment prevented both
PE- and KPSS-induced increases in mitochondrial fission of
smooth muscle cells are in accord with data showing that
verapamil pretreatment inhibited both PE- and KPSS-induced
vasoconstriction.
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Our previous work demonstrated that the initial increase of
cytosolic [Ca2þ]i triggered mitochondrial fission in vascular
smooth muscle cells17. Verapamil inhibited KPSS-induced
increases in cytosolic [Ca2þ]i through blocking L-type Ca2þ

channels, and phentolamine inhibited PE-induced increase of
cytosolic [Ca2þ]i through blockade of α1-adrenergic receptor. As
discussed above, the primary origin of intracellular Ca2þ comes
from extracellular Ca2þ via Ca2þ channels in vascular smooth
Figure 7 Verapamil inhibited KPSS-induced excessive mitochondrial fis
confocal microscopy. The mitochondria of cultured vascular smooth mu
Green. The typical time-lapse images of vascular smooth muscle cells expo
were revealed in (B). The enlarged images of the framed area exhibited cle
Kþ). (C) The time-lapse images of vascular smooth muscle cells pretreat
(50 mmol/L Kþ). The enlarged images of the framed area revealed that the i
the presence of verapamil (5 μmol/L). (D) The time-lapse images of vasc
30 min, and then exposed to KPSS (50 mmol/L Kþ). The enlarged imag
treatment with KPSS (50 mmol/L Kþ) in the presence of phentolamine (5
muscle cells; verapamil pretreatment reduces the storage of
intracellular Ca2þ via inhibiting Ca2þ channel, so it will weaken
the effect of Ca2þ release from sarcoplasmic reticulum induced by
PE, thereby inhibiting PE-induced increase of cytosolic [Ca2þ]i.
These results further demonstrate that arterial relaxation is coupled
to inhibition of mitochondrial fission in arterial smooth
muscle cells.
sion in cultured vascular smooth muscle cells (A10) accessed by laser
scle cells were stained with mitochondria-specific probe mitoTracker
sed to normal PSS were revealed in (A) and to KPSS (50 mmol/L Kþ)
ar mitochondria fragmentation after treatment with KPSS (50 mmol/L
ed with verapamil (5 μmol/L) for 30 min, and then exposed to KPSS
ntegrity of mitochondria was not affected by KPSS (50 mmol/L Kþ) in
ular smooth muscle cell pre-treated with phentolamine (5 μmol/L) for
es of the framed area showed clear mitochondria fragmentation after
μmol/L).
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3.5. Verapamil application after PE treatment has no effect on
PE-induced excessive mitochondrial fission

Verapamil did not show vasorelaxant effects in aorta which was
pre-contracted with PE (Fig. 1A). We then characterized mito-
chondrial morphology in smooth muscle cells from aorta in this
state. As shown in Fig. 6, the mitochondrial fission of smooth
muscle cells in aorta was increased after PE treatment. Verapamil
did not inhibit this excessive mitochondrial fission in smooth
muscle cells of PE-treated aorta. These results indicate that
verapamil showed no inhibitory effect on mitochondrial fission
when PE had induced intracellular Ca2þ release and excessive
mitochondrial fission. However, verapamil pretreatment reduced
the storage of intracellular Ca2þ in vascular smooth muscle cells,
thereby inhibiting PE-induced vasoconstriction and PE-induced
excessive mitochondrial fission.
3.6. Verapamil inhibits KPSS-induced excessive mitochondrial
fission of cultured vascular smooth muscle cells (A10)

Mitochondrial fission dynamics were observed in the live cells by
use of real-time confocal microscopy with mito-Tracker staining.
As shown in Fig. 7, KPSS treatment induced mitochondrial
fragmentation in cultured vascular smooth muscle cells (A10).
Verapamil but not phentolamine inhibited KPSS-induced exces-
sive mitochondrial fission. Nevertheless, phentolamine had no
inhibitory effect on KPSS-induced excessive mitochondrial fission.
Our previous study found that vascular smooth muscle cells lost
sensitivity to PE after culturing17, which even occurred in primary
arterial smooth muscle cells20. Therefore, we did not use phento-
lamine to treat the cultured vascular smooth muscle cells to
observe the effects of phentolamine on PE-induced excessive
mitochondrial fission.
4. Conclusions

Based on our previous work, we used other two typical vasor-
elaxants, verapamil and phentolamine, to further prove the
coupling between arterial constriction and mitochondrial fission
in rat aorta. The present results demonstrate that arterial relaxation
was completely congruent with the inhibition of mitochondrial
fission in arterial smooth muscle cells. Together with our previous
results17, these findings show that studies with six different types
of drugs (mdivi-1, dynasore, Y27632, nitroglycerin, verapamil and
phentolamine) confirm the tight coupling between arterial con-
striction and mitochondrial fission in vascular smooth muscle cells.
We suggest the existence of a novel physiological process
“mitochondrial fission–contraction coupling” in arterial smooth
muscle cells. Based on this hypothesis, pharmacological targeting
of mitochondrial fission could be a novel approach to dilate
arteries and lower blood pressure.
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