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Abstract

Background/Objective: Obesity is a complex and multifactorial disease resulting from the interactions among
genetics, metabolic, behavioral, sociocultural and environmental factors. In this sense, the aim of the present study was
to identify phenotype and genotype variables that could be relevant determinants of body mass index (BMI) variability.

Subjects/Methods: In the present study, a total of 1050 subjects (798 females; 76%) were included. Least angle
regression (LARS) analysis was used as regression model selection technique, where the dependent variable was BMI
and the independent variables were age, sex, energy intake, physical activity level, and 16 polymorphisms previously
related to obesity and lipid metabolism.

Results: The LARS analysis obtained the following formula for BMI explanation: (64.7+ 0.10 × age [years]+ 0.42 ×
gender [0, men; 1, women]+−40.6 × physical activity [physical activity level]+ 0.004 × energy intake [kcal]+ 0.74 ×
rs9939609 [0 or 1–2 risk alleles]+−0.72 × rs1800206 [0 or 1–2 risk alleles]+−0.86 × rs1801282 [0 or 1–2 risk alleles]+
0.87 × rs429358 [0 or 1–2 risk alleles]. The multivariable regression model accounted for 21% of the phenotypic
variance in BMI. The regression model was internally validated by the bootstrap method (r2 original data set= 0.208,
mean r2 bootstrap data sets= 0.210).

Conclusion: In conclusion, age, physical activity, energy intake and polymorphisms in FTO, APOE, PPARG and PPARA
genes are significant predictors of the BMI trait.

Introduction
In the past 50 years, the prevalence of obesity has

steadily raised becoming a global public health problem
contributing for a huge increase of health-care costs1. It
has been estimated that 2.16 billion adults will be over-
weight and 1.12 billion adults will be obese by 2030, if the
present trends continue2. An increase in the global bur-
den of overweight and obesity will translate into an
increase of the risk of several other health conditions,
including type 2 diabetes, cardiovascular disease or certain
types of cancer1. Although obesity is generally attributed

to an imbalance between the energy consumed and the
energy expenditure, it is also accepted that it is a complex
and a multifactorial disease resulting from genetic, phy-
siological, behavioral, sociocultural and environmental
factors3–7.
Heritability studies indicate that genetic factors could

account for 31–90% of the body inter-individual weight
variability8. However, the large number of single-
nucleotide polymorphisms (SNPs) identified by genome-
wide association studies (GWAS) and candidate gene
studies, appeared to explain only 2–4% of the obesity
status9. Even taken together such polymorphisms, they
seemed to provide very little risk prediction of the dis-
ease10. In one of the last GWAS related to adiposity, the
97 genome-wide significant loci identified associated with
obesity accounted for 2.7% of the body mass index (BMI)
variance11.
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In addition, a limited predictive value of genetic markers
have been described, specifically when they are compared
to classical non-genetic risk factors12,13. In this context,
the design and development of a multivariable regression
model based on phenotype and genotype variables could
lead us toward the development of more effective preci-
sion preventive and treatment dietary interventions14.
Therefore, the aim of the present study was to identify, in
an adult population, phenotype and genotype variables,
that combined in a multivariable model, could be asso-
ciated with BMI variability.

Subjects and methods
Study population
The data set included men and women of Caucasian

ancestry, who voluntarily attended community pharma-
cies in Spain. Genotype information of 1065 individuals
was available. Of these, 7 subjects were excluded due
to missing values for dietary intake, physical activity
and/or anthropometric measurements, and 8 subjects
were removed because they were <18 years old. Therefore,
a total of 1050 subjects were included in the present
study.
Individuals were specifically asked if they would be

willing to take part anonymously in the research study.
After ensuring that participants had understood the
information, only those who provided written informed
consent for participation were enrolled. All procedures
followed were in accordance with the ethical standards of
the responsible committee on human experimentation
and with the Helsinki Declaration of 1975, as revised in
2000. The Research Ethics Committee of the University of
Navarra gave confirmation of fulfillment of the ethical
standards and deontological criteria affecting the present
survey (Ref. 2410/2014).

Data collection
Anthropometrics, habitual dietary intake and physical

activity measurements were collected by trained nutri-
tionists using a standardized protocol previously descri-
bed15. Briefly, weight and height were measured with a
digital scale (Tanita BF-522W, Tanita Corporation,
Tokyo, Japan) and a portable stadiometer (Leicester
Tanita), respectively. BMI was calculated as weight (kg)/
height2 (m2).
Habitual dietary intake was determined using a vali-

dated food groups frequency questionnaire, where basic
foods were categorized into 19 food groups. Subjects were
asked to report how often (daily, weekly, monthly or
never) they had consumed a choice of each food group16.
Physical activity was estimated by a short 24 h physical
activity questionnaire in which subjects were asked about
the number of hours resting and practicing activities
during a weekday and a weekend day17.

DNA isolation and genotyping
Genomic DNA was obtained from oral epithelial cells

collected by ORAcollect DNA® (DNAGenotek, Kanata,
Ont., Canada). It was isolated by QIAcube using QiAmp
DNA Mini QIAcube Kit (Qiagen, Hilden, Germany), fol-
lowing the manufacturer’s procedures. Sixteen poly-
morphisms previously associated in the scientific database
with body weight regulation and lipid metabolism
(rs9939609 (FTO), rs17782313 (MC4R), rs1801133
(MTHFR), rs1800206 (PPARA), rs1801282 (PPARG),
rs662799 (APOA5), rs429358 (AAPOE), rs7412 (APOE),
rs1800588 (LIPC), rs894160 (PLIN1), rs1799983 (NOS3),
rs1260326 (GCKR), rs328 (LPL), rs12740374 (CELSR2),
rs1800777 (CETP) and rs4939883 (LIPG)) were genotyped
using Luminex® 100/200TM System (Luminex Corpora-
tion, Austin, Texas), which is based on the principles of
xMAP® Technology18–32. This method uncompressed
polystyrene microspheres internally dyed with various
ratios of spectrally distinct fluorophores, which are
detected by a flow cytometry-based instrument33.

Statistical analyses
Deviation from Hardy–Weinberg equilibrium (HWE)

was tested using χ2 test and allele frequencies were esti-
mated. Least angle regression (LARS) analysis was used as
regression model selection technique due to its advan-
tages in speed, interpretability and predictive accuracy34.
In the current study, the dependent variable was BMI.
The independent variables were age, sex, energy intake,
physical activity level and the 16 selected polymorphisms.
Because LARS algorithm is designed for linear regression
with continuous or binary covariates, polymorphisms
were recoded in binary variables according to the asso-
ciation between each polymorphism and BMI tested by
using dummy linear regression models. In those cases,
where there was no significant association and due to the
limited frequency of the variant allele, homozygotes of the
minor allele (aa) and heterozygotes (Aa) were grouped
and compared with major allele homozygotes (AA).
Stagewise regression and Lasso were also performed to
confirm the selection of the independent variables
established by LARS34. The independent variables selec-
ted by LARS method were combined to generate the
regression function. The formula was constructed by
adding each genotype or phenotype variable multiplied by
its beta coefficient, and the constant of the regression
model. To test potential gene–gene and gene–phenotype
interactions among the factors selected by LARS,
genotype-by-genotype and genotype-by-phenotype pro-
duct terms were included in the model. Bootstrapping was
performed to internally validate the regression model. It
was implemented by constructing a number of resamples
(K= 1000) of the data set that was obtained by random
sampling with replacement from the original data set. For
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multiple comparisons, Benjamini–Hochberg correction
was applied. Statistical analyses were performed using
Stata SE, version 12.1 (StataCorp, College Station, TX,
USA) and R, version 3.3.2 (R Foundation for Statistical
Computing, Vienna, Austria). A p value of p < 0.05 was
considered as statistically significant.

Results
Baseline phenotypic characteristics of the individuals

according to gender have been described (Table 1). The
genotypes distribution, minor allele frequencies (MAF)
and HWE for each polymorphism are listed (Table 2).
MAF ranged from 0.02 to 0.45. The distributions of all
the polymorphisms alleles were in HWE except the
rs1800588 polymorphism located in LIPC gene even
after Benjamini–Hochberg correction for multiple
comparisons.
According to the LARS analysis age, physical activity,

energy intake and 4 polymorphisms were associated with
BMI variability (Table 3 and Fig. 1). Although gender was
not selected by LARS it was included in the model as a
common cofounding factor. The LARS analysis obtained
the following formula for explain BMI: (64.7+ 0.10 × age
[years]+ 0.42 × gender [0, men; 1, women]+−40.6 ×
physical activity [physical activity level]+ 0.004 × energy
intake [kcal]+ 0.74 × rs9939609 [0 or 1–2 risk alleles]+
−0.72 × rs1800206 [0 or 1–2 risk alleles]+−0.86 ×
rs1801282 [0 or 1–2 risk alleles]+ 0.87 × rs429358 [0 or
1–2 risk alleles]. The multivariable regression model
accounted for 21% of the phenotypic variance in BMI.
Energy intake, physical activity level, age, and gender,
explained 8.3, 7.3, 4.2 and 0.04%, of the BMI variance,
respectively. Among the genotypic variables, FTO poly-
morphism explained 0.1% of the BMI variance, APOE
polymorphism 0.3%, PPARG polymorphism 0.1%, and
PPARA polymorphism 0.2%. The selection of the inde-
pendent variables established by LARS was confirmed by
stagewise regression and Lasso (data not shown).
Additionally, gene–phenotypic factors and gene–gene

interactions were tested. Trend toward significance
interactions were found for FTO polymorphism and
energy intake and for PPARA genetic variant and energy
intake. When both product terms of the interactions were
included in the regression model the adjusted r2 did not
improve significantly (adjusted r2 for regression model
0.208; adjusted r2 for the regression model, including
interactions 0.212).
In order to evaluate the accuracy of the model, the

relationship between the observed and the predicted BMI
was plotted (Fig. 2). The predicted BMI agrees with the
observed or “real” BMI by checking the parameters of the
linear regression. The intercept of the model is very close
to zero and the slope is almost 1, meaning that the change
in both variables can be considered proportional. Ta
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The internal validation was performed by the bootstrap
method, whose estimates agreed closely with the para-
meters obtained by LARS (r2 original data set= 0.208,
mean r2 bootstrap data sets= 0.210).

Discussion
Because common obesity is a multifactorial disease,

where genetic, metabolic, physiological, behavioral,
sociocultural, and environmental factors are involved, in
the current study, a regression model based on phenotype
and genotype determinants of BMI has been defined. The
regression model includes a total of 4 phenotypic char-
acteristics (age, gender, energy intake, and physical
activity) and 4 polymorphisms located next to or in FTO,
APOE, PPARG, and PPARA genes.
The LARS analysis reported 4 polymorphisms sig-

nificantly or marginally associated with BMI located in
FTO, APOE, PPARG, and PPARA genes. FTO is a nuclear
protein, which is a member of the AlkB related non-haem
iron and 2-oxoglutarate-dependent oxygenase super-
family35. Although the relationship between FTO genetic
variant and obesity-related traits (BMI, obesity risk, waist
circumference, body fat mass) has been confirmed in
several populations, the physiological function of this
gene in body weight regulation seems unclear36,37.
As far as we know our group reported for the first time,

a significant association between rs429358 APOE genetic
variant and BMI15. In the present study, such relationship
has been verified in a large sample. The APOE gene plays
a major role in maintaining plasma lipids homeostasis and
it is implicated in adipogenesis38–40. APOE genetic var-
iants have been associated with several metabolic dis-
orders including high obesity risk41–44.
PPARG modulates the expression of target genes

involved in adipocyte differentiation, insulin sensitivity
and inflammatory processes45,46, whereas PPARA reg-
ulates fatty acid oxidation systems46. Although in most of
candidate gene studies, Pro12Ala has been associated with
higher BMI, other authors reported the opposite asso-
ciation or have not found any association at all23,47–51.
These controversial results suggest that, if this variant
does influence obesity predisposition, it may do so
through environment-dependent mechanisms. In fact,
several studies have reported interactions between
PPARG and environmental factors such as gender, dietary
fat intake, or breast feeding on obesity traits52–55.
Although the association between genetic variants of the
PPARG gene and obesity traits has been widely studied, as
far as we know there is limited evidence regarding the
relationship between PPARA variants and obesity phe-
notype. Meanwhile, Costa-Urrutia et al. (2017) reported a
positive association between the rs1800206 PPARA poly-
morphism and obesity risk, Sirbelnagel et al. (2009) did
not find a relationship between such genetic variant andTa
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BMI or body fat composition56,57. We hypothesized that
our opposite results regarding PPARG and PPARA could
be due partly to the fact that we have carried out the
analysis in the presence of other genetic variants.
Interestingly, 21% of the phenotypic variance in BMI

was accounted using the regression model obtained by
LARS, including gender, age, energy intake, physical
activity and four genetic variants located near or in FTO,
APOE, PPARG, and PPARA genes. When the poly-
morphisms were included in the regression model as a
genetic risk score, summing the number of risk alleles, the
model accounted for 20% of the phenotypic variance. The
four polymorphisms accounted for 0.5% of the BMI
variability. This finding is in accordance with the studies
by Martínez-García et al. (2013), Belsky et al. (2013) and
Li et al. (2010), in which a small number of SNPs

explained <1% of the BMI heritability10,12,58. In this sense,
it should be highlighted that when Locke et al. (2015)
included a total of 97 SNPs in a prediction model of BMI
the authors found a BMI explanation of 2.7%11. As far as
we know, prediction models that added energy intake and
physical activity have not been reported up to date, so we
cannot be able to compare our results. However, some
authors have observed that, when phenotypical factors are
included in the genetic model (such as socioeconomic or
depression status), the percentage of the explanation of
the BMI significantly increases10,59.
Several potential explanations can be offered for the low

predictive value of the regression model, but are mainly
related to the fact that obesity is characterized for being a
multifactorial disease. Although we have included in the
model the two main factors that characterized obesity,
energy intake and physical activity, there are other fea-
tures that have not been taken into account such as social
determinants (education level, economic status), endo-
crine disorders (hypothyroidism) or use of certain medi-
cations4,7,60,61. Another explanation for the low predictive
value of the regression model could be related with the
marginal effect sizes of the tested variants and the skewed
distribution of the effect sizes. In addition, predictive
models could include other sources of variation known or
hypothesized to influence BMI such as rare variants,
gene–gene and gene-environment interactions, copy
number variation, and epigenetic and metagenomic
effects14. Finally, it should be mentioned that in the pre-
sent study BMI instead of body fat mass was selected as
dependent variable. Although BMI is the adiposity mea-
surement most widely used in epidemiological studies, its
interpretation does not differ between gender and race,
and neither distinguishes between degree of fatness,

Fig. 1 LARS analysis

Fig. 2 Correlation coefficient between observed BMI and predicted
BMI based on the multivariable regression model obtained by LARS
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muscle mass, and skeletal mass62. Therefore, it can lead to
errors in the estimation of adiposity, over or under-
estimating adiposity depending on subject complexion;
such as athletes or metabolic obese normal weight
individuals.
To the best of our knowledge, this is the first study that

applies LARS analysis to select phenotype and genotype
variables for explain BMI status. However, the study bears
some limitations that need to be mentioned. First, the
regression model may need to be replicated in an external
population. However, the regression model was internally
validated by bootstrapping. Second, the present study
included only subjects of Caucasian ancestry, so the
findings may not be generalizable to other ethnic groups.
Third, the model developed in this study used BMI as the
response variable instead of body fat mass. Although BMI
has some limitations in its interpretability, it is the adip-
osity measurement more used in epidemiological studies.
In conclusion, significant predictors of BMI included

age, energy intake, physical activity, and polymorphisms
located near or in FTO (rs9939609), APOE (rs429358),
PPPARG (rs1801282), and PPARA (rs1800206). Although
4 polymorphisms were selected by LARS, it should be
mentioned that they explain a small percentage of BMI
variation as has found other authors. Moreover, the pro-
posed statistical method, LARS analysis, could help to
implement new criteria for the identification of BMI
predictors since obesity is a multifactorial disease in
which a large number of phenotypic and genotypic fea-
tures are involved.
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