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Abstract

Models for human running performances of various complexities and underlying principles

have been proposed, often combining data from world record performances and bio-ener-

getic facts of human physiology. The purpose of this work is to develop a novel, minimal and

universal model for human running performance that employs a relative metabolic power

scale. The main component is a self-consistency relation for the time dependent maximal

power output. The analytic approach presented here is the first to derive the observed loga-

rithmic scaling between world (and other) record running speeds and times from basic prin-

ciples of metabolic power supply. Our hypothesis is that various female and male record

performances (world, national) and also personal best performances of individual runners

for distances from 800m to the marathon are excellently described by this model. Indeed,

we confirm this hypothesis with mean errors of (often much) less than 1%. The model

defines endurance in a way that demonstrates symmetry between long and short racing

events that are separated by a characteristic time scale comparable to the time over which a

runner can sustain maximal oxygen uptake. As an application of our model, we derive per-

sonalized characteristic race speeds for different durations and distances.

Introduction

Scientists have been fascinated by trying to explain running performance and to predict its

limitations for more than 100 years. A purely descriptive approach was employed by Kennelly

as early as 1906 for speeds in racing events of animals and humans. For men running events

from 20 yards up to a few hundred miles he found a power law relation between distance d
and duration T with T* d9/8 with a relative large error of up to 9% for distances from 100m

to 50 miles (and larger errors for shorter and longer distances) [1].

Almost a century ago, in 1925 noted mathematician and physiologist A.V. Hill proposed

a power model based on metabolic energy considerations to describe the maximal power

output Pmax(T) over a given duration T by a hyperbolic function Pmax(T) = P0 + P1/T with

constants P0 and P1 (known as the “running curve”) [2]. Ward-Smith introduced a model,
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based on the first law of thermodynamics, to describe performances at Olympic Games from

1960 to 1976 with an average absolute error for the predicted times of 0.86% for distances

from 100m to 10,000m [3]. In 1973 the mathematician Keller formulated a purely mechani-

cal model that is based on the runner’s equation of motion with a damping term [4]. The

propulsive force is connected to the mechanical power utilized for running which is different

from the overall metabolic power requirement. In analogy to purely mechanical problems,

Keller assumed that the damping is linear in velocity and that the damping coefficient is con-

stant over time. The justification for these assumptions is not validated given that a compari-

son of his model to world track records from 50yards to 10,000m yields a relative large

errors of about 3% for distances larger than 5000m. Furthermore, both Hill’s and Keller’s

models predict the existence of a maximal speed that can be sustained for an infinite dura-

tion, which is not possible from a physiological point of view and incompatible with data on

running records. Similarly, a threshold power has been proposed by Jones et al. in the critical

power model [5].

In fact, existing models appear to be unable to explain an important observation that has

been made already by Hill in the context of his above mentioned model: The average frac-

tional utilization of maximal power (or the average running speed) of world record perfor-

mances scales linearly with the logarithm of the duration of the performance [2]. An

interesting model that interpolates between fundamental knowledge of human bioenergetics

during exercise and actual world record running performance was proposed by Peronnet

and Thibault [6, 7]. Their model combines characteristics of energy metabolism, based on

Hill’s hyperbolic “running curve” and the dynamics of oxygen uptake. However, the frac-

tional utilization of maximal power over a given duration is described in their model by a

phenomenological logarithmic term that is based on observations in running records. The

latter term accounts for endurance limited sustainability of maximal aerobic power. Cur-

rently, this model is most effective in reproducing world record running performances.

However, it uses a number of fixed parameters that are assumed to be equal for all world

record performances although they have been achieved by different athletes. In fact, many

parameters can be different among individuals. For example, running economy, i.e., the

energy cost of running at a given velocity, shows substantial inter-individual variation [8].

These variations are observed even among well trained elite runners. Another quantity that

is modeled as a constant in Peronnet’s and Thibault’s model is the duration over which max-

imal aerobic power (or VO2max) can be maintained during running which they assumed to

be 7 minutes. However, direct measurements of oxygen uptake have demonstrated varia-

tions of the order of one to two minutes among individuals [9, 10]. From a fundamental per-

spective it is desirable to derive a model from basic principles of metabolic power generation

and utilization that predicts human performances without additional phenomenological

input. This is the objective of the present work.

For the development of our model it is instructive to review some facts and experimental

observations from exercise physiology. When developing a model that can describe run-

ning performances as obtained in world records up to the marathon distance one should

realize at what relative intensities these races are performed. All Olympic endurance events

require intensities above 85% of VO2max which corresponds to the effort reached approxi-

mately in the marathon [11]. When looking at record performances, we can also assume

that runner has followed an optimal carbohydrate loading strategy so that the stored

amount of glycogen is permitting best possible performance. This is of importance for the

half marathon and in particular the marathon distance which is raced predominantly on

carbohydrate fuel with an average respiratory gas exchange ratio of close to one for faster

runners [12].

A minimal power model for human running performance
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An important physiological observation is that the total energy cost of running increases lin-

early with the covered distance with no or a very small dependence on the running velocity [13,

14]. Hence the power output changes linearly with speed, with the slope quantifying running

economy. It is known that this running economy can vary about 30–40% among individuals

[11]. An important observation that is essential for the construction of our model is that run-

ning economy usually becomes worse with the duration of a running event. The magnitude of

the change in economy increases with duration and intensity. The actual change is probably

subject dependent and also influenced by external conditions. We shall see below that this is an

important factor in determining race velocities and endurance. This drift in running economy

has been quantified in treadmill studies with a change of 4.4% for 40min at 80% VO2max, a

change of 6.6% for 60min at 70% VO2max, and a change of 9.5% for 60min at 80% VO2max [15].

An other study found for 60min treadmill running near 80% of VO2max a shift of about 3% in

oxygen uptake [16]. Changes in running economy have been also observed during a 5km run

at a constant pace eliciting about 80–85% of VO2max with an average increase in oxygen uptake

of 3.3% for men and 2.0% for women [17]. The reason for the increase in oxygen uptake and

reduction in running economy is unknown. A number of mechanisms have been postulated in

the literature but most of them are speculative [12, 18–20], including an increase in oxygen

uptake due to neuromuscular fatigue [21]. Without discussing here the various attempts that

have been made for explaining this observation, we just conclude that every activated physio-

logical system increases its own particular energy consumption with the duration of exercise.

Methods

A minimal model for running performance

In view of the current status of theoretical descriptions of human running performances, it

appears useful to construct a minimal and universal model for human running performance

that fulfills the following two requirements:

1. Based on basic concepts and observations on metabolic power generation and utilization

during running

2. Minimal number of physiological parameters that are not fixed a priori

In order to eliminate irrelevant normalization parameters from the model (that would

depend on the choice of units for energy, power, etc.), we express our model in terms of rela-

tive quantities. We shall base the model on expedited power measured as oxygen uptake per

time since this quantity can be measured directly under real conditions by mobile spirometry.

This implies a slight time dependence of oxygen uptake during prolonged exercise, even when

the power output is constant, due to a change of the respiratory quotient with substrate utiliza-

tion [22]. Also, since body weight usually changes during prolonged exercise, we measure

power or oxygen uptake always per body weight.

While the basal metabolic rate Pb is close to 1.2W/kg [6], its actual value is not required in

the following. In fact, in the parameterization of running economy to be employed below, we

chose to associate Pb with the power that is obtained by linearly extrapolating the running

economy to zero velocity. Hence we neglect the non-linear dependence of the energy cost on

sub-running (walking) velocities which causes no problem since our model uses the energy

cost of motion only in the linear running regime. In our model there exists a crossover power

Pm that we expect to be close to the maximal aerobic power associated with maximal oxygen

uptake VO2max which is typically in the range of 75 to 85ml/(kg min) for elite runners [6]. The

power Pm should not be confused with the critical or the maximal power that occurs in the

3-parameter critical power model of Morton [23].

A minimal power model for human running performance
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We measure power relative to the base value Pb, in units of the aerobic power reserve Pm −
Pb that is available to the runner, hence defining the relative running power (or intensity) as

p ¼
P � Pb
Pm � Pb

ð1Þ

for a given power P so that 0� p� 1 for running intensities that do not require more power

than provided aerobically by maximal oxygen uptake.

Following the definition of the relative running power above, we parameterize the nominal
power expenditure that is required to run at a velocity v, i.e., the running economy, as

pðvÞ ¼
PðvÞ � Pb
Pm � Pb

¼
v
vm

ð2Þ

where vm is a crossover velocity which is the smallest velocity that elicits the nominal power

Pm. We expect this velocity to be close to the velocity that permits the runner to spent the lon-

gest time at maximal aerobic power [24]. Here “nominal” implies that this power is measured

for short duration and idealized laboratory conditions under which running economy is linear

in velocity, at least to a very good approximation [25]. For velocities v> vm the energy cost of

running cannot be determined from oxygen uptake measurements due to anaerobic involve-

ment, and the actual (non-nominal) energy cost might increase in a non-linear fashion [12].

We shall see below that our model allows us to estimate this non-linear correction from the

supplemental power required to race at a given velocity.

To model running performance, we need information on the maximal duration over which

a runner can sustain a given power, and hence a certain running velocity. To quantify this

information, we define Pmax(T) as the maximal average power that can be sustained over a

duration T. This is the power (measured as oxygen uptake) that is nominally required to run at

a given velocity. Hence Pmax(T) can be used to deduce the mean running velocity of an event

of duration T. In addition, we define the instantaneous power PT(t) that a runner utilizes dur-

ing a race (defined as an event in which a fixed distance is covered in minimal time) of dura-

tion T at time t with 0� t� T. PT(t) should be regarded as “typical” power output at time t of

an event of duration T, meaning that a given individual runner generates a power that in gen-

eral fluctuates in time around PT(t). It is important to note that the instantaneous power PT(t)
exceeds Pmax(T) due to an upward shift in the required power beyond the nominal power (for

example due to decreased running economy, non-linear corrections for velocities above vm).

The additional energy that is required to allow for this upward shift is assumed to grow linearly

in time, providing an supplemental power Psup. We expect that this power is provided by differ-

ent anaerobic and aerobic energy systems, involving different time scales over which they

mainly contribute to Psup. Hence, we introduce a crossover time tc that separates long (l) and

short (s) running events, suggesting the parameterization

PsupðTÞ ¼ Ps for T � tc ; PsupðTÞ ¼ Ps
tc
T
þ Pl

T � tc
T

for T > tc ; ð3Þ

which describes the fractional contribution of energy systems during short and long events of

total duration T. While the sharp crossover between these regimes is an oversimplification of

reality, we shall see below that it leads to reasonable estimates. We have assumed that there is

only one crossover time scale since there exists only one distinct power scale Pm which is pre-

sumably set by the maximal aerobic power. Hence we associate tc with the time scale over

which maximal aerobic power can be sustained.

A minimal power model for human running performance
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To construct our model, we start from the following self-consistency relation

PmaxðTÞ þ PsupðTÞ ¼
1

T

Z T

0

PTðtÞdt ; ð4Þ

which states that the sum of the nominal average power and the additional supplemental

power Psup equals the time average of the instantaneously utilized power. We make the impor-

tant conjecture that the instantaneous power utilized at time t equals the maximal power that

can be sustained for the remaining time T − t of the event [26], i.e.,

PTðtÞ ¼ PmaxðT � tÞ : ð5Þ

Note that this implies that the power output during a race is not constant over time but

increases towards the end of the event. When this relation is substituted into the self-consis-

tency Eq (4), one obtains an integral equation that determines Pmax(T). If there would be no

supplemental power (Psup = 0) then the integral equation has a constant Pmax(T) as solution

since Pmax(T) must be a non-increasing function of T. However, a constant solution is not

acceptable since a given power cannot be sustained for all durations T, and hence Psup must be

non-zero. The general solution is (for details see S1 Appendix)

PmaxðTÞ ¼

Pm � Ps log
T
tc

for T � tc

Pm � Pl log
T
tc

for T > tc

8
>>><

>>>:

; ð6Þ

where Pm = Pmax(tc) is the crossover power reached at the crossover time tc. We note that

Pmax(T) can be compared to experimental studies of oxygen consumption during running for

short durations below tc, see S2 Appendix.

It turns out to be useful to measure Ps and Pl as fractions of the aerobic power reserve Pm −
Pb by introducing two corresponding dimensionless factors γs and γl that are defined by the

relations

gs ¼
Ps

Pm � Pb
; gl ¼

Pl
Pm � Pb

: ð7Þ

This definition has the advantage that the duration T over which a runner can sustain a given

power P can now be expressed as

TðPÞ ¼
tc exp � 1

gl

P� Pm
Pm � Pb

h i
P � Pm

tc exp � 1

gs

P� Pm
Pm � Pb

h i
P � Pm

8
>><

>>:

ð8Þ

or in terms of the relative power p [see Eq (1)] as

TðpÞ ¼
tc exp �

p� 1

gl

h i
p � 1

tc exp �
p� 1

gs

h i
p � 1

8
>><

>>:

: ð9Þ

The time T over which an average velocity v can be sustained follows now directly by

substituting the nominal running economy function of Eq (2) into the above equation,

A minimal power model for human running performance
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leading to

TðvÞ ¼
tc exp

vm � v
glvm

h i
T � tc or v � vm

tc exp
vm � v
gsvm

h i
T � tc or v � vm

8
>><

>>:

: ð10Þ

The fastest performance time T(d) for a distance d can be obtained from Eq (10) by setting

v = d/T and solving for T. The solution can be expressed as the real branchW−1(z) of the Lam-

bert W-function which is defined as the (multivalued) inverse of the function w! wew [27],

TðdÞ ¼

� d
glvm

1

W� 1 �
d
dcgl

e� 1=gl

h i for d � dc

� d
gsvm

1

W� 1 �
d

dcgs
e� 1=gs

h i for d � dc

8
>>>><

>>>>:

; ð11Þ

where we have defined the distance dc = vmtc. (The function W−1(z) is real valued for −1/e�
z< 0, a condition which is fulfilled for all distances d that we consider.) Note that T(d) is con-

tinuous at d = dc with T(dc) = tc since W−1(wew) = w.

This function T(d) can be used the estimate the model parameters vm, tc, γl and γs by mini-

mizing the relative quadratic error between T(dj) and the actual race time over distance dj for

all races j = 1, . . ., N. We shall demonstrate this explicitly below. From the race time T(d) we

can obtain the mean race velocity for a distance d, given by �vðdÞ ¼ d=TðdÞ. When we express

�vðdÞ relative to vm, we obtain the expression

�vðdÞ
vm
¼

� glW� 1 �
1

gl

d
dc
e� 1=gl

h i
for d � dc

� gsW� 1 �
1

gs

d
dc
e� 1=gs

h i
for d � dc

8
>><

>>:

; ð12Þ

which depends only on the parameter γl (or γs) in the long (or short) regime when the distance

is measured in units of dc. This function will be shown below for world records and individual

runners, and a typical range of values for γl and γs.
In order to compare our model predictions to the often assumed power law or “broken

power law” description of running records [1, 28], it is useful to perform an asymptotic expan-

sion of the Lambert functionW−1(z) for small negative z. This is justified since for all here con-

sidered distances d and model parameters, the argument of W−1 in Eq (11) never is smaller

than −0.1. In this range a very good approximation (better than 0.4%) is given by W� 1ðzÞ ¼
L1ðzÞ � L2ðzÞ þ L2ðzÞ=L1ðzÞ þ ½L2

2
ðzÞ � 2L2ðzÞ�=½2L2

1
ðzÞ� þ . . . with L1(z) = log(−z) and L2 =

log(−log(−z)). Defining the re-scaled logarithmic time, distance and mean velocity variables τ
= log(T/tc), δ = log(d/dc) and u ¼ log ð�v=vmÞ, for d� dc the time-distance and velocity-dis-

tance relations are very well approximated by

tðdÞ ¼ d � uðdÞ ; uðdÞ ¼ L
1

gl
; d � log gl

� �

ð13Þ

with

Lðx; yÞ ¼ � log ðxÞ þ log x � yþ log ðx � yÞ þ
log ðx � yÞ
x � y

�
log ðx � yÞð log ðx � yÞ � 2Þ

2ðx � yÞ2

" #

:

The same relations hold for d� dc when γl is replaced by γs in Eq (13). Note that the relation

A minimal power model for human running performance
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between mean race velocity �v and race distance d is not a power law as assumed in some stud-

ies [28, 29]. For example, Riegel’s formula corresponds in above notation to τ(δ) = αδ − L, υ(δ)

= −(α − 1)δ + L with a constant L and an exponent α close to 1.06. Our model predicts that α =

1 exactly and that the very small deviation from α = 1, observed by Riegel and others, is due to

a hierarchy of logarithmic corrections, giving rise to a non-constant L. It is interesting to

observe from Eq (13) that the endurance measuring parameter γl or γs is the only quantity

which determines the time to distance and velocity to distance relations when time is mea-

sured in units of tc and velocity in units of vm. We note that for the comparison of our model

to record performances and personal best performances of individual runners, we always use

the exact expressions involving the Lambert W-function.

Interpretation of supplemental power Psup, and of γl, γs
The supplemental power defined in Eq (3) can be expressed relative to the aerobic power

reserve Pm − Pb as

PsupðTÞ
Pm � Pb

¼ gs for T � tc ;
PsupðTÞ
Pm � Pb

¼ ðgs � glÞ
tc
T
þ gl for T > tc ; ð14Þ

where we used the definitions of Eq (7). The averaged utilized power during a race of duration

T and mean velocity �vðTÞ, given by the inverse of Eq (10), is determined by the sum of nomi-

nal and supplemental power [see Eq (4)],

Pmax þ Psup ¼

Pb þ
�vðTÞ
vm

1þ 1

1=gs � log ðT=tcÞ

� �

for T � tc

Pb þ
�vðTÞ
vm

1þ
1þðgs=gl � 1Þtc=T

1=gl � log ðT=tcÞ

� �

for T > tc

8
>>>><

>>>>:

: ð15Þ

The factors in the square brackets measure the amount by which the total mean running

power deviates from the nominal linear relation Pb þ �vðTÞ=vm with increasing duration T. At

the crossover time tc the factor has its maximum with a value of 1 + γs. Below, we shall show

graphs of the duration dependence of these supplemental factors for running world records,

and discuss them in relation to experimental observations.

Endurance for short and long duration

The duration T(p) over which a runner can sustain a given relative power p is shown in Fig 1

for typical values of the parameters γl and γs. The long and short duration regimes are related

by symmetry about the crossover point at p = 1 due to the same exponential increase (decease)

of the duration T(p): Starting from the crossover power Pm, corresponding to p = 1, the dura-

tion T(p) increases exponentially when the power output is reduced. The rate of this increase is

controlled by the exponent γl. Therefore we define an endurance for long duration as El = exp

(0.1/γl) so that the duration over which a runner can maintain 90% (p = 0.90) of crossover

power is given by T = tcEl. Hence a smaller γl corresponds to better endurance. Similarly, one

can ask what parameter range for γs yields a better performance on shorter distances below the

crossover distance dc. Since in this short duration range one has p> 1, the exponential depen-

dence of T(p) yields an increasing duration with increasing γs. An endurance for short dura-

tion can hence be defined as Es = exp(−0.1/γs) so that a runner can sustain 110% of crossover

power for a duration T = tcEs. Opposite to the long duration regime, here a larger γs corre-

sponds to a better endurance. The choice of 90% and 110% of crossover power is arbitrary,

and other sub- and supra-maximal values could be chosen to define endurances without any

A minimal power model for human running performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0206645 November 16, 2018 7 / 26

https://doi.org/10.1371/journal.pone.0206645


qualitative difference in interpretation. We shall come back to these endurance measures

when we discuss personalized characteristic race paces.

Estimation of physiological model parameters

Our model depends on the four independent parameters vm, tc, γs and γl that characterize a

group of runners (for example world record holders) or individual runners. Otherwise our

model is universal in the sense that it contains no additional fixed parameters or constants.

The four parameters can be estimated from a given set of results (distance and time) from

exercise performed at maximal intensity, i.e., races. These sets can be either records, like world

records, involving a group of different runners or personal records (best performances) from

individual runners. To check the accuracy of our model and to compute the model parameters,

we minimize numerically the sum of the squared differences between the actual race time and

the one predicted by Eq (11) for all results in a given set. This method will be used to recon-

struct individual physiological profiles (running economy and endurance) from race perfor-

mances in Application 1 below.

Prediction of race times and characteristic paces for given times and

distances

Once the model parameters for a given set of performance results have been determined, the

model can be applied to compute a number of interesting quantities that could guide racing

and training of a runner. For example, by comparing the time difference between the actual

Fig 1. Definition of endurance for long and short duration, El and Es, respectively, from the duration T(p) over which a

relative power p can be sustained. Shown is a typical range of endurances for long and short duration (gray regions, with lower

and upper limits for γl and γs) and an example curve that visualizes the definition of El and Es.

https://doi.org/10.1371/journal.pone.0206645.g001

A minimal power model for human running performance
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race time and the model’s prediction for all raced distances, preferred or optimal distances for

a runner can be identified. For distances that have not been raced before, or only prior to a

newly focused training program, the formula of Eq (11), or its approximative version in Eq

(13), can be used to predict racing times.

Another application of our model is the estimation of characteristic velocities that corre-

spond to a prescribed relative power output p̂, measured in percent of aerobic power reserve

that is available over a given duration. Generally, running velocities v in training units depend

on the purpose of the training session and hence on duration T or distance d of the workout

intervals. Suppose that a runner trains at a relative power p̂. This relative power relates the tar-

get power output P(v) to the maximal power above basal power, Pmax(T) − Pb, that can be

maintained for the duration T by the relation

PðvÞ ¼ p̂ðPmaxðTÞ � PbÞ þ Pb : ð16Þ

Note that we define here the target power output not relative to the absolute crossover power

but relative to the maximal aerobic power that can be sustained over time T. This is a natural

choice since for a workout of duration T, the maximum power that can be maintained over

that time is only Pmax(T). Let us assume that a runner would like to perform a continuous run

over a time T at an intensity p̂, e.g., at 90% (p̂ ¼ 0:9) of maximally possible intensity over that

time T. Then Eq (16) determines under these conditions the velocity v for the run. An impor-

tant observation is that the solution of Eq (16) is independent of both Pb and Pm. In fact, it can

be expressed as

vðp̂;TÞ ¼
p̂ vm½1 � gl log ðT=tcÞ� T � tc

p̂ vm½1 � gs log ðT=tcÞ� T � tc

(

: ð17Þ

Note that for an intensity of p̂ ¼ 1 over a time T = tc one has v = vm, i.e., the velocity vm corre-

sponds to the crossover power, as expected. When instead of time the distance of the run is

fixed, a similar expression for the velocity can be derived. Setting T = d/v in Eq (16) and solving

for v, one finds

vðp̂; dÞ ¼
� p̂ vmglW� 1 �

1

p̂ gl
d
dc
e� 1=gl

h i
for d � dc

� p̂ vmgsW� 1 �
1

p̂ gs
d
dc
e� 1=gs

h i
for d � dc

8
>><

>>:

; ð18Þ

where again dc = vmtc. For the intensity p̂ ¼ 1 this result corresponds to the race velocity of Eq

(12). It is important to stress that running economy and endurance both depend on the abso-

lute values for basal and crossover power, Pb and Pm, but race times and paces are determined

only by the physiological parameters vm, γl, γs and tc. In Application 2 below we demonstrate

the dependence of race paces on the physiological parameters of an athlete.

Results

Physiological model parameters from records

Previously, accurate models for running performance have been based on a combination of

empirical data descriptions and underlying physiological processes, or they employed at least

some empirical correction factors. Data like world record performances contain very useful

information about maximized physiological response, and can be used to validate theoretical

models that have been derived entirely from bio-energetic considerations. Our model fulfills

A minimal power model for human running performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0206645 November 16, 2018 9 / 26

https://doi.org/10.1371/journal.pone.0206645


this requirement, and in this section we shall validate its accuracy by comparing it to various

record performances.

World and other records have been analyzed before and found to follow an approximate

power law. However, the exponent of this power law shows variations with gender and dis-

tance which renders its universality and general applicability questionable. Also, there is no

physiological foundation for a simple power law. In fact, the existence of a crossover velocity

vm implies different scaling of performances below and above this velocity due to distinct phys-

iological and bio-energetic processes involved.

We have analyzed record performances for eight distances, from 1000m to the marathon,

for world records (current as of Oct. 2018, 2000, 1990, and 1980), current European records,

and current national records (USA, Germany) see Table 1 for male records, and Table 2 for

female records. Following the method described in the previous section, we have estimated the

parameters of our model for each group of records. The resulting parameters tc, vm, γs, and γl
together with the endurances Es and El are summarized in Tables 1 and 2. The mean relative

error between our model prediction and the VDOT prediction for the race times for 13 dis-

tances between 1000m and the marathon are 0.15%, 0.11%, and 0.18% for VDOT = 40, 60, and

80, respectively. These small errors suggest that the race times predicted by the VDOT model

are mutually consistent. This presumably reflects that the times were obtain from a mathemati-

cal model that is based on physiological observations made by Daniels among well trained and

elite runners.

A number of interesting observations can be made from the results: There is a high level of

agreement between actual and predicted times with the relative error being larger than 1%

only for a single event (Half-marathon, WR 1980) for male records, and four events for female

records. The mean of the absolute value of the relative error is always smaller than 1% with the

exception of the female WR from 1990 where it is 1.05%. For the male WR a decrease of the

absolute value of the relative error from 1980 to today can be observed, indicating an increas-

ing optimization towards the maximally possible performance (within current level of technol-

ogy and training methods) that is described by our model. Hence, the record times have

become more consistent with our model over time which might be also due to an increasing

number of attempts to achieve best possible performances. A similar observation is made for

the female WR from 1990 to 2000. However, from the 2000 WR some results (Chinese run-

ner’s results for 1500m, 3.000m, 5.000m, and 10.000m) have been excluded due to the use of

performance-enhancing drugs [30], and the current WR for 1500m and 10.000m are also con-

troversial [31]. For the latter two distances our model predicts more than 0.5% slower times

than actually raced. It is interesting to observe that our predictions are very sensitive to excep-

tional performances for a particular distance compared to the other distances, and hence is

able to identify suspicious race results. Due to the women’s shorter history of endurance run-

ning, the female world records for 1980 are less consistent than more recent records and hence

have been excluded them from our analysis.

It also instructive to compare the physiological model parameters obtained from the record

performances. For the male records, the obtained values for tc vary between five and six min-

utes, which is in very good agreement with laboratory testing [32]. However, for female rec-

ords, we observe a larger variation in tc with values around 10min being not unusual.

However, in cases with such long tc the crossover velocity vm is reduced proportionally. The

endurance parameter El for long distances varies between 5 and 6 for male records, implying

that 90% of maximal aerobic power can be maintained for a duration between approximately

25min and 36min, for the values of tc observed here. For female records, the endurance param-

eter El is significantly larger with variations in an interval of approximately 6 to 8.5, implying

that 90% of maximal aerobic power can be maintained for durations up to 85min.
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Table 1. Race times and model parameters for various male running records, as of Oct. 2018.

Record WR men WR 2000 men WR 1990 men

tc[min] 6.26 5.50 5.90

vm[m/min] 411.72 417.07 405.00

100 γs 9.99 9.87 11.76

100 γl 5.36 6.19 5.93

Es 0.37 0.36 0.43

El 6.46 5.04 5.41

distance T Tmodel % T Tmodel % T Tmodel %

1000 02:11.96 02:11.94 -0.02 02:11.96 02:11.94 -0.02 02:12.80 02:12.82 +0.01

1500 03:26.00 03:26.24 +0.12 03:26.00 03:26.24 +0.12 03:29.46 03:29.26 -0.10

1609.34 03:43.13 03:42.91 -0.10 03:43.13 03:42.91 -0.10 03:46.32 03:46.50 +0.08

3000 07:20.67 07:20.99 +0.07 07:20.67 07:19.38 -0.29 07:29.45 07:30.88 +0.32

5000 12:37.35 12:37.10 -0.03 12:39.36 12:38.37 -0.13 12:58.39 12:56.88 -0.19

10000 26:17.53 26:18.84 +0.08 26:22.75 26:33.98 +0.71 27:08.23 27:08.68 +0.03

21097.5 58:23.00 58:11.94 -0.32 59:22.00 59:18.82 -0.09 1:00:46.00 1:00:25.03 -0.58

42195 2:01:39.00 2:01:52.99 +0.19 2:05:42.00 2:05:26.57 -0.20 2:06:50.00 2:07:21.71 +0.42

mean 0.12 0.21 0.22

Record WR 1980 men US men EU men

tc[min] 5.26 6.08 4.97

vm[m/min] 405.27 406.06 412.81

100 γs 12.74 10.35 12.24

100 γl 6.21 5.67 5.76

Es 0.46 0.38 0.44

El 5.00 5.83 5.67

distance T Tmodel % T Tmodel % T Tmodel %

1000 02:13.40 02:13.41 +0.01 02:13.90 02:13.87 -0.02 02:12.18 02:12.17 -0.01

1500 03:31.36 03:31.26 -0.05 03:29.30 03:29.61 +0.15 03:28.81 03:28.90 +0.04

1609.34 03:48.80 03:48.89 +0.04 03:46.91 03:46.62 -0.13 03:46.32 03:46.24 -0.04

3000 07:32.10 07:34.44 +0.52 07:29.00 07:28.52 -0.11 07:26.62 07:26.39 -0.05

5000 13:08.40 13:04.65 -0.48 12:53.60 12:51.55 -0.26 12:49.71 12:48.61 -0.14

10000 27:22.47 27:30.09 +0.46 26:44.36 26:53.60 +0.58 26:46.57 26:49.72 +0.20

21097.5 1:02:16.00 1:01:26.52 -1.32 59:43.00 59:41.08 -0.05 59:32.00 59:38.51 +0.18

42195 2:09:01.00 2:10:02.03 +0.79 2:05:38.00 2:05:26.28 -0.16 2:05:48.00 2:05:34.12 -0.18

mean 0.46 0.18 0.11

Record GER men

tc[min] 4.79

vm[m/min] 411.05

100 γs 11.22

100 γl 6.11

Es 0.41

El 5.14

distance T Tmodel %

1000 02:14.53 02:14.52 -0.01

1500 03:31.58 03:31.71 +0.06

1609.34 03:49.22 03:49.10 -0.05

3000 07:30.50 07:30.28 -0.05

5000 12:54.70 12:57.09 +0.31

10000 27:21.53 27:13.07 -0.52

(Continued)
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The impact of endurance alone on running performances can be highlighted by measuring

the mean race velocity �vðdÞ in units of the crossover velocity vm and the race distance d in

units of the crossover distance dc = vmtc. The resulting relation between �vðdÞ=vm and d/dc is

shown in Fig 2 for the current world records. Our model predicts that this relation depends

only on the endurance parameters γl and γs, see Eq (12). The corresponding model curves are

also plotted in Fig 2, showing good agreement with the data from world records. The better

Table 1. (Continued)

21097.5 1:00:34.00 1:00:45.41 +0.31

42195 2:08:33.00 2:08:28.19 -0.06

mean 0.17

https://doi.org/10.1371/journal.pone.0206645.t001

Table 2. Race times and model parameters for various female records, as of Oct. 2018. † For the women WR of 2000 the result of Chinese runners for the distances

1500m, 3000m, 5000m and 10000m have been excluded due to use of performance-enhancing drugs [30].

Record WR women WR 2000 women† WR 1990 women

tc[min] 8.30 10.01 5.50

vm[m/min] 361.37 352.14 364.74

100 γs 9.60 10.27 12.13

100 γl 4.85 5.53 5.74

Es 0.35 0.38 0.44

El 7.88 6.10 5.70

distance T Tmodel % T Tmodel % T Tmodel %

1000 02:28.98 02:28.78 -0.13 02:28.98 02:29.07 +0.06 02:30.67 02:30.17 -0.33

1500 03:50.07 03:52.05 +0.86 03:52.47 03:52.94 +0.20 03:52.47 03:57.27 +2.06

1609.34 04:12.56 04:10.70 -0.74 04:12.56 04:11.75 -0.32 04:21.68 04:16.95 -1.81

3000 08:20.68 08:18.13 -0.51 08:21.64 08:21.94 +0.06 08:22.62 08:25.93 +0.66

5000 14:11.15 14:12.40 +0.15 14:31.48 14:29.77 -0.20 14:37.33 14:31.08 -0.71

10000 29:17.45 29:29.07 +0.66 30:13.74 30:14.88 +0.06 30:13.74 30:24.18 +0.58

21097.5 1:04:51.00 1:04:50.60 -0.01 1:06:40.00 1:06:56.85 +0.42 1:08:32.00 1:07:34.87 -1.39

42195 2:15:25.00 2:15:00.95 -0.30 2:20:43.00 2:20:18.48 -0.29 2:21:06.00 2:22:16.17 +0.83

mean 0.42 0.20 1.05

Record US women EU women GER women

tc[min] 10.80 10.19 5.87

vm[m/min] 347.42 351.63 356.56

100 γs 9.39 10.25 13.91

100 γl 5.17 4.63 5.01

Es 0.34 0.38 0.49

El 6.92 8.66 7.35

distance T Tmodel % T Tmodel % T Tmodel %

1000 02:31.80 02:32.01 +0.14 02:28.98 02:29.08 +0.07 02:30.67 02:30.48 -0.13

1500 03:56.29 03:56.68 +0.17 03:52.47 03:52.92 +0.20 03:57.71 03:59.58 +0.79

1609.34 04:16.71 04:15.62 -0.42 04:12.56 04:11.73 -0.33 04:21.59 04:19.83 -0.67

3000 08:25.83 08:26.40 +0.11 08:21.42 08:21.75 +0.07 08:29.89 08:34.62 +0.93

5000 14:38.92 14:37.27 -0.19 14:23.75 14:27.22 +0.40 14:42.03 14:41.99 -0.00

10000 30:13.17 30:24.74 +0.64 29:56.34 29:56.03 -0.02 30:57.00 30:34.60 -1.21

21097.5 1:07:34.00 1:07:03.57 -0.75 1:06:25.00 1:05:40.14 -1.13 1:07:58.00 1:07:25.42 -0.80

42195 2:19:36.00 2:20:00.22 +0.29 2:15:25.00 2:16:23.60 +0.72 2:19:19.00 2:20:46.06 +1.04

mean 0.34 0.37 0.70

https://doi.org/10.1371/journal.pone.0206645.t002
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endurance of women for distances longer than the crossover distance dc is clearly visible. The

gray cones in the figure indicate the range of endurance parameters that could potentially be

realized in practice by runners from the recreational to the elite level with suitable event spe-

cialization. This type of visualization of race performances allows one to evaluate runner’s

endurance independently of their maximal aerobic power and running economy which are

described by the parameters vm and tc.

Estimate of supplemental power

We have seen that supplemental power is responsible for a slow logarithmic decline of racing

velocities with distance. In Fig 3 the supplemental factor of Eq (15) (square brackets in this

equation) is plotted for various record performances as function of the race duration T. The

variation range of the factor implies a supplemental power between� 6% and 10% above the

nominal power, with the European male records (EU men) being an outlier. The curves have

their maximum at the crossover time T = tc. During supra-maximal exercise (for times shorter

than tc), the oxygen uptake cannot stabilize and continues to increase until the end of the race

[33]. Hence we observe an increasing deviation from the nominal power with increasing

Fig 2. Mean race velocity �vðdÞ as function of race distance. Velocity is re-scaled by vm, and distance d is re-scaled by

dc = vmtc. Shown are the male and female world records (WR, dots), model prediction from Eq (12) (solid lines), and a

typically expected maximal range of velocities (gray regions). Indicated are the lower and upper limits of γs and γl for

these regions. Due to the re-scaling of �vðdÞ and d, this graph highlights endurance for short and long duration,

independently of the velocity vm at maximal aerobic power.

https://doi.org/10.1371/journal.pone.0206645.g002
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duration. However, at very short times below about 1 minute, oxygen uptake kinetics limit oxy-

gen supply, and the energy deficit is compensated by the anaerobic system. After 30 to 60 sec-

onds, the oxygen uptake can reach 90% of VO2max [33]. This short term kinetic effect is not

included in our model. Above tc, i.e., for sub-maximal velocities, oxygen uptake stabilizes and

the supplemental factor decreases. However, it does not decrease to one and this is likely related

to the fact that the energy cost of running starts to increase above a nominal linear curve when

the lactate threshold is approached [34]. For even longer race durations, we observe a slight

increase in the supplemental factor that is presumably linked to the increase of the energy cost

of running with increasing distance, as discussed in the Introduction. For a marathon or a 2

hour run at about 80% VO2max the supplemental power was measured to be between 5% and

7% in terms of oxygen uptake [35, 36] which is consistent with our model prediction for

T* 120min. We note that for male records, the supplemental factor shows a shallow minimum

around one hour. For female records this minimum is displaced to times above two hours.

Application 1: Reconstruction individual physiological profiles

After we have validated the accuracy of our model against record performances, we would like

to find out if it can be also applied to individual runners. If that is the case then one could

Fig 3. Plot of the supplemental factor of Eq (15) for as predicted by our model for male and female world records

(WR), US records (US), and European records (EU). The cusp in the curves occurs at the time tc.

https://doi.org/10.1371/journal.pone.0206645.g003
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compute from their personal best performances their individual physiological parameters that

characterize their training state and future performance potential. The assessment of the train-

ing state of an individual is important not only for performance optimization but also beyond

competitive athletics for the monitoring of the health status of recreational runners.

There have been performance models developed for individual runners. A popular model is

the so-called VDOT model by Daniels [37]. This model and other approaches employ maximal

oxygen uptake as single factor determining performance [38, 39] and this parameter is then

used to determine the training state and to predict running performances. A notable exception

is the model Peronnet and Thibault which has been also applied to individual runners [7]. It

turns out that their model yields comparable but somewhat larger errors than the present

model. Partially, this might be due their model’s assumption that the energy cost of running

and the crossover time tc would be identical for all runners. Other physiological factors that

determine an individual’s performance include blood lactate concentration, and the anaerobic

threshold. However, these parameters require laboratory measurements that are not always

available, particularly on sufficiently short time intervals and for recreational athletes.

With the advent of large online databases for personal best performances, it becomes possi-

ble to probe the accuracy of performance models for a large set of individual athletes. Similar to

our analysis of running records, our model predictions for individual runners can be validated

through comparison with their personal best performances. First we reconstruct running econ-

omy and endurance profiles of an individual runner from personal best performances for a few

race distances and then estimate projected race times for other distances and also some charac-

teristic paces. This eliminates physiological uncertainties that result from the use of universal,

typical physiological parameters in previous models. In fact, the present model provides a gen-

eral scheme that can be applied to any endurance runner over a range of distances and it is not

based on observations made for only a small sample of trained athletes. Our approach also

yields individual relative intensities, in percent of the aerobic power reserve Pm − Pb, at which a

runner performs races. This is important for the relative use of fat and carbohydrate as fuels,

and hence the total carbohydrate consumption for a given race distance.

In the following, we apply our model to personal best performances of British runners that

are available online in the database www.thepowerof10.info [40]. As a first test of our model

for individual runners, we have considered the personal bests of the top nine male and female

marathon runners from this database, according to the 2015 ranking. Their personal best

times for seven distances from 800m to the marathon are summarized in Tables 3 and 4. With

the same methodology that we used for running records above, we obtain the four model

parameters for each runner that are also listed in the tables. From these parameters we com-

pute the predicted race times. We find that the agreement between the predicted and actual

race times are the most accurate to date, with an average mean error of less than 1% for each

individual runner for all seven distances, see Tables 3 and 4. This suggests that our model can

describe the running performance of individual runners with reliable accuracy. The slightly

larger mean error for individuals than for groups of runners (record holders) appears natural

since an individual runner can hardly reach optimized performance for all distances. When

analyzing personal bests of an individual runner one should also realize that the best times on

various distances have been probably obtained over a large time span of many years. Especially

at the beginning of the career of a runner, when he races predominantly shorter distances, per-

formance might not be optimal. Alternatively, one could consider only best performances

obtained within a short time interval like a year which however limits presumably the available

distances.

Hence the individual variations of the parameters tc and vm can be large but they are

strongly correlated. This suggests that tc gives a rather precise estimate of the time over which
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Table 3. Personal best times and model parameters for individuals (Leading male marathon runners from UK, ranking 2015, http://www.thepowerof10.info/

rankings).

Runner 01 02 03

tc[min] 23.84 11.28 4.57

vm[m/min] 353.28 360.35 373.49

100 γs 8.16 11.65 10.26

100 γl 4.67 5.07 4.85

Es 0.29 0.42 0.38

El 8.52 7.20 7.86

distance T Tmodel % T Tmodel % T Tmodel %

800 01:52.08 01:52.52 +0.39 01:49.98 01:49.94 -0.04 01:58.32 01:58.32 +0.00

1500 03:41.88 03:41.06 -0.37 03:40.80 03:40.95 +0.07 03:57.48 03:57.48 -0.00

3000 07:48.90 07:46.84 -0.44 08:00.48 08:00.34 -0.03 08:16.62 08:16.24 -0.08

5000 13:28.32 13:31.65 +0.41 13:57.66 14:01.83 +0.50 14:13.32 14:09.91 -0.40

10000 28:49.02 28:32.80 -0.94 29:23.04 29:09.19 -0.79 29:18.48 29:26.13 +0.43

21097.5 1:01:25.02 1:02:32.11 +1.82 1:04:07.02 1:04:12.25 +0.14 1:04:30.00 1:04:49.91 +0.51

42195 2:10:55.02 2:09:41.73 -0.93 2:13:40.98 2:13:52.45 +0.14 2:15:51.00 2:15:11.79 -0.48

mean 0.76 0.24 0.27

Runner 04 05 06

tc[min] 19.88 8.57 6.88

vm[m/min] 357.87 349.94 382.82

100 γs 8.27 4.84 6.93

100 γl 5.70 4.19 5.70

Es 0.30 0.13 0.24

El 5.78 10.86 5.79

distance T Tmodel % T Tmodel % T Tmodel %

800 01:51.78 01:52.20 +0.38 02:09.48 02:08.54 -0.73 01:55.20 01:55.20 +0.00

1500 03:41.94 03:40.71 -0.56 04:05.22 04:08.44 +1.31 03:45.66 03:45.66 -0.00

3000 07:46.74 07:46.78 +0.01 08:40.50 08:34.37 -1.18 08:00.12 07:53.93 -1.29

5000 13:31.20 13:32.52 +0.16 14:38.58 14:36.90 -0.19 13:33.00 13:35.29 +0.28

10000 28:42.18 28:31.86 -0.60 30:04.02 30:10.06 +0.33 27:57.24 28:25.13 +1.66

21097.5 1:02:22.98 1:03:06.46 +1.16 1:04:46.98 1:05:55.65 +1.77 1:03:00.00 1:03:04.39 +0.12

42195 2:12:57.00 2:12:10.52 -0.58 2:18:21.00 2:16:24.13 -1.41 2:13:40.02 2:12:33.95 -0.82

mean 0.49 0.99 0.60

Runner 07 08 09

tc[min] 8.44 8.17 5.28

vm[m/min] 355.63 367.03 347.39

100 γs 5.72 8.15 15.25

100 γl 5.62 5.81 4.82

Es 0.17 0.29 0.52

El 5.93 5.59 7.95

distance T Tmodel % T Tmodel % T Tmodel %

800 02:05.10 02:04.97 -0.11 01:57.42 01:57.12 -0.26 02:00.42 02:00.42 +0.00

1500 04:02.40 04:02.87 +0.19 03:49.98 03:51.04 +0.46 04:10.08 04:10.08 -0.00

3000 08:28.62 08:26.15 -0.49 08:14.04 08:10.42 -0.73 08:47.70 08:51.43 +0.71

5000 14:35.94 14:30.06 -0.67 14:01.02 14:04.01 +0.36 15:18.30 15:09.93 -0.91

10000 30:04.02 30:17.72 +0.76 29:32.70 29:26.30 -0.36 31:30.90 31:30.08 -0.04

21097.5 1:06:04.02 1:07:09.06 +1.64 1:04:28.02 1:05:23.05 +1.42 1:09:12.00 1:09:20.92 +0.21

42195 2:22:55.98 2:20:56.89 -1.39 2:18:49.02 2:17:31.77 -0.93 2:24:31.02 2:24:32.68 +0.02

mean 0.75 0.65 0.27

https://doi.org/10.1371/journal.pone.0206645.t003
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Table 4. Personal best times and model parameters for individuals (Leading female marathon runners from UK, ranking 2015, http://www.thepowerof10.info/

rankings).

Runner 01 02 03

tc[min] 13.01 9.48 3.85

vm[m/min] 319.66 316.60 368.12

100 γs 5.45 6.80 5.82

100 γl 4.70 4.28 4.41

Es 0.16 0.23 0.18

El 8.39 10.34 9.64

distance T Tmodel % T Tmodel % T Tmodel %

800 02:17.28 02:17.17 -0.08 02:18.60 02:18.31 -0.21 02:05.94 02:05.94 -0.00

1500 04:25.56 04:25.95 +0.15 04:29.58 04:30.60 +0.38 04:05.40 04:05.12 -0.11

3000 09:13.08 09:12.71 -0.07 09:32.82 09:28.54 -0.75 08:22.20 08:26.50 +0.86

5000 15:44.22 15:47.11 +0.31 16:13.02 16:09.74 -0.34 14:29.10 14:25.36 -0.43

10000 32:39.36 32:42.02 +0.14 33:01.98 33:23.16 +1.07 30:01.08 29:51.82 -0.51

21097.5 1:12:36.00 1:11:45.67 -1.16 1:12:28.02 1:13:01.34 +0.77 1:05:40.02 1:05:30.03 -0.25

42195 2:28:04.02 2:29:05.72 +0.69 2:32:40.02 2:31:12.50 -0.96 2:15:25.02 2:16:00.78 +0.44

mean 0.37 0.64 0.37

Runner 04 05 06

tc[min] 9.45 5.92 12.36

vm[m/min] 317.48 297.47 303.80

100 γs 6.93 9.70 9.00

100 γl 5.06 4.62 6.19

Es 0.24 0.36 0.33

El 7.23 8.71 5.02

distance T Tmodel % T Tmodel % T Tmodel %

800 02:18.72 02:17.68 -0.75 02:28.80 02:28.80 -0.00 02:17.40 02:17.16 -0.18

1500 04:26.04 04:29.59 +1.33 04:57.42 04:57.42 -0.00 04:30.84 04:31.69 +0.31

3000 09:36.72 09:26.96 -1.69 10:22.86 10:21.12 -0.28 09:40.44 09:39.64 -0.14

5000 16:08.10 16:11.38 +0.34 17:43.02 17:42.23 -0.07 16:47.82 16:46.53 -0.13

10000 33:24.72 33:39.59 +0.74 36:40.02 36:42.61 +0.12 35:18.00 35:11.88 -0.29

21097.5 1:13:21.00 1:14:10.86 +1.13 1:19:55.02 1:20:39.07 +0.92 1:17:43.02 1:18:25.22 +0.90

42195 2:36:39.00 2:34:47.30 -1.19 2:48:55.98 2:47:45.34 -0.70 2:46:19.02 2:45:29.11 -0.50

mean 1.03 0.30 0.35

Runner 07 08 09

tc[min] 16.50 5.40 14.64

vm[m/min] 281.73 300.16 272.55

100 γs 7.43 16.76 7.25

100 γl 4.28 5.16 4.45

Es 0.26 0.55 0.25

El 10.33 6.93 9.47

distance T Tmodel % T Tmodel % T Tmodel %

800 02:29.82 02:29.38 -0.29 02:20.22 02:20.22 -0.00 02:37.26 02:36.54 -0.46

1500 04:51.42 04:52.95 +0.52 04:55.20 04:55.20 -0.00 05:04.32 05:06.82 +0.82

3000 10:18.72 10:17.25 -0.24 10:08.70 10:20.47 +1.93 10:48.48 10:46.06 -0.37

5000 17:58.98 17:48.35 -0.98 18:13.98 17:44.85 -2.66 18:26.70 18:32.44 +0.52

10000 36:31.98 36:45.40 +0.61 37:07.98 36:59.37 -0.39 38:34.98 38:19.98 -0.65

21097.5 1:19:07.02 1:20:19.99 +1.54 1:20:39.00 1:21:45.39 +1.37 1:24:06.00 1:23:55.81 -0.20

42195 2:48:16.02 2:46:13.19 -1.22 2:51:46.02 2:51:06.21 -0.39 2:53:25.02 2:53:58.66 +0.32

mean 0.77 0.96 0.48

https://doi.org/10.1371/journal.pone.0206645.t004
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a runner can sustain the velocity vm which, however, can deviate slightly from the actual veloc-

ity at VO2max, depending on the available personal best performances in the vicinity of this

crossover point. In order to measure individual endurances independently of aerobic capacity,

we have computed and plotted the relation between the re-scaled race velocity �vðdÞ=vm and

distance d/dc in analogy to our analysis of running records, see Fig 4. Two important observa-

tions can be made from this graph: (1) For each individual runner, there are two distinct rela-

tions between velocity and distance above and below the crossover velocity vm and distance dc.
(2) Even within the group of top UK marathon runners, there is a large variation in endur-

ances as quantified by the different slopes of the re-scaled velocity-distance curves and the

parameters γs and γl. They gray cones of expected maximal variations shown in Fig 4 are

almost completely covered by the performances of the studied runners.

For one of the female runners included in Table 4, runner 03 which is Paula Radcliffe, phys-

iological data are available for a long time span of about 12 years [41]. While her personal rec-

ords have been obtained over a similar period of time (800m in 1993 and marathon in 2003),

and her physiological data have progressed during this time, in particular running economy,

we can compare our model prediction for the speed vm to Radcliffe’s speed at VO2max, aver-

aged over the time period from 1993 to 2003 which is about 22.5 km/h or 375.0 m/min [41].

This value compares very well with our finding of vm = 373.5 m/min, see Table 4.

Our findings show that individual performances do not follow a unique power law as sug-

gested, for example, by Riegel’s formula. There are more complex variations of physiological

metrics among runners and those have to be taken into account for describing and predicting

accurately performances and presumably optimal training. Our computational approach

reveals the physiological parameters that determine individual performance and explains how

they can be used in praxis to guide training and racing.

Application 2: Personalized characteristic paces

We expect that our four parameter model can measure an individual runner’s performance

status for distances from 800m to the marathon more accurately than previous performance

models that often assume for all runners the same (average) values for certain characteristics

like running economy or endurance. An example for the latter type of models is the popular

VDOT model of J. Daniels which assumes a fixed running economy and endurance curves for

all runners [37, 42]. Although the VDOT model represents a good first approximation of char-

acteristic paces based on a single race performance, the ability to monitor individual perfor-

mances with more than just one parameter allows the runner to ascertain a better

understanding of their training status and potential performance. It then becomes beneficial to

have a model that makes use of larger available data sets. In the same way that one may better

understand current fitness by examining relative oxygen consumption at different paces rather

than absolute oxygen consumption, [43] developing an approach that makes use of perfor-

mance over several races describes an individual runner better than a single race.

Characteristic paces are often defined by the pace that a runner can race (at current training

status) for a prescribed duration or distance. When the physiological model parameters of a

runner are known from sufficiently many recent race performances, the running velocities for

a prescribed intensity and duration, or intensity and distance can be computed from Eqs (17)

and (18), respectively. In the following we consider race paces for a given duration or distance,

corresponding to p̂ ¼ 1 in these equations. In order to compare our model predictions to the

characteristic paces of the VDOT model, we consider three hypothetical runners that are

assumed to have achieved race performances as predicted by the VDOT model with model

parameter values VDOT = 40, 60, and 80. (VDOT can be regarded as an effective value for
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Fig 4. Same visualization of endurance as in Fig 2 but for individual male (top) and female (bottom) runners, see

Tables 3 and 4. Colors label different runners.

https://doi.org/10.1371/journal.pone.0206645.g004
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VO2max, see [37] for details.) From these race performances we obtain the four parameters of

our model. These parameters are given in the captions of Tables 5, 6 and 7. These tables pro-

vide race paces (time per km) for various distances and durations specified in the first column.

Some of the paces correspond the specific paces named in the VDOT model, and they are

labeled correspondingly as R-, I-, T- and M-pace. The paces proposed by the VDOT model are

given in the second column. The remaining columns provide the predictions of our model.

The third column lists the paces as obtained from the values of the four model parameters that

result from the hypothetical race performances of the runner with the given VDOT score.

There is agreement within a few seconds per kilometer. It should be kept in mind that our

model, unlike the VDOT model, does not implement any fixed parameters or constants a pri-

ori. We observe that the fixed parameters of the VDOT model correspond to rather superior

endurance with γl� 0.05 for long distances and average endurance with γs� 0.09 for short

distances. As we have seen above, there is substantial variation in these parameters among

individuals. Hence, characteristic paces should also determined individually. We have modi-

fied the endurance parameters γl and γs independently within their typical minimal and maxi-

mal values while keeping vm and tc unchanged. The resulting paces are shown in the last four

columns of the tables. The fast paces for short distances (1mile and 5min paces) can change up

to ±10sec/km compared to the original VDOT model which is substantial. For the slower

paces (for time tc and longer) the variation can be even larger with a maximum change for the

Table 5. Paces per km for a runner with VDOT = 40 score for different endurances. The original physiological parameters are tc = 12.35min, vm = 214.88m/min, γl =
0.051 and γs = 0.096. In last 4 columns the endurances El and Es are given only when they are different from the original values.

pace at

max. power for

Ref. [37] original γl = 0.04 γl = 0.08 γs = 0.15 γs = 0.05

El = 7.1 El = 12.2 El = 3.5

Es = 0.35 Es = 0.51 Es = 0.14

1 mile (R-pace) 04:20 04:25.21 orig. orig. 04:16.72 04:32.06

5min — 04:16.96 orig. orig. 04:05.87 04:27.14

time tc (I-pace) 04:42 04:39.22 orig. orig. orig. orig.

5.000m 04:49 04:49.06 04:46.79 04:55.54 orig. orig.

10.000m 05:00 05:00.67 04:55.58 05:15.85 orig. orig.

60min (T-pace) 05:06 05:03.67 04:58.07 05:19.64 orig. orig.

Half marathon 05:15 05:14.30 05:05.68 05:41.31 orig. orig.

marathon (M-pace) 05:29 05:28.16 05:15.70 06:09.16 orig. orig.

https://doi.org/10.1371/journal.pone.0206645.t005

Table 6. Paces per km for a runner with VDOT = 60 score for different endurances. The original physiological parameters are tc = 12.67min, vm = 298.51m/min, γl =
0.052 and γs = 0.092. The meaning of the columns is the same as in Table 5.

pace at

max. power for

Ref. [37] original γl = 0.04 γl = 0.08 γs = 0.15 γs = 0.05

El = 6.8 El = 12.2 El = 3.5

Es = 0.34 Es = 0.51 Es = 0.14

1 mile (R-pace) 03:05 03:05.04 orig. orig. 02:54.93 03:12.36

5min — 03:05.15 orig. orig. 02:56.39 03:12.07

time tc (I-pace) 03:23 03:21.00 orig. orig. orig. orig.

5.000m 03:25 03:24.14 03:23.36 03:26.00 orig. orig.

10.000m 03:32 03:32.41 03:29.49 03:39.64 orig. orig.

60min (T-pace) 03:40 03:38.78 03:34.33 03:49.55 orig. orig.

Half marathon 03:42 03:42.12 03:36.53 03:56.62 orig. orig.

marathon (M-pace) 03:52 03:51.99 03:43.51 04:15.08 orig. orig.

https://doi.org/10.1371/journal.pone.0206645.t006
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marathon pace (M-pace). For a VDOT = 40 runner, the M-pace window between slowest and

fastest pace is about 55sec/km, for a VDOT = 60 runner it is about 30sec/km and even for a

high level runner with VDOT = 80 it is still about 20sec/km. These variations result from dif-

ferent endurances, with the crossover speed vm unchanged. We have also studied the effect of a

modification of the time tc from the original VDOT model value which appears rather long

with 12 to 13min. The results are shown in Tables 8, 9 and 10. The first three columns have the

same meaning as in the three tables before. The last four columns list the paces that correspond

to a reduction or an increase of tc by 10% or 20%, respectively. Here we observe a smaller varia-

tion by a few seconds around the original paces, relatively independent of the duration or dis-

tance that defines the pace. This shows that racing paces are more dependent on endurance

than on the time over which runners can sustain their crossover speed at VO2max. The reason

for that is the exponential dependence on γs, γl of the duration T(p) over which a relative

power p can be maintained, independently of tc and vm, see Fig 1.

It is interesting to relate this observation to physiological parameters that can be measured

in the laboratory and have been linked to endurance capacity, like blood lactate concentration.

It is known that the running speed at the lactate threshold can improve independently of

VO2max and so can the runner’s endurance. Often the lactate threshold pace is identified with

the running velocity that a runner can race for about 60min. The corresponding paces are

shown in Tables 5–10 as “T-pace”. The relative intensity or power output in percent of the aer-

obic power reserve [see Eq (1)] at the lactate threshold is given by pLT = 100[1 − γl log(60/tc)].
For example, for a recreational runner (with VDOT = 40), described by the parameters of

Table 7. Paces per km for a runner with VDOT = 80 score for different endurances. The original physiological parameters are tc = 12.92min, vm = 376.85m/min, γl =
0.053 and γs = 0.088. The meaning of the columns is the same as in Table 5.

pace at

max. power for

Ref. [37] original γl = 0.04 γl = 0.08 γs = 0.15 γs = 0.05

El = 6.6 El = 12.2 El = 3.5

Es = 0.32 Es = 0.51 Es = 0.14

1 mile (R-pace) 02:25 02:23.98 orig. orig. 02:13.52 02:30.46

5min — 02:26.99 orig. orig. 02:19.37 02:32.00

time tc (I-pace) 02:41 02:39.22 orig. orig. orig. orig.

5.000m 02:40 02:39.45 02:39.39 02:39.59 orig. orig.

10.000m 02:46 02:45.91 02:44.14 02:49.88 orig. orig.

60min (T-pace) 02:54 02:53.33 02:49.64 03:01.52 orig. orig.

Half marathon 02:53 02:53.50 02:49.59 03:02.65 orig. orig.

marathon (M-pace) 03:01 03:01.22 02:54.99 03:16.46 orig. orig.

https://doi.org/10.1371/journal.pone.0206645.t007

Table 8. Paces per km for a runner with VDOT = 40 score for different variations of the time tc. The original physiological parameters are tc = 12.35min, vm =

214.88m/min, γl = 0.051 and γs = 0.096.

pace at

max. power for

Ref. [37] original

tc = 12.35min

0.8tc 0.9tc 1.1tc 1.2tc

1 mile (R-pace) 04:20 04:25.21 04:31.27 04:28.03 04:22.70 04:20.46

5min — 04:16.96 04:22.12 04:19.37 04:14.82 04:12.90

time tc (I-pace) 04:42 04:39.22 04:42.43 04:40.73 04:36.70 04:34.43

5.000m 04:49 04:49.06 04:52.69 04:50.76 04:47.53 04:46.15

10.000m 05:00 05:00.67 05:04.62 05:02.52 04:59.02 04:57.52

60min (T-pace) 05:06 05:03.67 05:07.47 05:05.45 05:02.07 05:00.63

Half marathon 05:15 05:14.30 05:18.63 05:16.33 05:12.49 05:10.86

marathon (M-pace) 05:29 05:28.16 05:32.89 05:30.37 05:26.18 05:24.39

https://doi.org/10.1371/journal.pone.0206645.t008
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Table 5, one has pLT = 91.94% for the original value γl = 0.051, while pLT = 93.68% for γl = 0.04,

and pLT = 87.35% for γl = 0.08. These values appear rather large when compared to the lactate

threshold estimates from current world records: pLT = 87.08% for male and pLT = 90.41% for

female records. This implies again that the VDOT model assumes a rather optimized

endurance.

Conclusion

Modern performance testing is often based on laboratory testing of athletes with the goal of

identifying physiological metrics that correlate with performance and can be linked to funda-

mental physiological processes. However, measuring physiological metrics requires time con-

suming and expensive testing, often under rather idealized laboratory conditions. Hence, it

appears to be very useful to extract information on power characteristics for individual run-

ners or certain groups of runners from performance results in racing events or time trails. This

is of particularly great interest for analyzing the effect of aging on human performance, consid-

ering the enormous improvement of performance in older age groups. As stated already by A.

V. Hill, world and other records constitute very interesting data sets since their accuracy by far

exceeds that of laboratory measurements and they correspond to best human performances at

a given time in history under realistic conditions.

The model presented here provides a quantitative method for extracting characteristic

parameters from race performances of a group of runners or of an individual runner. The key

equations and computational steps of our model are as follows:

Table 9. Paces per km for a runner with VDOT = 60 score for different variations of the time tc. The original physiological parameters are tc = 12.67min, vm =

298.51m/min, γl = 0.052 and γs = 0.092.

pace at

max. power for

Ref. [37] original

tc = 12.67min

0.8tc 0.9tc 1.1tc 1.2tc

1 mile (R-pace) 03:05 03:05.04 03:08.94 03:06.86 03:03.42 03:01.97

5min — 03:05.15 03:08.72 03:06.82 03:03.67 03:02.34

time tc (I-pace) 03:23 03:21.00 03:23.37 03:22.11 03:19.25 03:17.68

5.000m 03:25 03:24.14 03:26.73 03:25.36 03:23.06 03:22.08

10.000m 03:32 03:32.41 03:35.22 03:33.72 03:31.23 03:30.17

60min (T-pace) 03:40 03:38.78 03:41.60 03:40.10 03:37.60 03:36.54

Half marathon 03:42 03:42.12 03:45.20 03:43.56 03:40.83 03:39.66

marathon (M-pace) 03:52 03:51.99 03:55.36 03:53.57 03:50.58 03:49.31

https://doi.org/10.1371/journal.pone.0206645.t009

Table 10. Paces per km for a runner with VDOT = 80 score for different variations of the time tc. The original physiological parameters are tc = 12.92min, γl = 0.053

and γs0.088.

pace at

max. power for

Ref. [37] original

tc = 12.92min

0.8tc 0.9tc 1.1tc 1.2tc

1 mile (R-pace) 02:25 02:23.98 02:26.80 02:25.30 02:22.81 02:21.76

5min — 02:26.99 02:29.69 02:28.25 02:25.87 02:24.85

time tc (I-pace) 02:41 02:39.22 02:41.12 02:40.11 02:37.90 02:36.71

5.000m 02:40 02:39.45 02:41.48 02:40.40 02:38.17 02:36.87

10.000m 02:46 02:45.91 02:48.11 02:46.94 02:44.99 02:44.16

60min (T-pace) 02:54 02:53.33 02:55.60 02:54.39 02:52.38 02:51.53

Half marathon 02:53 02:53.50 02:55.91 02:54.63 02:52.49 02:51.58

marathon (M-pace) 03:01 03:01.22 03:03.85 03:02.45 03:00.11 02:59.12

https://doi.org/10.1371/journal.pone.0206645.t010
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• The key equation for the comparison of our model to race results is the expression for the

race time T(d) as function of the race distance d, given in Eq 11.

• We minimize the sum of the squared relative deviations in percent between actual race times

and the function T(d) by varying the four model parameters vm, tc, γs, and γl in T(d) for all

distances raced by a runner or a group of runners (records). The final model parameters are

those that result from this minimization.

• From the four model parameters the values of which were obtained from race performances

or by other input like physiological data, the function T(d) predicts the race times and Eq 12

the mean race velocities for arbitrary distances.

The model parameters quantify the runner’s performance status and can be used to predict

personalized fastest possible but realistic and safe racing paces for a wide range of race distances

and durations. Our model provides an unified description of running events at sub- and supra-

maximal velocities that are separated by a time scale tc whose value is in good agreement with

independent measurements. On a fundamental level, for the first time our approach provides a

derivation of the previously observed but unexplained linear relation between the mean velocity

and the logarithm of the duration for running records. The mechanism underlying this loga-

rithmic relation could be identified as the necessity of a supplemental power, beyond the nomi-

nal power cost of running, for maintaining the mean velocity. Our findings are different from

the previously postulated power law relation between the mean race speed �v and distance d,

�v � d� b with an exponent β that varies between 0.054 and 0.083, depending on age and gender

[28]. Note that this exponent β is slightly smaller than the value 1/8 expected from Kennelly’s

original work [1]. A modified, broken power law yielded a crossover duration tc between 3min

and 4min which is too short to be consistent with laboratory measurements [29].

We have validated our model by comparing it to various running records and also to per-

sonal records of individual runners. The comparison shows consistently low relative errors

between actual and predicted race times, with the mean error being maximally 1% and typi-

cally less than that for both world and national records and individual personal records. To

our knowledge, this is the to date most accurate theoretical description of running perfor-

mances that does not require any a priori fixing of physiological constants. The obtain agree-

ment shows that human running performance depends in a subtle manner on several variables

that, however, can be quantified for individual runners. Indeed, we find that four parameters

can characterize the performance state of a runner: the time tc over which the velocity vm can

be maintained, and two endurance parameters Es and El for short and long duration endur-

ance. By comparing to independent measurements, we argue that vm is close to the velocity at

maximal aerobic power or VO2max. By their definition, the endurance parameters yield the

duration Eltc> tc over which a runner can sustain 90% of vm or maximal aerobic power and

the duration Estc< tc for 110% of vm or maximal aerobic power.

We have compared our model to Daniel’s VDOT model which is based on a single variable

parameter (VDOT) that measures performance. When the race times predicted by the VDOT

model are analyzed with our model, we find rather superior long distance endurance parame-

ters El. For more conservative endurance parameters, our model yields marathon race paces

that even for elite runners can be 15sec/km slower than the VDOT predictions. This highlights

the importance of proper modeling of individual endurances.

Currently, the possibility of running a sub 2 hour marathon is discussed with great enthusiasm.

Our model allows to extract physiological characteristics from race results, like the world records.

Using the physiological parameters of the current world records as a basis, we can use our model

also to understand to what extend physiological parameters need to progress for a male runner to
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break 2 hours in the marathon. For example, the latest update of the world record in the marathon

by Eliud Kipchoge in Berlin on September 16, 2018 which is included in our results of Table 1,

has increased the endurance for long duration from El = 5.98 to El = 6.46, i.e., by 8%, while the

speed that can be raced for 6min (413.5 m/min) and the short term endurance Es remained basi-

cally unchanged. Our model predicts that the endurance for long duration had to be increased to

El = 7.49 with all other parameters unchanged to obtain a marathon time of 1:59:56. This corre-

sponds to another increase of 16% compared to the just updated value which appears unrealistic

in near future. Another possibility, however, would be to assume the endurance of the current

world record, El = 6.46, and an increased speed at VO2max. For example, increasing the speed

that a runner can sustain for 6min by 1.3% to vm = 418.7 m/min would yield a marathon time of

1:59:58. This could be achieved by an increase in running economy by only*1% which seems

feasible, at least by material improvements and/or suitable racing conditions (course, climate).

Future studies based on our model could include the dependence of the performance state

on distance specialization, altitude, air temperature, age, and other factors. With the availabil-

ity of big data set on running performances, these studies could be performed with much bet-

ter statistics than studies with much smaller groups of runners participating in laboratory and

clinical studies. Our model could be applied to other endurance sports after a modification of

the running specific dependence of power on velocity.
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