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ABSTRACT An increasing body of literature suggests that both individual and col-
lections of bacteria are associated with the progression of colorectal cancer. As the
number of studies investigating these associations increases and the number of sub-
jects in each study increases, a meta-analysis to identify the associations that are the
most predictive of disease progression is warranted. We analyzed previously pub-
lished 16S rRNA gene sequencing data collected from feces and colon tissue. We
quantified the odds ratios (ORs) for individual bacterial taxa that were associated
with an individual having tumors relative to a normal colon. Among the fecal sam-
ples, there were no taxa that had significant ORs associated with adenoma and
there were 8 taxa with significant ORs associated with carcinoma. Similarly, among
the tissue samples, there were no taxa that had a significant OR associated with ad-
enoma and there were 3 taxa with significant ORs associated with carcinoma.
Among the significant ORs, the association between individual taxa and tumor diag-
nosis was equal to or below 7.11. Because individual taxa had limited association
with tumor diagnosis, we trained Random Forest classification models using only the
taxa that had significant ORs, using the entire collection of taxa found in each study,
and using operational taxonomic units defined based on a 97% similarity threshold.
All training approaches yielded similar classification success as measured using the
area under the curve. The ability to correctly classify individuals with adenomas was
poor, and the ability to classify individuals with carcinomas was considerably better
using sequences from feces or tissue.

IMPORTANCE Colorectal cancer is a significant and growing health problem in
which animal models and epidemiological data suggest that the colonic microbiota
have a role in tumorigenesis. These observations indicate that the colonic microbiota
is a reservoir of biomarkers that may improve our ability to detect colonic tumors
using noninvasive approaches. This meta-analysis identifies and validates a set of 8
bacterial taxa that can be used within a Random Forest modeling framework to dif-
ferentiate individuals as having normal colons or carcinomas. When models trained
using one data set were tested on other data sets, the models performed well.
These results lend support to the use of fecal biomarkers for the detection of tu-
mors. Furthermore, these biomarkers are plausible candidates for further mechanistic
studies into the role of the gut microbiota in tumorigenesis.

KEYWORDS 16S rRNA, adenoma, biomarkers, carcinoma, colorectal cancer,
diagnostic, feces, microbiome

Colorectal cancer (CRC) is a growing worldwide health problem in which the
microbiota has been hypothesized to have a role in disease progression (1, 2).

Numerous studies using murine models of CRC have shown the importance of both
individual microbes (3–7) and the overall community (8–10) in tumorigenesis. Numer-
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ous case-control studies have characterized the microbiota of individuals with colonic
adenomas and carcinomas in an attempt to identify biomarkers of disease progression
(6, 11–17). Because current CRC screening recommendations are poorly adhered to due
to a person’s socioeconomic status, test invasiveness, and frequency of tests, develop-
ment and validation of microbiota-associated biomarkers for CRC progression could
further attempts to develop noninvasive diagnostics (18).

Recently, there has been an intense focus on identifying microbiota-based biomark-
ers, yielding a seemingly endless number of candidate taxa. Some studies point toward
mouth-associated genera such as Fusobacterium, Peptostreptococcus, Parvimonas, and
Porphyromonas that are enriched in people with carcinomas (6, 11–17). Other studies
have identified members of Akkermansia, Bacteroides, Enterococcus, Escherichia, Kleb-
siella, Mogibacterium, Streptococcus, and Providencia (13–15). Additionally, Roseburia has
been found in some studies to be more abundant in people with tumors, but in other
studies, it has been found to be less abundant than what is found in subjects with
normal colons (14, 17, 19, 20). There is support from mechanistic studies using tissue
culture and murine models that Fusobacterium nucleatum, pks-positive strains of Esch-
erichia coli, Streptococcus gallolyticus, and an enterotoxin-producing strain of Bacte-
roides fragilis are important in tumorigenesis (5, 14, 21–24). These results point to a
causative role for the microbiota in tumorigenesis as well as their potential as diag-
nostic biomarkers.

Most studies have focused on identifying biomarkers in patients with carcinomas,
but there is a clinical need to identify biomarkers associated with adenomas to facilitate
early detection of the tumors. Studies focusing on broad-scale community metrics have
found that measures such as the total number of taxa (i.e., richness) are lower in those
with adenomas than in controls (25). Other studies have identified Acidovorax, Bilophila,
Cloacibacterium, Desulfovibrio, Helicobacter, Lactobacillus, Lactococcus, Mogibacterium,
and Pseudomonas to be enriched in those with adenomas (25–27). The ability to classify
individuals as having normal colons or adenomas based solely on the taxa within fecal
samples has been limited. However, when 16S rRNA gene sequence data were com-
bined with the results of a fecal immunochemical test (FIT), the ability to diagnose
individuals with adenomas was improved relative to using the FIT results alone (12).

A recent meta-analysis found that 16S rRNA gene sequences from members of
Akkermansia, Fusobacterium, and Parvimonas were fecal biomarkers for the presence of
carcinomas (28). Contrary to previous studies, the authors found sequences similar to
members of Lactobacillus and Ruminococcus to be enriched in patients with adenoma
or carcinoma relative to those with normal colons (12, 15, 16). In addition, they found
that 16S rRNA gene sequences from members of Haemophilus, Methanosphaera, Pre-
votella, and Succinivibrio were enriched in patients with adenomas and that sequences
from members of Pantoea were enriched in patients with carcinomas. Although this
meta-analysis was helpful for distilling a large number of possible biomarkers, the
aggregate number of samples included in the analysis (n � 509) was smaller than
several larger case-control studies that have since been published (12, 27).

Here, we provide an updated meta-analysis using 16S rRNA gene sequence data
from both feces (n � 1,737) and colon tissue (492 samples from 350 individuals) from
14 studies (11–17, 19, 20, 23, 25–27, 29) (Tables 1 and 2). We expand both the breadth

TABLE 1 Characteristics of the data sets included in the fecal sample-based analysis

Study (reference) Data storage Region Control (n) Adenoma (n) Carcinoma (n)

Ahn dbGaP V3-V4 148 0 62
Baxter SRA V4 172 198 120
Brim SRA V1-V3 6 6 0
Flemer Author V3-V4 37 0 43
Hale Author V3-V5 473 214 17
Wang SRA V3 56 0 46
Weir Author V4 4 0 7
Zeller SRA V4 50 37 41
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and scope of the previous meta-analysis to investigate whether biomarkers describing
the bacterial community or specific members of the community can more accurately
classify patients as having adenoma or carcinoma. Our results suggest that the bacterial
community changes as disease severity worsens and that a subset of the microbial
community can be used to diagnose the presence of carcinoma.

RESULTS
Lower bacterial diversity is associated with higher OR of tumors. We first

assessed whether variation in broad community metrics like total number of opera-
tional taxonomic units (OTUs) (i.e., richness), the evenness of their abundance, and the
overall diversity of the communities was associated with disease stage after controlling
for study and variable region differences. In fecal samples, both evenness and diversity
were significantly lower in successive disease severity categories (P value � 0.025 and
0.043, respectively) (Fig. 1); there was no significant difference for richness (P value �

0.21). We next tested whether the lower value of these community metrics translated
into significant odds ratios (ORs) for having an adenoma or carcinoma. For fecal
samples, the ORs for richness were not significantly greater than 1.0 for adenoma or
carcinoma (P value � 0.40) (Fig. 2). The ORs for evenness were significantly higher than
1.0 for adenoma (OR � 1.3 [95% confidence interval, 1.02 to 1.65], P value � 0.035) and
carcinoma (OR � 1.66 [1.2 to 2.3], P value � 0.0021) (Fig. 2). The ORs for diversity were
only significantly greater than 1.0 for carcinoma (OR � 1.61 [1.14 to 2.28], P value �

0.0069) but not for adenoma (P value � 0.11) (Fig. 2). Although these ORs are
significantly greater than 1.0, it is doubtful that they are clinically meaningful.

TABLE 2 Characteristics of the data sets included in the tissue-based analyses

Study Data storage Region Control (n) Adenoma (n) Carcinoma (n)

Burns SRA V5-V6 18 0 16
Chen SRA V1-V3 9 0 9
Dejea SRA V3-V5 31 0 32
Flemer Author V3-V4 103 37 94
Geng SRA V1-V2 16 0 16
Lu SRA V3-V4 20 20 0
Sanapareddy Author V1-V2 38 0 33

FIG 1 Comparison of alpha diversity indices that were significant between individuals with normal colons and those with adenomas or carcinomas using data
collected from fecal samples. (A) Comparison of evenness between individuals with normal colons and adenomas. (B) Comparison of evenness between
individuals with normal colons and carcinomas. (C) Comparison of Shannon diversity values between individuals with normal colons and carcinomas. Blue
points represent individuals with normal colons, yellow points represent individuals with adenomas (A), and red points represent individuals with carcinomas
(B and C). The black lines represent the median value for each group.
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Similar to our analysis of sequences obtained from fecal samples, we repeated the
analysis using sequences obtained from colon tissue. There were no significant differ-
ences in richness, evenness, or diversity as disease severity progressed from control to
adenoma to carcinoma (P values � 0.05). We next analyzed the ORs, for matched (i.e.,
where unaffected tissue and tumors were obtained from the same individual) and
unmatched (i.e., where unaffected tissue and tumor tissue were not obtained from the
same individual) tissue samples. The ORs for adenoma and carcinoma were not
significantly different from 1.0 for any measure (P values � 0.05) (see Fig. S1 and
Table S1 in the supplemental material). This is likely due to the combination of a small
effect size and the relatively small number of studies and the size of studies used in the
analysis.

Disease progression is associated with changes in community structure. Based
on the differences in evenness and diversity, we next asked whether there were
community-wide differences in the structure of the communities associated with
different disease stages. We identified significant bacterial community differences in
the feces of patients with adenomas relative to those with normal colons in 1 of 4
studies and in patients with carcinomas relative to those with normal colons in 6 of 7
studies (permutational multivariate analysis of variance [PERMANOVA]; P value � 0.05)
(Table S2). Similar to the analyses using fecal samples, there were significant differences

FIG 2 Comparison of odds ratios calculated using alpha diversity community metrics associated with the presence of adenomas (A) or carcinomas (B) relative
to those in individuals with normal colons using data collected from stool samples.
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in the bacterial community structures of subjects with normal colons and those with
adenomas (1 of 2 studies) and carcinomas (1 of 3 studies) (Table S2). For studies that
used matched samples, we did not observe any differences in bacterial community
structures (Table S2). Combined, these results indicate that there were consistent
and significant community-wide changes in the fecal community structure of
subjects with carcinomas. However, the signal observed in subjects with adenomas
or when using tissue samples was not as consistent. This is likely due to a smaller
effect size or the relatively small sample sizes among the studies that characterized
the tissue microbiota.

Individual taxa are associated with significant ORs for carcinomas. We next
identified those taxa that had ORs that were significantly associated with having a
normal colon or the presence of adenomas or carcinomas. No taxa had a significant OR
for the presence of adenomas when we used data collected from fecal or tissue samples
(Tables S3 and S4). In contrast, 8 taxa had significant ORs for the presence of carcinomas
using data from fecal samples. Of these, 4 are commonly associated with the oral cavity:
Fusobacterium (OR � 2.74 [95% confidence interval, 1.95 to 3.85]), Parvimonas (OR �

3.07 [2.11 to 4.46]), Porphyromonas (OR � 3.2 [2.26 to 4.54]), and Peptostreptococcus
(OR � 7.11 [3.84 to 13.17]) (Table S3). The other 4 were Clostridium XI (OR � 0.65 [0.49
to 0.86]), Enterobacteriaceae (OR � 1.79 [1.33 to 2.41]), Escherichia (OR � 2.15 [1.57 to
2.95]), and Ruminococcus (OR � 0.63 [0.48 to 0.83]). Among the data collected from
tissue samples, only unmatched carcinoma samples had taxa with a significant OR.
Those included Dorea (OR � 0.35 [0.22 to 0.55]), Blautia (OR � 0.47 [0.3 to 0.73]), and
Weissella (OR � 5.15 [2.02 to 13.14]). Mouth-associated genera were not significantly
associated with a higher OR for carcinoma in tissue samples (Table S4). For example,
Fusobacterium had an OR of 3.98 (1.19 to 13.24); however, due to the small number of
studies and considerable variation in the data, the Benjamini-Hochberg-corrected
P value was 0.93 (Table S4). It is interesting that Ruminococcus and members of
Clostridium XI in fecal samples and Dorea and Blautia in tissue had ORs that were
significantly less than 1.0, which suggests that these populations are protective against
the development of carcinomas. Overall, there was no overlap in the taxa with
significant ORs between fecal and tissue samples.

Individual taxa with a significant OR do a poor job of differentiating subjects
with normal colons and those with carcinoma. We next asked whether those taxa
that had a significant OR associated with having a normal colon or carcinomas could be
used individually, to classify subjects as having a normal colon or carcinomas. OR values
were calculated based on whether the relative abundance for a taxon in a subject was
above or below the median relative abundance for that taxon across all subjects in a
study. To measure the ability of these taxa to classify individuals, we instead generated
receiver operator characteristic (ROC) curves for each taxon in each study and calcu-
lated the area under the curve (AUC). This allowed us to use a more fluid relative
abundance threshold for classifying individuals by their disease status. Using data from
fecal samples, the 8 taxa did no better at classifying the subjects than one would expect
by chance (i.e., AUC � 0.50) (Fig. 3A). The taxa that performed the best included
Clostridium XI, Ruminococcus, and Escherichia. However, these had median AUC values
of less than 0.588, indicating their limited value as biomarkers when used individually.
Likewise, in unmatched tissue samples the 3 taxa with significant ORs had AUC values
that were marginally better than one would expect by chance (Fig. 3B). The relative
abundance of Dorea was the best predictor of carcinomas, and its median AUC was only
0.62. These results suggest that although these taxa are associated with a significant OR
for the presences of carcinomas, they do a poor job of classifying a subject’s disease
status when used individually.

Combined-taxon model classifies subjects better than using individual taxa.
Instead of attempting to classify subjects based on individual taxa, next we combined
information from the individual taxa and evaluated the ability to classify a subject’s
disease status using Random Forest models. For data from fecal samples, the combined
model had an AUC of 0.75, which was significantly higher than any of the AUC values
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for the individual taxa (P value � 0.033). When this approach was used to train models
using data from each study, the most important taxa were Ruminococcus and Clostrid-
ium XI (Fig. 4A). Similarly, using data from the unmatched tissue samples, the combined
model had an AUC of 0.77, which was significantly higher than the AUC values for
classifying based on the relative abundances of Blautia and Weissella individually
(P value � 0.037). Both Dorea and Blautia were the most important taxa in the
tissue-based models (Fig. 4B). Pooling the information from the taxa with significant

FIG 3 AUC values when classifying individuals as having normal colons or carcinomas using taxa with significant ORs when using
stool samples (A) and unmatched tissue samples (B). We did not identify any taxa as having a significant OR to differentiate individuals
with normal colons and adenomas or using matched tissue samples. The large black circles represent the median AUC of all studies,
and the smaller circles represent the individual AUC for a particular study. The dashed line denotes an AUC of 0.5.

FIG 4 Relative importance of taxa with significant ORs in Random Forest models for differentiating between individuals with normal colons and carcinomas
using stool samples (A) or unmatched tissue samples (B). The colors indicate the Z-transformed (i.e., mean of 0.0 and standard deviation of 1.0) mean decrease
in accuracy values calculated from the model for each study. The taxa are ranked by their mean Z-score-transformed mean decrease in accuracy.
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ORs resulted in models that outperformed classifications made using the same taxa
individually.

Performance of models based on taxon relative abundance in full community
is better than that of models based on taxa with significant ORs. Next, we asked
whether a Random Forest classification model built using all of the taxa found in the
communities would outperform the models generated using those taxa with a signif-
icant OR. Similar to our inability to identify taxa associated with a significant OR for the
presence of adenomas, the median AUCs to classify subjects as having normal colons
or having adenomas using data from fecal or tissue samples were only marginally
better than 0.5 for any study (median AUC � 0.549 [range, 0.367 to 0.971]) (Fig. 5A and
S2A). In contrast, the models for classifying subjects as having normal colons or having
carcinomas using data from fecal or tissue samples yielded AUC values meaningfully
higher than 0.5 (Fig. 5B and S2B and C). When we compared the models based on all
of the taxa in a community to models based on the taxa with significant ORs, the results
were mixed. Using the data from fecal samples, we found that the AUCs for 6 of 7
studies were an average of 14.8% higher and that the AUC for the Flemer study was
0.54% lower when using the relative abundance data from all taxa relative to using the
relative abundance of only the taxa with significant ORs. The overall improvement in
performance was statistically significant (mean � 12.61%, one-tailed paired t test;
P value � 0.005). Among the models trained using data from fecal samples, Bacteroides
and Lachnospiraceae were the most common taxa in the top 10% mean decrease in
accuracy across studies (Fig. S3). Using data from unmatched tissue samples to train
classification models, we found that the AUC of studies was an average of 19.11%
higher when we used all of the taxa rather than the 3 taxa with significant ORs
(one-tailed paired t test; P value � 0.03). For the models trained using data from
unmatched tissue samples, Lachnospiraceae, Bacteroidaceae, and Ruminococcaceae
were the most common taxa in the top 10% mean decrease in accuracy across studies
(Fig. S4). Although the models trained using those taxa with a significant OR perform
well for classifying individuals with and without carcinomas, models trained using data
from the full community perform better.

Performance of models based on OTU relative abundances is not significantly
better than that of models based on taxa with significant ORs. The previous models
were based on relative abundance data where sequences were classified to coarse
taxonomic assignments (i.e., typically genus or family level). To determine whether
model performance improved with finer-scale classification, we assigned sequences to
operational taxonomic units (OTUs) where the similarity among sequences within an
OTU was more than 97%. We again found that classification models built using all of the
sequence data for a community did a poor job of differentiating between subjects with
normal colons and those with adenomas (median AUC, 0.53 [95% confidence interval,
0.37 to 0.56]). However, they did a good job of differentiating between subjects with
normal colons and those with carcinomas (median AUC, 0.71 [0.50 to 0.90]). The
OTU-based models performed similarly to those constructed using the taxa with
significant ORs (one-tailed paired t test; P value � 0.979) and those using all taxa
(one-tailed paired t test; P value � 0.184) (Fig. 4). Among the OTUs that had the highest
mean decrease in accuracy (MDA) for the OTU-based models, we found that OTUs that
affiliated with all of the 8 taxa that had a significant OR were within the top 10% for at
least one study. This result was surprising as it indicated that a finer-scale classification
of the sequences, and thus a larger number of features to select from, did not yield
improved classification of the subjects.

Generalizability of taxon-based models trained on one data set to the other
data sets. Considering the good performance of the Random Forest models trained
using the relative abundance of taxa with significant ORs and models trained using the
relative abundance of all taxa, we next asked how well the models would perform when
given data from a different cohort. For instance, if a model was trained using data from
the Ahn study, we wanted to know how well it would perform using the data from the
Baxter study. The models trained using the taxa with significant ORs all had a higher
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median AUC than the models trained using all of the taxa when tested on the other
data sets (Fig. 6 and S5). As might be expected, the difference between the perfor-
mance of the modeling approaches appeared to vary with the size of the training
cohort (R2 � 0.66) (Fig. 6). These data suggest that given a sufficient number of subjects

FIG 5 Comparison of Random Forest modeling approaches to classify individuals as having normal colons or adenomas (A) or carcinomas
(B) when training the models using the taxa with significant ORs, all taxa in a community, or all OTUs in a community when using stool
samples. No taxon had a significant OR associated with the presence of adenomas using stool samples. The black line represents the median
AUC for the respective group. The dashed gray line indicates an AUC of 0.5.
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with normal colons and carcinomas, Random Forest models trained using a small
number of taxa can accurately classify individuals from a different cohort.

DISCUSSION

We performed a meta-analysis to identify and validate microbiota-based biomarkers
that could be used to classify individuals as having normal colons or colonic tumors

FIG 6 Testing of Random Forest models to classify individuals as having normal colons or adenomas (A) or carcinomas (B) when using sequence data obtained
from stool samples. Models were trained on data from each study (Fig. 5) and tested on the other studies. The black lines represent the median AUC of all test
AUCs for a specific study. The dashed gray line represents the AUC at 0.5.
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using fecal or tissue samples. To our surprise, Random Forest classification models
constructed to differentiate individuals with normal colons from those with carcinomas
using a subset of the community performed well relative to models constructed using
the full communities. When we applied the models trained on each data set to the
other data sets in our study, we found that the models trained using the subset of the
communities performed better than those using the full communities. These models
were trained using data in which sequences were assigned to bacterial taxa using a
classifier that typically assigned sequences to the family or genus level. When we
attempted to improve the specificity of the classification by using an OTU-based
approach, the resulting models performed as well as those constructed using coarse
taxonomic assignments. These results are significant because they strengthen the
growing literature indicating a role for the colonic microbiota in tumorigenesis, as a
potential tool as a noninvasive diagnostic, and for assessing risk of disease and
recurrence (9, 12, 30).

Fine-scale classification of sequences into OTUs did not improve our classification
models. This was also tested in earlier efforts to use shotgun metagenomic data to
classify individuals as having normal colons or tumors; however, it was shown that
analyses performed using shotgun metagenomic data did not perform better than
using 16S rRNA gene sequencing data (31). We hypothesize that fine-scale classification
may not result in better classification because distribution of microbiota between
individuals is patchy. In contrast, models using coarser taxonomic assignments will pool
the fine-scale diversity, resulting in less patchiness and better classification. Further-
more, the ability of models trained using a subset of the community to outperform
those using the full community when testing the models on the other data sets may
also be a product of the patchiness of the human-associated microbiota. The models
based on the 8 taxa that had significant ORs used taxa that were found in every study
and tended to have higher relative abundances. Similar to the OTU-based models,
those models based on the full community taxonomy assignments were still sensitive
to the patchy distribution of taxa. Regardless, it is encouraging that a collection of 8
taxa could reliably classify individuals as having carcinomas considering the differences
in cohorts, DNA extraction procedures, regions of the 16S rRNA gene, and sequencing
methods.

When used to classify individuals with carcinomas, the taxa with significant ORs
could not reliably classify individuals on their own (Fig. 3). This result further supports
the hypothesis that carcinoma-associated microbiota have a patchy distribution. Two
individuals may have had the same classification, based on the relative abundance of
different populations within this group of 8 taxa. Although these results reflect only
associations with disease, it is tempting to hypothesize that the patchiness is indicative
of distinct mechanisms of exacerbating tumorigenesis or that multiple taxa have the
same mechanism of exacerbating tumorigenesis. For example, strains of Escherichia coli
and Fusobacterium nucleatum have been shown to worsen inflammation in mouse
models of tumorigenesis (5, 6, 21). In contrast to the patchiness of the taxa that were
positively associated with carcinomas, potentially beneficial taxa had a more consistent
association (Fig. 6). This result was particularly interesting because members of these
taxa (i.e., Ruminococcus and Clostridium XI in fecal samples and Dorea and Blautia in
tissue) are thought to be beneficial due to their involvement in production of anti-
inflammatory short-chain fatty acids (32–34).

All of the adenoma classification models performed poorly, which is consistent with
previous studies (27, 30). However, the classification results are at odds with results of
the multitarget microbiota test (MMT) from Baxter et al. (12), who observed an AUC of
0.755 when the test was applied to individuals with adenomas. There are two major
differences between the models generated in this meta-analysis and that analysis. The
MMT attempted to classify individuals as having a normal colon or having colonic
lesions (i.e., adenomas or carcinomas) and not adenomas alone. Further, the MMT
incorporated fecal immunoglobulin test (FIT) data while our models used only 16S rRNA
gene sequencing data. Because FIT data were not available for the other studies in our
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meta-analysis, it was not possible to validate the MMT approach. The ability to
differentiate between individuals with and without adenomas is an important problem
since early detection of tumors is critical to patient survival. However, it is possible that
we might have been able to detect differences in the bacterial community if individuals
with nonadvanced and advanced adenomas were separated. This is a clinically relevant
distinction since advanced adenomas are at highest risk of progressing to carcinomas.
The initial changes of the microbiota during tumorigenesis could be focal to where the
initial adenoma develops and would not be easily assessed using fecal samples from an
individual with a nonadvanced adenoma. Unfortunately, distinguishing between indi-
viduals with advanced and nonadvanced adenomas was not possible in our meta-
analysis since the studies did not provide the clinical data needed to make that
distinction.

Fecal samples represent a noninvasive approach to assess the structure of the gut
microbiota and are potentially useful for diagnosing individuals as having colonic
tumors. However, they do not reflect the structure of the mucosal microbiota (35).
Regardless, the taxa that were the most important in the feces-based models over-
lapped with those from the models trained using the data from unmatched and
matched colon tissue samples (see Fig. S3 in the supplemental material). Mucosal
biopsy samples are preferred for focused mechanistic studies and have offered re-
searchers the opportunity to sample healthy and diseased tissue from the same
individuals (i.e., matched) using each individual as their own control or in a cross-
sectional design (i.e., unmatched). Because obtaining these samples is invasive, carries
risks to the individual, and is expensive, studies investigating the structure of the
mucosal microbiota generally have a limited number of participants. Thus, it was not
surprising that tissue-based studies did not provide clearer associations between the
mucosal microbiota and the presence of tumors. Interestingly, Fusobacterium, which
has received increased attention for its potential role in tumorigenesis (6), was not
consistently identified across the studies in our meta-analysis, which is consistent with
a recent replicability study (36). This could be due to the relatively small number of
individuals in the limited number of studies. The classification models trained using the
tissue-based data performed well when tested with the training data (Fig. S4) but
performed poorly when tested on the other tissue-associated data sets (Fig. S5).
Disturbingly, taxa that are commonly associated with reagent contamination (e.g.,
Novosphingobium, Acidobacteria Gp2, Sphingomonas, etc.) were detected within the
tissue data sets. Such contamination is common in studies where there is relatively low
bacterial biomass (37). The lack of replication among the tissue-based biomarkers may
be a product of the relatively small number of studies and individuals per study and
possible reagent contamination.

Among the fecal sample data, we failed to identify several notable populations that
are commonly associated with carcinomas, including an enterotoxigenic strain of
Bacteroides fragilis (ETBF) and Streptococcus gallolyticus subsp. gallolyticus (22, 24). ETBF
has been found in tumors in the proximal colon, where it tends to form biofilms (20, 38).
Considering that DNA from bacteria that are more prevalent in the proximal colon may
be degraded by the time that it leaves the body, it is not surprising that we failed to
identify a significant OR for Bacteroides with carcinomas. In addition, since our approach
could classify sequences to only the genus level and there are likely multiple Bacte-
roides populations in the colon, it is possible that sequences from ETBF and nononco-
genic Bacteroides were pooled. This would then reduce the OR between Bacteroides and
whether an individual had carcinomas. It is also necessary to distinguish between
populations that are biomarkers for a disease and those that are known to cause
disease. Although the latter have been shown to have a causative role, they may appear
at low relative abundance, may be found in specific locations, or may have a highly
patchy distribution among affected individuals.

Meta-analyses are a useful tool in microbiome research because they can demon-
strate whether a result can be replicated and facilitate new discoveries by pooling
multiple independent investigations. There have been several meta-analyses similar to
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this study that have sought biomarkers for obesity (39–41), inflammatory bowel disease
(40), and colorectal cancer (28). Considering that microbiome research is particularly
prone to hype and overgeneralization of results (42), these analyses are critical. Meta-
analyses are difficult to perform because the underlying 16S rRNA gene sequence data
are not publicly available; metadata are missing, incomplete, or vague; sequence data
are of poor quality or derived by nonstandard approaches; and the original studies may
be significantly underpowered. Reluctance to publish negative results (i.e., the “file
drawer effect”) is also likely to skew our understanding of the relationship between
microbiota and disease. Better attention to these specific issues will increase the
reproducibility and replicability of microbiota studies and make it easier to perform
these crucial meta-analyses. Moving forward, meta-analyses will be important tools to
help aggregate and find commonalities across studies when investigating the micro-
biota in the context of a specific disease (28, 39–41).

Our meta-analysis suggests a strong association between the gut microbiota and
colon tumorigenesis. By aggregating the results from studies that sequenced the 16S
rRNA gene from fecal and tissue samples, we are able to provide evidence supporting
the use of microbial biomarkers to diagnose the presence of colonic tumors. Further
development of microbial biomarkers should focus on including other biomarkers (e.g.,
FIT), better categorizing of people with adenomas, and expanding data sets to include
larger numbers of individuals. Based on prior research into the physiology of the
biomarkers that we identified, it is likely that they have a causative role in tumorigen-
esis. Their patchy distribution across individuals suggests that there are either multiple
mechanisms causing disease or a single mechanism (e.g., inflammation) that can be
mediated by multiple, diverse bacteria.

MATERIALS AND METHODS
Data sets. The studies used for this meta-analysis were identified through the review articles written

by Keku et al. (43) and Vogtmann and Goedert (44). Additional studies, not mentioned in those reviews,
were obtained based on our knowledge of the literature. Studies that used tissue or feces as their sample
source for 454 or Illumina 16S rRNA gene sequencing were included. A significant number of studies (n �
12) were excluded from the meta-analysis because they did not have publicly available sequences, did
not use 454 or Illumina sequencing platforms, or did not have metadata that the authors were able to
share. We were able to obtain sequence data and metadata from the following studies: Ahn et al. (11),
Baxter et al. (12), Brim et al. (29), Burns et al. (15), Chen et al. (13), Dejea et al. (20), Flemer et al. (17), Geng
et al. (19), Hale et al. (27), Kostic et al. (45), Lu et al. (26), Sanapareddy et al. (25), Wang et al. (14), Weir
et al. (23), and Zeller et al. (16). The study by Zackular et al. (46) was excluded because the individuals
studied were included within the larger Baxter study (12). The Kostic study was excluded because after
we processed the sequences, all of the case samples had 100 or fewer sequences. The final analysis
included 14 studies (Tables 1 and 2). There were seven studies with only fecal samples (Ahn, Baxter, Brim,
Hale, Wang, Weir, and Zeller), five studies with only tissue samples (Burns, Dejea, Geng, Lu, and
Sanapareddy), and two studies with both fecal and tissue samples (Chen and Flemer). After curating the
sequences, 1,737 fecal samples and 492 tissue samples remained in the analysis (Tables 1 and 2).

Sequence processing. Raw sequence data and metadata were primarily obtained from the Se-
quence Read Archive (SRA) and dbGaP. Other sequence and metadata were obtained directly from the
authors (n � 4 [17, 23, 25, 27]). Each data set was processed separately using Mothur (v1.39.3) using the
default quality filtering methods for both 454 and Illumina sequence data (47). If it was not possible to
use the defaults because the trimmed sequences were too short, then the stated quality cutoffs from the
original study were used. Chimeric sequences were identified and removed using VSEARCH (48). The
curated sequences were assigned to OTUs at 97% similarity using the OptiClust algorithm (49) and
classified to the deepest taxonomic level that had 80% support using the naive Bayesian classifier trained
on the RDP taxonomy outline (version 14 [50]).

Community analysis. We calculated alpha diversity metrics (i.e., OTU richness, evenness, and
Shannon diversity) for each sample. Within each data set, we ensured that the data followed a normal
distribution using power transformations. Using the transformed data, we tested the hypothesis that
individuals with normal colons, adenomas, and carcinomas had significantly different alpha diversity
metrics using linear mixed-effect models. We also calculated the OR for each study and metric by
considering any value above the median alpha diversity value to be positive. We measured the
dissimilarity between individuals by calculating the pairwise Bray-Curtis index and used PERMANOVA (51)
to test whether individuals with normal colons were significantly different from those with adenomas or
carcinomas. Finally, after binning sequences into the deepest taxa in which the naive Bayesian classifier
could classify the sequences, we quantified the ORs for individuals having an adenoma or carcinoma and
corrected for multiple comparisons using the Benjamini-Hochberg method (52). Again, for each taxon, if
the relative abundance was greater than the median relative abundance for that taxon in the study, the
individual was considered to be positive.
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Random Forest classification analysis. To classify individuals as having normal colons or tumors,
we built Random Forest classification models for each data set and comparison using taxa with
significant ORs (after multiple-comparison correction), all taxa, or OTUs. Because no taxa were identified
as having a significant OR associated with adenomas using stool or tissue samples, classification models
based on OR data were not constructed to classify individuals as having normal colons or adenomas. For
all models, the value of trees included (i.e., ntree) was set to 500 and the number of variables that were
randomly tested (i.e., mtry) was set to the square root of the number of taxa or OTUs within the model.
Using the square root of the total number of features as the number of features to test has been found
to reliably approximate the optimum value after model tuning (53). All fecal models were built using a
10-fold cross-validation (CV), while tissue models were built using a 5-fold CV due to study sample size.
One exception to this was the models constructed using data from the Weir study, which were built
using a 2-fold CV due to the small number of samples. For models constructed based on the taxa that
had a significant OR or using all of the taxa, we trained the models using a single study and then tested
on the remaining studies with AUCs recorded during both training and testing phases. For the models
constructed using OTU data, 100 10-fold CVs were run to generate a range of AUCs that could be
reasonably expected to occur. The average AUC from these 100 repeats was reported. The mean
decrease in accuracy (MDA), a measure of the importance of each taxon to the overall model, was used
to rank the taxa used in each model.

Statistical analysis. All statistical analysis after sequence processing utilized the R (v3.4.4) software
package (54). For OTU richness, evenness, and Shannon diversity analysis, values were power trans-
formed using the Rcompanion (v1.11.1) package (55) and Z-score normalized using the car (v2.1.6)
package (56). Testing for OTU richness, evenness, and Shannon diversity differences utilized linear
mixed-effect models to correct for study, repeat sampling of individuals (tissue only), and 16S rRNA gene
sequence region used using the lme4 (v1.1.15) package (57). ORs were analyzed using both the EpiR
(v0.9.93) and metafor (v2.0.0) packages (58, 59) by assessing how many individuals with and without
disease were above and below the overall median value within each specific study. OR significance
testing utilized the chi-square test. Community structure differences were calculated using the Bray-
Curtis dissimilarity index, and PERMANOVA was used to test for tumor-associated differences in structure
with the Vegan (v2.4.5) package (60). Random Forest models were built using both the Caret (v6.0.78)
and randomForest (v4.6.12) packages (61, 62). All figures were created using both ggplot2 (v2.2.1) and
GridExtra (v2.3) packages (63, 64).

Accession number(s). The analysis code can be found at https://github.com/SchlossLab/Sze
_CRCMetaAnalysis_mBio_2018. Unless otherwise mentioned, the accession numbers of raw sequences
from the studies used in this analysis can be found directly in the respective batch file in the GitHub
repository or in the original manuscripts of the studies.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00630-18.
FIG S1, PDF file, 0.01 MB.
FIG S2, PDF file, 0.01 MB.
FIG S3, PDF file, 0.02 MB.
FIG S4, PDF file, 0.03 MB.
FIG S5, PDF file, 0.01 MB.
TABLE S1, PDF file, 0.02 MB.
TABLE S2, PDF file, 0.02 MB.
TABLE S3, PDF file, 0.02 MB.
TABLE S4, PDF file, 0.02 MB.

ACKNOWLEDGMENTS
We thank all the study participants who were a part of each of the individual studies

analyzed. We also thank each of the study authors for making their sequencing reads
and metadata available for use. Finally, we would like to thank the members of the
Schloss lab for their valuable feedback and proofreading during the formulation of the
manuscript.

Salary support for M.A.S. came from the Canadian Institute of Health Research and
NIH grant UL1TR002240. Salary support for P.D.S. came from NIH grants P30DK034933
and 1R01CA215574.

REFERENCES
1. Siegel RL, Miller KD, Jemal A. 2016. Cancer statistics, 2016. CA Cancer J

Clin 66:7–30. https://doi.org/10.3322/caac.21332.
2. Flynn KJ, Baxter NT, Schloss PD. 2016. Metabolic and community synergy

of oral bacteria in colorectal cancer. mSphere 1:e00102-16. https://doi
.org/10.1128/mSphere.00102-16.

3. Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-

Microbiota-Based Biomarkers of Colorectal Tumors ®

May/June 2018 Volume 9 Issue 3 e00630-18 mbio.asm.org 13

https://github.com/SchlossLab/Sze_CRCMetaAnalysis_mBio_2018
https://github.com/SchlossLab/Sze_CRCMetaAnalysis_mBio_2018
https://doi.org/10.1128/mBio.00630-18
https://doi.org/10.1128/mBio.00630-18
https://doi.org/10.3322/caac.21332
https://doi.org/10.1128/mSphere.00102-16
https://doi.org/10.1128/mSphere.00102-16
http://mbio.asm.org


Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, Casero
RA. 2011. Polyamine catabolism contributes to enterotoxigenic Bacte-
roides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A
108:15354 –15359. https://doi.org/10.1073/pnas.1010203108.

4. Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor
R, Pikarsky E, Atlan KA, Mellul A, Chaushu S, Manson AL, Earl AM, Ou N,
Brennan CA, Garrett WS, Bachrach G. 2016. Fap2 mediates fusobacte-
rium nucleatum colorectal adenocarcinoma enrichment by binding to
tumor-expressed Gal-GalNAc. Cell Host Microbe 20:215–225. https://doi
.org/10.1016/j.chom.2016.07.006.

5. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan
TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A,
Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. 2012. Intestinal
inflammation targets cancer-inducing activity of the microbiota. Science
338:120 –123. https://doi.org/10.1126/science.1224820.

6. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M,
Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D,
Fuchs CS, Meyerson M, Garrett WS. 2013. Fusobacterium nucleatum
potentiates intestinal tumorigenesis and modulates the tumor-immune
microenvironment. Cell Host Microbe 14:207–215. https://doi.org/10
.1016/j.chom.2013.07.007.

7. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL,
Brancati FL, Wick E, McAllister F, Housseau F, Pardoll DM, Sears CL. 2009.
A human colonic commensal promotes colon tumorigenesis via activation
of T helper type 17 T cell responses. Nat Med 15:1016–1022. https://doi
.org/10.1038/nm.2015.

8. Zackular JP, Baxter NT, Chen GY, Schloss PD. 2016. Manipulation of the
gut microbiota reveals role in colon tumorigenesis. mSphere 1:e00001
-15. https://doi.org/10.1128/mSphere.00001-15.

9. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY,
Schloss PD. 2013. The gut microbiome modulates colon tumorigenesis.
mBio 4:e00692-13. https://doi.org/10.1128/mBio.00692-13.

10. Baxter NT, Zackular JP, Chen GY, Schloss PD. 2014. Structure of the gut
microbiome following colonization with human feces determines co-
lonic tumor burden. Microbiome 2:20. https://doi.org/10.1186/2049
-2618-2-20.

11. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, Goedert JJ, Hayes RB,
Yang L. 2013. Human gut microbiome and risk for colorectal cancer. J
Natl Cancer Inst 105:1907–1911. https://doi.org/10.1093/jnci/djt300.

12. Baxter NT, Ruffin MT, Rogers MAM, Schloss PD. 2016. Microbiota-based
model improves the sensitivity of fecal immunochemical test for detect-
ing colonic lesions. Genome Med 8:37. https://doi.org/10.1186/s13073
-016-0290-3.

13. Chen W, Liu F, Ling Z, Tong X, Xiang C. 2012. Human intestinal lumen
and mucosa-associated microbiota in patients with colorectal cancer.
PLoS One 7:e39743. https://doi.org/10.1371/journal.pone.0039743.

14. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L. 2012.
Structural segregation of gut microbiota between colorectal cancer
patients and healthy volunteers. ISME J 6:320 –329. https://doi.org/10
.1038/ismej.2011.109.

15. Burns MB, Lynch J, Starr TK, Knights D, Blekhman R. 2015. Virulence
genes are a signature of the microbiome in the colorectal tumor mi-
croenvironment. Genome Med 7:55. https://doi.org/10.1186/s13073-015
-0177-8.

16. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A,
Böhm J, Brunetti F, Habermann N, Hercog R, Koch M, Luciani A, Mende
DR, Schneider MA, Schrotz-King P, Tournigand C, Tran Van Nhieu J,
Yamada T, Zimmermann J, Benes V, Kloor M, Ulrich CM, von Knebel
Doeberitz M, Sobhani I, Bork P. 2014. Potential of fecal microbiota for
early-stage detection of colorectal cancer. Mol Syst Biol 10:766. https://
doi.org/10.15252/msb.20145645.

17. Flemer B, Lynch DB, Brown JMR, Jeffery IB, Ryan FJ, Claesson MJ,
O’Riordain M, Shanahan F, O’Toole PW. 2017. Tumour-associated and
non-tumour-associated microbiota in colorectal cancer. Gut 66:633– 643.
https://doi.org/10.1136/gutjnl-2015-309595.

18. Gimeno García AZ. 2012. Factors influencing colorectal cancer screening
participation. Gastroenterol Res Pract 2012:483417. https://doi.org/10
.1155/2012/483417.

19. Geng J, Fan H, Tang X, Zhai H, Zhang Z. 2013. Diversified pattern of the
human colorectal cancer microbiome. Gut Pathog 5:2. https://doi.org/
10.1186/1757-4749-5-2.

20. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti
BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E, Vadivelu J,
Roslani AC, Malik AA, Wanyiri JW, Goh KL, Thevambiga I, Fu K, Wan F, Llosa

N, Housseau F, Romans K, Wu X, McAllister FM, Wu S, Vogelstein B, Kinzler
KW, Pardoll DM, Sears CL. 2014. Microbiota organization is a distinct feature
of proximal colorectal cancers. Proc Natl Acad Sci U S A 111:18321–18326.
https://doi.org/10.1073/pnas.1406199111.

21. Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM,
McCafferty J, Fodor AA, Jobin C. 2014. Microbial genomic analysis reveals
the essential role of inflammation in bacteria-induced colorectal cancer.
Nat Commun 5:4724. https://doi.org/10.1038/ncomms5724.

22. Aymeric L, Donnadieu F, Mulet C, du Merle L, Nigro G, Saffarian A, Bérard
M, Poyart C, Robine S, Regnault B, Trieu-Cuot P, Sansonetti PJ, Dramsi S.
2018. Colorectal cancer specific conditions promote Streptococcus gal-
lolyticus gut colonization. Proc Natl Acad Sci U S A 115:E283–E291.
https://doi.org/10.1073/pnas.1715112115.

23. Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP.
2013. Stool microbiome and metabolome differences between colorec-
tal cancer patients and healthy adults. PLoS One 8:e70803. https://doi
.org/10.1371/journal.pone.0070803.

24. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev
MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears
CL. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon
mucosa of colorectal cancer patients. Clin Infect Dis 60:208 –215. https://
doi.org/10.1093/cid/ciu787.

25. Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F,
Randall TA, Galanko J, Benson A, Sandler RS, Rawls JF, Abdo Z, Fodor AA,
Keku TO. 2012. Increased rectal microbial richness is associated with the
presence of colorectal adenomas in humans. ISME J 6:1858 –1868.
https://doi.org/10.1038/ismej.2012.43.

26. Lu Y, Chen J, Zheng J, Hu G, Wang J, Huang C, Lou L, Wang X, Zeng Y.
2016. Mucosal adherent bacterial dysbiosis in patients with colorectal
adenomas. Sci Rep 6:26337. https://doi.org/10.1038/srep26337.

27. Hale VL, Chen J, Johnson S, Harrington SC, Yab TC, Smyrk TC, Nelson H,
Boardman LA, Druliner BR, Levin TR, Rex DK, Ahnen DJ, Lance P, Ahlquist
DA, Chia N. 2017. Shifts in the fecal microbiota associated with adeno-
matous polyps. Cancer Epidemiol Biomarkers Prev 26:85–94. https://doi
.org/10.1158/1055-9965.EPI-16-0337.

28. Shah MS, DeSantis TZ, Weinmaier T, McMurdie PJ, Cope JL, Altrichter A,
Yamal JM, Hollister EB. 2018. Leveraging sequence-based faecal micro-
bial community survey data to identify a composite biomarker for
colorectal cancer. Gut 67:882– 891. https://doi.org/10.1136/gutjnl-2016
-313189.

29. Brim H, Yooseph S, Zoetendal EG, Lee E, Torralbo M, Laiyemo AO,
Shokrani B, Nelson K, Ashktorab H. 2013. Microbiome analysis of stool
samples from African Americans with colon polyps. PLoS One 8:e81352.
https://doi.org/10.1371/journal.pone.0081352.

30. Sze MA, Baxter NT, Ruffin MT, Rogers MAM, Schloss PD. 2017. Normal-
ization of the microbiota in patients after treatment for colonic lesions.
Microbiome 5:150. https://doi.org/10.1186/s40168-017-0366-3.

31. Hannigan GD, Duhaime MB, Ruffin MT, Koumpouras CC, Schloss PD.
2017. Diagnostic potential and the interactive dynamics of the colorectal
cancer virome. bioRxiv https://doi.org/10.1101/152868.

32. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt
TM. 2016. Variable responses of human microbiomes to dietary supple-
mentation with resistant starch. Microbiome 4:33. https://doi.org/10
.1186/s40168-016-0178-x.

33. Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel CU, Rosendale
D, Stoklosinski H, Hunt M, Egert M. 2018. In vivo assessment of resistant
starch degradation by the caecal microbiota of mice using RNA-based
stable isotope probing—a proof-of-principle study. Nutrients 10:179.
https://doi.org/10.3390/nu10020179.

34. Reichardt N, Vollmer M, Holtrop G, Farquharson FM, Wefers D, Bunzel M,
Duncan SH, Drew JE, Williams LM, Milligan G, Preston T, Morrison D, Flint
HJ, Louis P. 2018. Specific substrate-driven changes in human faecal
microbiota composition contrast with functional redundancy in short-
chain fatty acid production. ISME J 12:610 – 622. https://doi.org/10.1038/
ismej.2017.196.

35. Flynn KJ, Ruffin MT, Turgeon DK, Schloss PD. 2018. Spatial variation of
the native colon microbiota in healthy adults. Cancer Prev Res https://
doi.org/10.1158/1940-6207.CAPR-17-0370.

36. Repass J, Reproducibility Project: Cancer Biology, Iorns E, Denis A, Wil-
liams SR, Perfito N, Errington TM. 2018. Replication study: Fusobacterium
nucleatum infection is prevalent in human colorectal carcinoma. Elife
7:e25801. https://doi.org/10.7554/Elife.25801.

37. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner
P, Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory

Sze and Schloss ®

May/June 2018 Volume 9 Issue 3 e00630-18 mbio.asm.org 14

https://doi.org/10.1073/pnas.1010203108
https://doi.org/10.1016/j.chom.2016.07.006
https://doi.org/10.1016/j.chom.2016.07.006
https://doi.org/10.1126/science.1224820
https://doi.org/10.1016/j.chom.2013.07.007
https://doi.org/10.1016/j.chom.2013.07.007
https://doi.org/10.1038/nm.2015
https://doi.org/10.1038/nm.2015
https://doi.org/10.1128/mSphere.00001-15
https://doi.org/10.1128/mBio.00692-13
https://doi.org/10.1186/2049-2618-2-20
https://doi.org/10.1186/2049-2618-2-20
https://doi.org/10.1093/jnci/djt300
https://doi.org/10.1186/s13073-016-0290-3
https://doi.org/10.1186/s13073-016-0290-3
https://doi.org/10.1371/journal.pone.0039743
https://doi.org/10.1038/ismej.2011.109
https://doi.org/10.1038/ismej.2011.109
https://doi.org/10.1186/s13073-015-0177-8
https://doi.org/10.1186/s13073-015-0177-8
https://doi.org/10.15252/msb.20145645
https://doi.org/10.15252/msb.20145645
https://doi.org/10.1136/gutjnl-2015-309595
https://doi.org/10.1155/2012/483417
https://doi.org/10.1155/2012/483417
https://doi.org/10.1186/1757-4749-5-2
https://doi.org/10.1186/1757-4749-5-2
https://doi.org/10.1073/pnas.1406199111
https://doi.org/10.1038/ncomms5724
https://doi.org/10.1073/pnas.1715112115
https://doi.org/10.1371/journal.pone.0070803
https://doi.org/10.1371/journal.pone.0070803
https://doi.org/10.1093/cid/ciu787
https://doi.org/10.1093/cid/ciu787
https://doi.org/10.1038/ismej.2012.43
https://doi.org/10.1038/srep26337
https://doi.org/10.1158/1055-9965.EPI-16-0337
https://doi.org/10.1158/1055-9965.EPI-16-0337
https://doi.org/10.1136/gutjnl-2016-313189
https://doi.org/10.1136/gutjnl-2016-313189
https://doi.org/10.1371/journal.pone.0081352
https://doi.org/10.1186/s40168-017-0366-3
https://doi.org/10.1101/152868
https://doi.org/10.1186/s40168-016-0178-x
https://doi.org/10.1186/s40168-016-0178-x
https://doi.org/10.3390/nu10020179
https://doi.org/10.1038/ismej.2017.196
https://doi.org/10.1038/ismej.2017.196
https://doi.org/10.1158/1940-6207.CAPR-17-0370
https://doi.org/10.1158/1940-6207.CAPR-17-0370
https://doi.org/10.7554/Elife.25801
http://mbio.asm.org


contamination can critically impact sequence-based microbiome analy-
ses. BMC Biol 12:87. https://doi.org/10.1186/s12915-014-0087-z.

38. Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. 2017.
Colonization with enterotoxigenic Bacteroides fragilis is associated with
early-stage colorectal neoplasia. PLoS One 12:e0171602. https://doi.org/
10.1371/journal.pone.0171602.

39. Sze MA, Schloss PD. 2016. Looking for a signal in the noise: revisiting
obesity and the microbiome. mBio 7:e01018-16. https://doi.org/10.1128/
mBio.01018-16.

40. Walters WA, Xu Z, Knight R. 2014. Meta-analyses of human gut microbes
associated with obesity and IBD. FEBS Lett 588:4223– 4233. https://doi
.org/10.1016/j.febslet.2014.09.039.

41. Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. 2014. A taxonomic
signature of obesity in the microbiome? Getting to the guts of the matter.
PLoS One 9:e84689. https://doi.org/10.1371/journal.pone.0084689.

42. Hanage WP. 2014. Microbiology: microbiome science needs a healthy dose
of scepticism. Nature 512:247–248. https://doi.org/10.1038/512247a.

43. Keku TO, Dulal S, Deveaux A, Jovov B, Han X. 2015. The gastrointestinal
microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol
308:G351–G363. https://doi.org/10.1152/ajpgi.00360.2012.

44. Vogtmann E, Goedert JJ. 2016. Epidemiologic studies of the human
microbiome and cancer. Br J Cancer 114:237–242. https://doi.org/10.1038/
bjc.2015.465.

45. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina
AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S,
Birren BW, Huttenhower C, Garrett WS, Meyerson M. 2012. Genomic
analysis identifies association of Fusobacterium with colorectal carci-
noma. Genome Res 22:292–298. https://doi.org/10.1101/gr.126573.111.

46. Zackular JP, Rogers MAM, Ruffin MT, Schloss PD. 2014. The human gut
microbiome as a screening tool for colorectal cancer. Cancer Prev Res
7:1112–1121. https://doi.org/10.1158/1940-6207.CAPR-14-0129.

47. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B,
Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing Mothur: open-
source, platform-independent, community-supported software for de-
scribing and comparing microbial communities. Appl Environ Microbiol
75:7537–7541. https://doi.org/10.1128/AEM.01541-09.

48. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a
versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi
.org/10.7717/peerj.2584.

49. Westcott SL, Schloss PD. 2017. OptiClust, an improved method for assigning

amplicon-based sequence data to operational taxonomic units. mSphere
2:e00073-17. https://doi.org/10.1128/mSphereDirect.00073-17.

50. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxon-
omy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM
.00062-07.

51. Anderson MJ, Walsh DCI. 2013. PERMANOVA, ANOSIM, and the Mantel
test in the face of heterogeneous dispersions: what null hypothesis
are you testing? Ecol Monogr 83:557–574. https://doi.org/10.1890/12
-2010.1.

52. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc B
57:289 –300.

53. Breiman L. 2001. Random forests. Mach Learn 45:5–32. https://doi.org/
10.1023/A:1010933404324.

54. R Core Team. 2017. R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

55. Mangiafico S. 2017. Rcompanion: functions to support extension edu-
cation program evaluation.

56. Fox J, Weisberg S. 2011. An R companion to applied regressionSecond.
Sage, Thousand Oaks, CA.

57. Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects
models using lme4. J Stat Softw 67:1– 48. https://doi.org/10.18637/jss
.v067.i01.

58. Nunes T, Heuer C, Marshall J, Sanchez J, Thornton R, Reiczigel J, Robison-
Cox J, Sebastiani P, Solymos P, Yoshida K, Jones G, Pirikahu S, Firestone
S, Kyle R. 2017. EpiR: tools for the analysis of epidemiological data.

59. Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor
package. J Stat Softw 36:1– 48. https://doi.org/10.18637/jss.v036.i03.

60. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D,
Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E,
Wagner H. 2017. Vegan: community ecology package.

61. Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z,
Kenkel B, R Core Team, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang
Y, Candan C, Hunt T. 2017. Caret: classification and regression training.

62. Liaw A, Wiener M. 2002. Classification and regression by randomForest.
Res News 2:18 –22.

63. Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer-
Verlag, New York, NY.

64. Auguie B. 2017. GridExtra: miscellaneous functions for “grid” graphics.

Microbiota-Based Biomarkers of Colorectal Tumors ®

May/June 2018 Volume 9 Issue 3 e00630-18 mbio.asm.org 15

https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1371/journal.pone.0171602
https://doi.org/10.1371/journal.pone.0171602
https://doi.org/10.1128/mBio.01018-16
https://doi.org/10.1128/mBio.01018-16
https://doi.org/10.1016/j.febslet.2014.09.039
https://doi.org/10.1016/j.febslet.2014.09.039
https://doi.org/10.1371/journal.pone.0084689
https://doi.org/10.1038/512247a
https://doi.org/10.1152/ajpgi.00360.2012
https://doi.org/10.1038/bjc.2015.465
https://doi.org/10.1038/bjc.2015.465
https://doi.org/10.1101/gr.126573.111
https://doi.org/10.1158/1940-6207.CAPR-14-0129
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1128/mSphereDirect.00073-17
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1890/12-2010.1
https://doi.org/10.1890/12-2010.1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v036.i03
http://mbio.asm.org

	RESULTS
	Lower bacterial diversity is associated with higher OR of tumors. 
	Disease progression is associated with changes in community structure. 
	Individual taxa are associated with significant ORs for carcinomas. 
	Individual taxa with a significant OR do a poor job of differentiating subjects with normal colons and those with carcinoma. 
	Combined-taxon model classifies subjects better than using individual taxa. 
	Performance of models based on taxon relative abundance in full community is better than that of models based on taxa with significant ORs. 
	Performance of models based on OTU relative abundances is not significantly better than that of models based on taxa with significant ORs. 
	Generalizability of taxon-based models trained on one data set to the other data sets. 

	DISCUSSION
	MATERIALS AND METHODS
	Data sets. 
	Sequence processing. 
	Community analysis. 
	Random Forest classification analysis. 
	Statistical analysis. 
	Accession number(s). 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

