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Autophagy is a highly regulated multi-step process that occurs at the basal level in almost
all cells. Although the deregulation of the autophagy process has been described in
several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is
currently well established and supported by experimental and clinical evidence. Our
understanding of the molecular mechanism of the autophagy process has largely
contributed to defining how we can harness this process to improve the benefit of
cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is
extensively documented, emerging data point toward autophagy as a mechanism of
cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore,
manipulating autophagy has emerged as a promising strategy to overcome tumor
resistance to various anti-cancer therapies, and autophagy modulators are currently
evaluated in combination therapies in several clinical trials. In this review, we will
summarize our current knowledge of the impact of genetically and pharmacologically
modulating autophagy genes and proteins, involved in the different steps of the autophagy
process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss
the challenges and limitations to developing potent and selective autophagy inhibitors that
could be used in ongoing clinical trials.
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INTRODUCTION

Macroautophagy (referred to as autophagy) was first described in 1966 as a cellular process that
occurs at the basal level in all cells (1). Autophagy relies on the formation of double-membraned
vesicles known as autophagosomes, leading to the degradation of their cargo, such as damaged
proteins or organelles (2). The autophagy process involves more than thirteen autophagy-related
(ATG) proteins and requires the following major steps: (i) Initiation, (ii) Nucleation, (iii)
Maturation, and (iv) Fusion with lysosome for cargo degradation (Figure 1). Originally
described as a bulk degradation process, autophagy is now described as a highly selective
degradation mechanism for the recycling of cellular components. Autophagy can be activated as
an adaptive cellular response to external stimuli such as hypoxia, starvation, and different cancer
therapies and therefore considered as a cytoprotective mechanism (1, 3–5).
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Autophagy is activated under nutrient deprivation or
starvation condition, which resulted in a decrease of mTOR
activity and an increase of Unc-51 like autophagy activating
kinase 1 (ULK1) activation. Activated ULK1 is subsequently
dissociated from the 5’ adenosine monophosphate-activated
protein kinase (AMPK), resulting in autophagy activation
(6, 7). In addition to starvation, autophagy can also be
activated in the tumor microenvironment by hypoxia through
the hypoxia-inducible factor 1-a (HIF-a). The accumulation of
HIF-1a in hypoxic cells activates the expression of BNIP/
BNIP3L, which subsequently dissociates the complex between
Bcl-2 and Beclin-1 (BECN1) to activate autophagy (8).

Autophagy was primarily considered as a tumor suppressive
mechanism. Such a role was supported by studies showing
that targeting BECN1, ATG5, and ATG7 promotes tumor
initiation (9–11). In particular, evidences have demonstrated that
Everolimus, an mTOR inhibitor and analogue of rapamycin,
significantly increases mice survival in acute lymphoblastic
leukemia in combination with Vincristine (12, 13). Conversely,
many groups highlight the tumor supportive role of autophagy by
showing its role in promoting tumor cell survival and growth in
multiple tumor types (14, 15). The consensus appears to be that
autophagy plays double-edged sword in suppressing tumor
initiation and in promoting the survival of established tumors
(16). Indeed, experimental evidence points at autophagy as a
mechanism involved in cancer cell resistance to various therapies,
such as chemotherapy, radiotherapy, targeted therapy,
photodynamic therapy-induced apoptosis, and immunotherapy
(17–21). Despite the complex interplay between the tumor
suppressive and supportive role of autophagy in cancer (14), the
vast majority of the clinical trials have focus on inhibiting autophagy
with chloroquine (CQ) and hydroxychloroquine (HCQ) either
alone or in combination with anticancer therapies (22). Therefore,
autophagy inhibition has been suggested as a strategy to improve
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cancer therapies and has been considered in multiple clinical trials.
Autophagy inhibitors have been classified according to their action
on the major steps of autophagy and numerous preclinical studies
have evaluated the therapeutic benefit of inhibiting autophagy.

In this review, we will summarize the impact of inhibiting the
different steps of autophagy, either pharmacologically or
genetically by silencing or knocking down autophagy-
associated genes (Figure 2), and describe how autophagy can
be leveraged to improve the therapeutic benefit of current cancer
therapies and elicit a synergistic effect with antineoplastic agents.
IMPACT OF INHIBITING THE INITIATION
AND NUCLEATION STEPS ON CANCER
THERAPIES

The first step of the autophagy process, so-called the initiation
step, involves the ULK protein complex including ATG13,
ATG101/ULK1/2, and FIP200 (2, 23). The initiation step of
autophagy facilitates the recruitment of the class III PI3K or
VPS34 complex containing BECN1, VPS34, regulatory subunit 4
(VPS15/P150), activating molecule in BECN1-regulated
autophagy protein 1 (AMBRA), UV radiation resistance-
associated gene protein (UVRAG), BIF1, and ATG14L (2, 23)
to the newly formed “phagophore”. The recruitment of the class
III PI3K constitutes the nucleation step. In this section, we will
summarize the different drugs and/or strategies used to target the
initiation and nucleation steps and briefly discuss data available
on their efficacy in pre-clinical tumor mouse models.

Inhibition of ULK1
Several long noncoding RNAs (lncRNAs) have been reported to
induce tumor chemoresistance to 5-fluorouracil (5-FU) such as
FIGURE 1 | General presentation of the major steps of autophagy. Several stimuli have been identified to induce autophagy such as hypoxia, starvation, and cancer
therapies. The major steps of autophagy are: 1) Initiation, 2) Nucleation, 3) Maturation, and 4) Fusion with lysosome for the degradation and recycling of
autophagosome constituents.
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lncRNA H19 and lncRNA small nucleolar RNA host gene 6
(SNHG6) in colorectal cancer (24, 25). SNHG6 promotes
resistance of mice bearing RKO colon tumors to 5-FU.
Furthermore, investigations showed that SNHG6 induced
ULK1-dependent autophagy via sponging miR-26a-5p (25).

SBI0206965 is a highly selective inhibitor of ULK1 kinase (26)
and it has been reported to sensitize NSCLC cells and acute myeloid
leukemia (AML) cells to cisplatin- and daunorubicin-based
chemotherapy, respectively, by decreasing cancer cell viability
Frontiers in Oncology | www.frontiersin.org 3
(27, 28). In pancreatic ductal adenocarcinoma (PDAC) cells,
combining extracellular signal-regulated kinase (ERK) inhibitors
with inhibitors of ULK1 complex (SBI0206965 or MRT68921) or
with spautin-1, a specific inhibitor of two ubiquitin-specific
peptidases USP10 and USP13 that control BECN1 degradation
(29), decreased cell proliferation relative to ERK inhibitors alone
(30). Recently, Chen et al. demonstrated that simultaneous
inhibition of ULK1 (MRT68921) with NUAK1 (also known as
ARK1) induces apoptosis in various cancer types (31).
FIGURE 2 | Schematic representation of proteins involved in the major steps of autophagy. Genetic or pharmacological approaches targeting proteins involved in
each step of autophagy are reported in squares.
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Inhibition of Class III PI3K
Pre-treatment with class III PI3K inhibitors, such as 3-
Methyladenine (3-MA), showed a significant improvement of
the sensitivity of MDA-MB-231 and HBL-100 breast cancer cells
to ionizing radiation (IR) despite an apparent low level of basal
autophagy in HBL-100 cells (32). The therapeutic benefit of
combining IR and 3-MA was observed in a xenograft esophageal
squamous cell carcinoma mice model in vivo with a significant
decrease in tumor volume relative to single treatment (33).
Moreover, it has been demonstrated that 3-MA in combination
with docetaxel, a semi-synthetic analog of paclitaxel, overcame
docetaxel-induced autophagy and improved the sensitivity of
lung adenocarcinoma (LAD) cells to docetaxel. Docetaxel-
induced autophagy was mediated by High-mobility group box
1 (HMGB1) translocation, which participates in the BECN1
PI3K-III core complex formation via MEK/ERK1/2 pathway.
Indeed, knockdown of HMGB1 reverted the sensitivity of LAD
cells to docetaxel (34).

Sorafenib is a well-known anti-angiogenic agent and remains
the standard treatment in advanced unresectable hepatocellular
carcinoma (HCC) (35). Over the past decade, several studies
have focused on the underlying mechanisms induced by
Sorafenib and exploring new combination therapies. In various
types of cancers, Sorafenib has been described as inducing
autophagy (36). Yuan et al. showed that 3-MA treatment in
combination with Sorafenib significantly improved growth
inhibition in HepG2, Hep3B, and PLC/PRF/5 treated cells (37).
In triple-negative breast cancer (TNBC) cells, dual inhibition of
autophagy and the Insulin-like growth factor (IGF) signaling
pathway using 3-MA and NVP-AEW541, respectively, enhanced
the NVP-AEW541-induced cell growth inhibition and apoptosis
(38). In addition, preclinical studies have focused on exploring
the benefit of epidermal growth factor receptor (EGFR)
inhibitors such as gefitinib in EGFR-positive cancers (39). In
TNBC cells, an increasing concentration of gefitinib combined
with 3-MA significantly decreased cell viability in vitro.
Interestingly, in TNBC xenograft mice models, a gefitinib and
3-MA combination resulted in a significant decrease in tumor
volume and tumor weight compared to the gefitinib treated
group. Further investigations revealed that autophagy inhibition
by 3-MA enhanced gefitinib-induced GO/G1 cell cycle arrest,
DNA damage, and cell death via the mitochondrial apoptosis
pathway (40).

Selective VPS34 kinase inhibitors have acquired great interest
as potential potent drugs to inhibit early autophagy. The VPS34
kinase inhibitor SAR405 in combination with everolimus, a well-
known mTOR inhibitor approved for the treatment of various
tumors (41), induced efficient autophagy inhibition and reduced
renal tumor cell proliferation in vitro (42). In addition, the
VPS34 kinase inhibitor SB02024 in combination with
sunitinib, a tyrosine kinase inhibitor, significantly decreases cell
viability and multicellular spheroid (MCS) growth in both MCF-
7 and MDA-MB-231 breast cancer cell lines. Notably, inhibition
of MCS growth was not observed with a chloroquine (CQ) and
sunitinib combination (43). We have recently shown that
pharmacological targeting of VPS34 kinase activity by SB02024
Frontiers in Oncology | www.frontiersin.org 4
(Sprint Bioscience) or SAR405 (Sanofi) significantly decreased
tumor growth and improved mice survival in melanoma B16-
F10 and colorectal CT26 tumor mouse models (44). We provided
evidence that deep changes in the immune landscape occurred
in B16-F10 and CT26 mice models treated with VPS34 inhibitors
(SB02024 and SAR405), characterized by increased infiltration of
immune effectors such as NK, dendritic cells (DCs), M1
macrophages, and CD8+ T cells in the tumor microenvironment.
Because there was no difference in the growth of tumors engrafted
in NOD scid gamma (NSG) mice upon treatment with VPS34
inhibitors, these data clearly indicated that the tumor inhibitory
effect of VPS34 inhibitors involves the host immune system.
Moreover, we demonstrated that pro-inflammatory chemokines
such as CCL5 and CXCL10 are responsible for NK and CD8+ T cell
recruitment in B16-F10 tumors and CT26 tumors treated with
VPS34 inhibitors relative to control. Interestingly, SB02024 or
SAR405 improved the therapeutic benefit of anti-PD-1/PD-L1 by
significantly reducing tumor growth and tumor weight and
improving mice survival in B16-F10 and CT26 tumors (44).
Inhibition of Beclin-1
It has been reported that genetic inhibition of BECN1 or UVRAG
potentiated IR-induced DNA double-strand breaks (DSBs) and
cell death in colorectal cancer cells (45). Furthermore, gene
silencing of BECN-1 enhanced the efficiency of fasudil (a
RhoA/ROCK inhibitor) to induce apoptosis in esophageal
squamous cell carcinoma cells (46). Similarly, in vitro
suppression of BECN1 reduces paclitaxel-mediated cell
viability, colony formation, and induced apoptotic death in
BT-474 and MDA-MB-231 breast cancer cells in dose- and
time-dependent manners (47). Similar effects were observed in
non-small cancer lung cancer (NSCLC) cells, endometrial
carcinoma, nasopharyngeal carcinoma cells, and ovarian and
renal cancers (48–53). Interestingly, the therapeutic benefit of
paclitaxel was increased in a Becn1-targeted BT-474 xenograft
mice model based on cleaved caspase-3 positive cells and
inhibition of tumor growth (47).

In human chronic myeloid leukemia (CML) cells, co-
treatment with spautin-1 and imatinib, a BCR-ABL tyrosine
kinase inhibitor, potentiated imatinib-induced CML cell
apoptosis in both the K562 cell line and primary cells (54). In
line with this latter study, it has also been reported that imatinib
in combination with microRNA-30a, identified as potent
inhibitor of BECN1 and ATG5, significantly increased the
imatinib-mediated cytotoxicity in CML cells (55).

Tamoxifen is one of the most efficient endocrine treatments
in estrogen receptor (ER) positive breast cancers, which account
for 70% of the breast cancer subtypes. However, the therapeutic
benefit of Tamoxifen is negatively impacted by the development
of drug resistance (56). Gu et al. discovered that tamoxifen
resistance was associated with an increased BECN1 and human
epidermal growth factor receptor 2 (HER2) expression in breast
cancer cells. BECN1 silencing enhanced the sensitivity of breast
cancer cells to tamoxifen by reducing tumor cell proliferation,
migration, and invasion capabilities. These data highlight a novel
February 2021 | Volume 11 | Article 626309
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role of BECN1 in HER2 regulation that contributes to tamoxifen
resistance (57).

Using several ovarian cancer cells, Zhang et al. showed that
cancer cell resistance to cisplatin relied on autophagy-dependent
induction of nuclear accumbens-1 (NAC1). Indeed, targeting
NAC1 or autophagy, via 3-MA or BECN1 silencing, enhanced
ovarian cancer cell sensitivity to cisplatin (58). Similar results
were reported in adenoid cystic carcinoma of the salivary glands,
glioma, and urothelial carcinoma (59–61).

Bevacizumab, a monoclonal anti-vascular endothelial growth
factor (VEGF) antibody, is widely used to treat metastatic
colorectal cancer, lung cancer and renal cell carcinoma
(62–64). Knowing that bevacizumab induces autophagy, it has
been reported that genetic inhibition of BECN1 improves the
anticancer effects of this drug in colorectal cancer cells (65).
Likewise, improved clinical response to trastuzumab was
observed in HER2+ breast cancer displaying loss of BECN1
gene (38, 66). The role of autophagy, including BECN1, in
tumor resistance to targeted therapy is comprehensively
reviewed by Mele et al. (67).

We have previously reported that genetic targeting of Becn1
in melanoma cells prevents the degradation of Natural killer
(NK)-derived Granzyme B and enhances melanoma
susceptibility to NK-mediated killing (68). Furthermore, we
showed that the infiltration of NK cells into Becn1 defective
melanoma is increased, which results in significant inhibition of
tumor growth (69). Importantly, the impact of inhibiting
autophagy on the infiltration of cytotoxic immune cells into
the tumors and the decrease in tumor growth is also reported by
other studies (70–73).
TARGETING AUTOPHAGOSOME
MATURATION GENES ATG4B, ATG5,
AND ATG7 POTENTIATES
ANTICANCER THERAPIES

The third major step of autophagy involves two key complexes that
promote the expansion of the phagophore membrane and result in
the formation of a double-membraned vesicle named
autophagosome. The first complex involves cooperation between
ATG4B and ATG7, allowing for the conjugation of LC3I with
phosphatidylethanolamine (PE) to form LC3II. LC3II is
subsequently incorporated into the newly formed autophagosome
(74). The second complex includes ATG7 and the E2-like enzyme
ATG10, which are involved in ATG5-ATG12 conjugation (2). In
this section, we will describe the therapeutic benefit of inhibiting
autophagy genes involved in the maturation of autophagosomes.
Inhibition of ATG4B
The serine/threonine protein kinase MST4, also known as
mammalian STE20-like protein kinase 4 (MST4) (75), was
reported to facilitate p-ERK pathway and promote epithelial to
mesenchymal transition (EMT) and cancer metastasis in gastric
cancer (76). MST4 is associated with prostate cancer, hepatocellular
Frontiers in Oncology | www.frontiersin.org 5
carcinoma, and breast cancer progression (77, 78). It has been
reported that MST4 directly phosphorylates ATG4B at S383
position (79). Furthermore, ATG4B inhibition, by NSC185058
(80), improves the anti-tumor effect of radiotherapy in
intracranial glioblastoma (GBM) patient derived xenograft (PDX)
mice models (79). These data suggest a potential interconnection
between MST4, autophagy and malignancy in GBM; however, the
value of direct targeting MST4 as a strategy to modulate autophagy
remains to be defined.

Recently, benzotropolone derivatives were synthetized and
tested for ATG4B inhibition. UAMC-2526 was selected as the
best candidate according to its efficiency to reduce basal
autophagy and its high stability in the plasma. A combination
of UAMC-2526 with oxaliplatin-based chemotherapy reduced
colorectal cell proliferation and promoted tumor growth
inhibition in HT29 colorectal tumor-bearing mice (81).

FMK-9a is another ATG4B inhibitor, reported to attenuate
the pro-LC3 cleavage process and the LC3-PE delipidation.
FMK-9a could also induce autophagy independent of its
inhibition on ATG4B activity (82). Recently, S130 has been
identified to bind and inhibit ATG4B, hence attenuating the
delipidation of LC3-II and suppressing the recycling of LC3-I in
colorectal cancer cells. Therefore, S130 has been described as a
novel small-molecule to improve cancer therapy (83).

Moreover, an FDA-approved drug screening identified
tioconazole as a new ATG4 inhibitor. Tioconazole treatment
enhanced doxorubicin efficiency by decreasing cell viability in
H4, HCT116, and MDA-MB-231 cells. Interestingly, the
combination of tioconazole and doxorubicin showed an
enhanced antitumor effect in HCT116 xenografted mice
relative to each drug alone (84). In this context, it has been
reported that the HER2 status was positively correlated with the
expression of ATG4B protein. Interestingly, ATG4B silencing
was associated with reduced viability of trastuzumab treated
HER2+ cells compared to trastuzumab treatment alone (85).

Inhibition of ATG5 and ATG7
In A549 human lung cancer, overcoming the cytoprotective effect of
autophagy induced by cisplatin, via ATG5 silencing, improves
cancer cell apoptosis, as compared to cisplatin treatment alone
(86). Dual combination of Epirubicin, a structural analog of
doxorubicin, with ATG5- or ATG7-silencing, significantly reduced
cell viability in anthracycline-sensitive and resistant TNBC cells
(87). O’Donovan et al. showed that combining both siRNA BECN1
andATG7 decreased cell survival in 5-FU-treated esophageal cancer
cells while targeting BECN1 or ATG7 alone had no impact (88).
Therefore, it appears that targeting different steps of autophagy may
be a more appropriate strategy to improve chemotherapy efficacy.
In TBNC cells, Wu et al. demonstrated that dual inhibition of
ATG7, genetically, and IGF-1R pharmacologically, promotes
apoptosis and cell growth inhibition (38). In PDAC cells, genetic
inhibition of ATG5 or ATG7 significantly improved the effect of
ERK inhibitors on inhibiting cell proliferation relative to ERK
inhibitors alone (30). Dual combination of ATG5 siRNA and
docetaxel, a well-known second-line approved treatment in
NSCLC, decreased cell proliferation together with increasing
cytotoxicity and apoptosis in LAD cells (34). In renal cell
February 2021 | Volume 11 | Article 626309
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carcinoma cells, ATG5 silencing or 3-MA treatment in combination
with Sorafenib enhanced the sensitivity of RCC cells to
Sorafenib (89).
IMPACT OF INHIBITING
AUTOPHAGOSOME-LYSOSOME FUSION
ON THE RESPONSE TO VARIOUS
ANTICANCER THERAPIES

The final step of autophagy consists of fusion between
autophagosomes and lysosomes for the degradation, and
recycling of damaged proteins and organelles. Thus, the outer
membrane of autophagosomes merges with the lysosomal
membrane, and then the inner membrane is degraded (90).
The principal factors involved in autophagosome-lysosome
fusion are the homotypic fusion and protein sorting (HOPS)
complex, RAB7, and the N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) (91). Other proteins,
such as the lysosomal-associated membrane protein 2 (LAMP2),
are also required for proper fusion (92). This part will focus on
the impact of targeting these factors and the fusion step on the
therapeutic benefit of radiotherapy, chemotherapy, targeted
therapy, and immunotherapy.

Targeting the Soluble N-Ethylmaleimide-
Sensitive Factor Attachment Protein
Receptors (SNAREs) to Enhance
Response to Conventional Treatments
Syntaxin 17 (STX17), SNAP29, and vesicle-associated membrane
protein 8 (VAMP8) are N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) involved in the
autophagosome-lysosome fusion. During this process, STX17 is
recruited to the outer membrane of autophagosomes through
HOPS complex and interacts with VAMP8, located on
lysosomes. This interaction is enhanced by SNAP29, which
forms a SNARE complex with STX17 and VAMP8 (93).
Knockdown of STX17 causes a blockade of the fusion between
autophagosomes and lysosomes and results in the accumulation
of autophagosomes (93). Therefore, targeting SNARE proteins is
considered a strategy for preventing the late step of autophagy.
Moreover, SNAP29-STX17-VAMP8 complex formation can be
enhanced by the down-regulation of O-GlcNAc transferase
(OGT). This was correlated with the resistance of ovarian
cancer to cisplatin treatment (94), and highlights that targeting
SNAP29-STX17-VAMP8 complex by overexpression of OGT
could improve the sensitivity to cisplatin treatment.
Overexpression of VAMP8 has also been associated with
resistance to temozolomide in human glioma cells, and
knockdown of STX17 in glioma cells overexpressing VAMP8
led to increased chemosensitivity (95).

In addition, Berbamine, a natural product isolated from
traditional Chinese medicine, inhibits autophagosome-lysosome
fusion by preventing the interaction between VAMP8 and
SNAP29. Berbamine was proposed as a new potential inhibitor of
Frontiers in Oncology | www.frontiersin.org 6
autophagy that could enhance the effects of chemotherapy
treatment (96). Moreover, Berbamine has been investigated as a
potential anticancer drug in several studies and seems to act on
multiple pathways such as MEK/ERK (97) and WNT/b-catenin
pathways (98).

Targeting Lysosomal-Associated
Membrane Protein 2 (LAMP2) as a
Potential Target to Inhibit
Autophagosome-Lysosome Fusion and
Improve the Response to Anti-Cancer
Therapies
LAMP2 is a glycosylated protein ubiquitously expressed, and
mostly located on lysosome membranes. LAMP2 is required for
the proper fusion between autophagosomes and lysosomes (92).
In neuroendocrine prostate cancer, knockdown of LAMP2 by
siRNA induced an autophagy blockade and decreased both
cancer cell proliferation and neuroendocrine markers. These
results indicate that LAMP2 plays a dual role in cell survival,
by inducing autophagy and in the differentiation of androgen-
sensitive human prostate adenocarcinoma cells into
neuroendocrine prostate cancer cells (99). In addition, a recent
in silico approach showed that the expression of LAMP2 was
decreased in prostate cancer tissues as compared to normal
prostate tissues (100), indicating that the expression level of
LAMP2 could act as a regulatory element in cancer progression.
Another study compared the expression level of LAMP2 in
salivary adenoid cystic carcinoma and pleomorphic adenoma
and/or a normal salivary gland (101). The results showed an
increased expression of LAMP2 in salivary adenoid cystic
carcinoma, which was associated with cancer progression.
Although the expression level of LAMP2 seems to be different
in various cancer types, several data suggest that LAMP2 is a
potential target for cancer therapy in combination with
conventional treatments. This statement was supported by data
showing that the silencing of LAMP2 by siRNAs led to a
radiosensitization of prostate cancer cell lines (102). In
addition, a reduced expression of LAMP2 has been associated
with a decreased resistance to both cisplatin in human ovarian
carcinoma cells (103) and azacitidine in acute myeloid leukemia
(104). Nevertheless, the sensitization to radiotherapy and
chemotherapy by LAMP2 targeting should be investigated in
other types of cancer cells.

Overexpression of RAB7 as a Potential
Strategy to Improve Sensitivity to Anti-
Cancer Treatments
RAB7 is a small GTPase localized to late endosomes and
lysosomes and has multiple functions in autophagy. In
mammalian, RAB7 is not direct ly involved in the
autophagosome-lysosome fusion but rather in autolysosome
maturation under nutrient-rich conditions (105). The
significance of RAB7 as a target for autophagy modulation is
not well defined so far.

The role of RAB7 in cancer progression has recently been
described as a protein involved in promoting the proliferation,
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invasion, and migration of gastric cancer cells (106). RAB7 has
also been associated with chemoresistance to cisplatin. Indeed,
RAB7 was downregulated in cisplatin-resistant cervical cancer
cell lines as compared to chemosensitive ones (107).
Additionally, RAB7 overexpression induced chemosensitization
of cisplatin-resistant cells, while depletion of RAB7 by siRNA
induced resistance to cisplatin in chemosensitive cells (108).
Furthermore, RUBICON (Run domain Beclin-1 interacting
and cysteine-rich containing), a negative regulator of
autophagy, inhibits autophagosome-lysosome fusion and
interacts with RAB7-GTP via a RUBICON homology (RH)
domain (109).

Impact of Using Drugs Inhibiting the Last
Step of Autophagy Process on Various
Cancer Therapies
CQ and its derivate, hydroxychloroquine (HCQ), are the only
drugs having shown their ability to block the last step of
autophagy and being approved by the Food and Drug
Administration (FDA) for clinical use. Indeed, CQ blocks the
autophagic flux by altering autophagosome fusion with
lysosomes, presumably by interfering with SNAP29
recruitment (110). In addition, CQ cytotoxicity induced
autophagy-associated cell death associated with nuclei
abnormalities, lipofuscinogenesis, and senescence (111). As
reported in clinicaltrials.gov, CQ is currently being investigated
as a potent anticancer drug in small cell lung cancer, breast
cancer, pancreatic cancer, glioblastoma, melanoma, and other
types of cancers.

Because CQ and HCQ are the only autophagy inhibitors
available and approved for clinical use, multiple studies evaluated
the potential effects of CQ in vitro, in combination with
anticancer treatments. In fact, CQ was responsible for radio-
sensitizing bladder cancer cells and bladder cancer xenografts in
mice (112). CQ also had a synergetic effect with radiotherapy on
glioma initiating cells by inducing apoptosis and inhibiting
autophagy induced by ionizing radiation (113). The same
synergistic effects were observed on glioblastoma cell lines
(114). CQ administered after radiation is also capable of
increasing the death of breast cancer cells and tumor
regression in vivo (115). The use of CQ as a potent enhancer
of radiotherapy is currently being evaluated in clinical trials
involving small cell lung cancer (NCT01575782) and
glioblastoma (NCT04397679), and in patients with brain
metastases from solid tumors (NCT01894633). It should be
highlighted that CQ sensitized various breast cancer cell lines
to cisplatin and LY294002, reported to induce autophagy in these
cells. However, CQ sensitization in these cells occurred
independent of autophagy inhibition. Therefore, the autophagy
independent sensitizing effects of CQ should be considered in
clinical trials where CQ or its derivatives are used in the
treatment of cancer (116, 117). In HCT-116 and HT-29
colorectal cancer cell lines, it has been reported that CQ
sensitized these cell lines to radiation and 5-FU treatment and
resulted in a significant decrease in clonogenic survival of HT-29
cell line without any impact on cell cycle progression or cell
Frontiers in Oncology | www.frontiersin.org 7
death (118). However, in GBM, CQ was found to induce P53-
independent cell deaths that do not require caspase-mediated
apoptosis. The CQ derivatives, Quinacrine and Mefloquine, are
more potent and displayed superior blood-brain barrier
penetration compared to CQ (119).

Maycotte et al. evaluated the effects of combining CQ with
chemotherapeutic drugs such as the DNA damaging agent
cisplatin, the mTOR inhibitor Rapamycin, and the PtdIns3K
inhibitor LY294002 in two mouse breast cancer cell lines (117).
While the combination of CQ and cisplatin had no significant
effect on the viability of both cell lines, CQ combined with
PtdIns3K and mTOR inhibition sensitized both cell lines.
However, the CQ-mediated sensitization seems to be
independent of autophagy, since this sensitization was not
observed following Atg12 and Becn1 knockdown (117). A
similar result was observed in KRAS-driven cancer cell lines
where the antiproliferative effects of CQ were similar between
ATG7-deficient tumor cell lines with undetectable autophagic
flux and ATG7-efficient tumor cell lines (120). In addition, CQ
sensitizes bladder cancer cells to cisplatin treatment by inhibiting
cisplatin-induced autophagy (121). Similar results were observed
in nasopharyngeal carcinoma cells (122) and hypopharyngeal
squamous cell carcinoma xenografted mice (123). This suggests
that CQ effects, in combination with chemotherapy, depend on
the type of cancer and therefore require further investigation.

Several studies have been conducted on CQ in combination
with targeted therapies. Erlotinib and Rapamycin are two
tyrosine kinase inhibitors targeting the EGFR and the
mammalian target of Rapamycin, respectively. These
anticancer drugs are particularly used for NSCLC treatment
where EGFR and PI3K/AKT/mTOR pathways are often
dysregulated. It has been shown that the combination of
Erlotinib and Rapamycin with Monensin, a polyether
antibiotic inhibiting autophagosome-lysosome fusion,
improved Erlotinib and Rapamycin induced tumor growth
inhibition and apoptosis in NSCLC (124). Similar results were
observed in prostate cancer cells by Monensin, although the
involvement of autophagy inhibition was not clearly suggested in
this study (125). Furthermore, the combination of the tyrosine
kinase inhibitor, sunitinib, with CQ or LAMP2 knockdown also
showed promising results in a metastatic pancreatic
neuroendocrine tumor mice model (126). The combination of
the monoclonal antibody trastuzumab with CQ in HER2+ breast
cancer (127) also led to promising results. Indeed, CQ sensitized
both trastuzumab-resistant breast cancer cells and trastuzumab-
resistant xenografts, resulting in increased cell death in vitro and
decreased tumor growth in vivo.

In addition to its effects in combination with radiotherapy,
chemotherapy, and targeted therapy, CQ seems to be responsible
for various effects on the immune system. CQ resets tumor-
associated M2 macrophages to the tumor-inhibiting M1
phenotype in B16 melanoma and H22 hepatocarcinoma mouse
tumor models, and ameliorates the immunosuppressive tumor
immune microenvironment through a lysosomal calcium-TFEB
pathway (91). Another recent article showed that CQ in
combination with 5-FU increased the driving of DC
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maturation by HCT-116 colon cancer cells, and in this way
stimulates T cell responses induced by tumor cell lysates (128).
Considering the impact of CQ on the immune system, CQ was
tested in combination with dual CTLA4 and PD-1 immune
checkpoint blockade in orthotopic tumors established from
pancreatic ductal adenocarcinoma cells. This study revealed an
increased CD8+ T cell infiltration within the tumors and a tumor
sensitization to anti-PD-1 and anti-CTLA4 therapy when
combined with CQ (129). These data support further
investigations on the potential effect of combining CQ with
other immunotherapy such as new immune checkpoint
inhibitors, T-cell transfer therapy, or monoclonal antibodies,
on the immunosuppressive tumor microenvironment.

Besides CQ, Bafilomycin A1 (BafA1) is another drug acting at
the last step of autophagy. BafA1 is an antibiotic targeting the
vacuolar H+-ATPase enzyme, thus inducing acidification of
lysosomal pH, therefore inhibiting lysosomal degradation
capacity. BafA1 has also shown promising effects in combination
with chemotherapy, since BafA1 increased cisplatin cytotoxicity in
tongue squamous cell carcinoma cells and bladder cancer cells (121,
130). BafA1 also increased chemosensitivity to 5-FU in gastric
cancer cells (131). Other drugs have been described to target
autophagosome-lysosome fusion, such as LS-1-10, Cytochalasin E
and Simvastatin. LS-1-10 is a novel acridine derivative sharing
structure with CQ and HCQ. LS-1-10 has a dual function, it is able
to both induce DNA damage and block autophagosome-lysosome
fusion. In addition, LS-1-10 is significantly more potent in reducing
cell viability than CQ (>50%) in colon cancer cells (132).

Cytochalasin E is a fungal toxin found in Aspergillus clavatus,
which binds to actin filaments. Cytochalasin E can inhibit
autophagosome-lysosome fusion in the same way as CQ. In
addition, cytochalasin enhances the effect of bortezomib in
human lung cancer cells (133). Simvastatin is a powerful inhibitor
of hydroxymethylglutaryl CoA reductase, an enzyme involved in
cholesterol biosynthesis. Interestingly, Simvastatin can induce cell
death in astrocytoma, neuroblastoma, glioblastoma, breast cancer,
and lung adenocarcinoma (134). Moreover, this drug appears to
inhibit the fusion between autophagosomes and lysosomes and
increase the effects of Temozolomide in glioblastoma cell lines (135).
Finally, the combination of Simvastatin with Vorinostat, a histone
deacetylase inhibitor, inhibits autophagy by preventing RAB7
prenylation and decreases tumor growth in mice bearing triple-
negative breast tumors (136).
CONCLUSION

Despite the dual role of autophagy in suppressing tumor initiation
and in promoting the survival of established tumors (16), the studies
reported in this review highlight the pivotal role of autophagy as a
cytoprotective and therapy resistance mechanism in cancer.
Therefore, strategies used to modulate autophagy for enhancing
the therapeutic benefit of current anticancer therapies are an area of
intense investigation. Based on data reported in this review, we
strongly believe that inhibiting autophagy represents a new
paradigm for overcoming therapy resistance and enhancing drug
sensitivity in multiple tumor cell types. Because autophagy
Frontiers in Oncology | www.frontiersin.org 8
inhibition is currently used in many clinical trials along with
different therapeutic strategies, it is reasonable to consider that
several cancer treatments themselves induce autophagy in
tumor cells.

Among the various autophagy inhibitors, CQ or its derivative
HCQ are the major drugs used in clinical trials, with mitigated
success. While CQ provides promising results in combination with
conventional anticancer therapies, in some studies CQ sensitization
appears to be independent of autophagy inhibition. Therefore, more
selective and potent autophagy inhibitors must be designed to
definitively endorse the therapeutic benefit of targeting autophagy
in cancer patients. While CQ and HCQ inhibits the last step of
autophagy (110), other druggable autophagy proteins have recently
been proposed, which include the early autophagy protein BECN1
(45) and its interacting protein VPS34 (or PI3K class III) (41, 42,
44). Thus, more potent and selective autophagy specific inhibitors
are currently in pre-clinical development; these include drugs
targeting earlier steps in the autophagy process, such as ULK1,
VPS34, and ATG4B (27, 28) (79). Other factors interacting with the
autophagy process could also be considered as potential targets to
inhibit autophagy and overcome therapy resistance, such as AMPK
and HIF-1a, which are reported as key inducers of autophagy
through negative regulation of the mTOR pathways and inducing
hypoxic conditions, respectively (6, 7, 137). Other drugs are able to
target the late step of autophagy by interacting with lysosomes.
ROC-325 has been described as a potent autophagy inhibitor
exhibiting superior in vitro and in vivo anticancer effects
compared to CQ. In Renal cell carcinoma RCC, ROC-325
induced an accumulation of autophagosomes in vitro and
inhibited RCC growth and survival in an ATG5/7-dependent
manner in vivo by disrupting autophagic degradation (138). In
acute myeloid leukemia, ROC-325 improved the anti-leukemic
activity of azacitidine through inhibiting autophagy (139).
BRD1240 is a small-molecule suppressing the V-ATPase function
and therefore inhibiting the lysosomal acidification property. It has
been reported that, similar to BafA1, BRD1240 inhibited
autolysosome formation and subsequently triggering a significant
accumulation of autophagosomes (140). Similar to ROC-325 and
LS-1-10, Betulinic acid (BA) disrupt the degradative lysosomal
function (74, 141–143), leading to the accumulation of
mitochondria inside dysfunctional autolysosomes. Such a
lysosome-mitochondrial stress axis is responsible for the
induction of lipofuscinogenesis and ageing (143).

It should be highlighted that even if a selective and potent
autophagy inhibitor is identified, the challenging task is to
demonstrate that the therapeutic benefit that could be observed is
indeed related to inhibition of the autophagy process, as almost all
autophagy-related genes have non-autophagic functions. Another
challenge is to maintain a balance between the benefits gained by
autophagy inhibition and the deleterious effects of this inhibition in
cancer patients. Indeed, the process of autophagy seems to both
activates and inhibits cellular senescence (144), and chronic
inhibition of autophagy appears to increase permanently the risk
of cancer (145). Finally, considering the controversial role of
autophagy regarding its cytoprotective or cytotoxic function, it is
more likely obvious that the clinical outcome of combination
treatment between an inhibitor of autophagy with chemotherapy,
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radiotherapy, targeted therapy, or immunotherapy would lead to
contradictory or equivocal results (146). Therefore, the last
challenge to overcome would be to determine whether patients
would benefit from autophagy inhibition prior to conventional
therapies, with for example the use of novel biomarkers of
cytoprotective autophagy.
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