
MOLECULAR MEDICINE REPORTS  23:  403,  2021

Abstract. Type 2 innate lymphoid cells (ILC2s) are important 
innate immune cells that are involved in type 2 inflammation, 
in both mice and humans. ILC2s are stimulated by factors, 
including interleukin (IL)‑33 and IL‑25, and activated ILC2s 
secrete several cytokines that mediate type 2 immunity by 
inducing profound changes in physiology, including activation 
of alternative (M2) macrophages. M2 macrophages possess 
immune modulatory, phagocytic, tissue repair and remodeling 
properties, and can regulate ILC2s under infection. The present 
review summarizes the role of ILC2s as innate cells and M2 
macrophages as anti‑inflammatory cells, and discusses current 
literature on their important biological significance. The present 
review also highlights how the crosstalk between ILC2s and M2 
macrophages contributes to lung development, induces pulmo‑
nary parasitic expulsion, exacerbates pulmonary viral and fungal 
infections and allergic airway diseases, and promotes the devel‑
opment of lung diseases, such as pulmonary fibrosis, chronic 
obstructive pulmonary disease and carcinoma of the lungs. 
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1. Introduction

Lung development initiates in utero and continues until 
infancy, and involves a complex process regulated by different 
types of cells, factors and mediators, such as macrophages, 
dendritic cells and lymphocytes (1). Abnormal lung develop‑
ment can be harmful to respiratory health, which may result 
in bronchopulmonary dysplasia, neonatal respiratory distress 
syndrome, asthma and chronic obstructive emphysema (2‑4). 
Type 2 immune response is important for pulmonary 
development and several types of pulmonary diseases, such as 
asthma, lung infection and pulmonary fibrosis (5‑7). 

Interleukin (IL)‑4, IL‑5, IL‑9 and IL‑13 are important 
cytokines that play key roles in type 2 immunity, and are 
usually involved in allergic diseases or during helminthic 
parasitic infections (8,9). Th2 cells and certain myeloid cells 
are considered the primary source of these type 2 cyto‑
kines (10,11); however, recent studies have reported that a rare 
subpopulation of innate lymphocytes are the predominant 
source (12‑14). Type 2 innate lymphoid cells (ILC2s), which 
were first discovered as non‑T and B cells (15,16), play a 
defensive role in the initial stage of helminthic infestation (17), 
and are considered a major component of type 2 immunity in 
lungs (18,19). 

Several types of cells, including eosinophils, mast cells, 
basophils and alternative (M2) macrophages, activated by 
IL‑4 and IL‑13 that are involved in type 2 immune response, 
also regulate the repair response following tissue injury (20). 
M2 macrophages initiate different responses to parasites, 
tissue remodeling, angiogenesis and allergic diseases (21‑23). 
Therefore, it may be hypothesized that M2 macrophages can 
crosstalk with ILC2s during pulmonary development and in 
different pulmonary diseases.

2. ILC2s

ILCs are innate immune cells that regulate mucosal immune 
response (24). ILCs are important effector cells in the innate 
immune system (25). In addition to acting as first‑line defense 
against pathogen invasion and infection, ILCs are also involved 
in lymphoid organ formation, tissue repair and mucosal 
homeostasis (26). 

ILC2s are a subset of ILCs, and activation of these 
produce several Th2 cytokines, including IL‑4, IL‑5, IL‑9 
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and IL‑13, and/or dual‑regulatory proteins, such as amphi‑
regulin (AREG) (27). ILC2s depend on transcription factors, 
GATA binding protein 3 and retinoid acid receptor related 
orphan receptor α, for their development and function, but 
lack antigen‑specific receptors (28,29). ILC2s are distributed 
throughout the body and are abundant on mucosal surfaces, 
such as the lungs, gastrointestinal tract and skin, in both 
humans and mice (30). ILC2s account for a major proportion 
in mouse pulmonary innate lymphocytes, and <3% of human 
lung innate lymphocytes (31,32).

Lung ILC2s are rapidly activated when exposed to 
epithelial‑derived alarmin proteins and other inflamma‑
tory mediators, including IL‑33, IL‑25 and thymic stromal 
lymphopoietin (TSLP) (33). A previous study demonstrated 
that IL‑25 reactive lung ILC2s can change into IL‑33 reactive 
lung ILC2s, both in vivo and in vitro (34). IL‑33 and IL‑25 both 
promote the enrichment of ILC2s in lung in vivo; however, only 
IL‑33 can directly induce the migration of ILC2s in vitro (35). 
Similar effects of IL‑33 are observed in skin (36), while TSLP 
and IL‑25 exhibit relatively poor chemotaxis, although they 
can be detected at high concentrations in lungs (37,38).

Although ILC2s secrete IL‑9, autocrine IL‑9 maintains 
homeostasis of pulmonary ILC2s (37,38). IL‑2 was the 
first cytokine reported to promote the secretion of IL‑9 by 
ILC2s (39). IL‑2 is also important for activating and culturing 
ILC2s in vitro (39,40). Another study demonstrated that 
IL‑4 can increase IL‑9 expression by stimulating ILC2s (41). 
Suppression of IL‑9 production inhibits IL‑33‑induced 
eosinophilic airway inflammation, highlighting its role in 
effectively proliferating and activating ILC2s (42). In addition, 
the synergistic effects of TSLP and IL‑33 markedly effect the 
production of IL‑9 via ILC2s (37).

ILC2s express corresponding receptors, including suppres‑
sion of tumorigenicity 2 (ST2), IL‑25R (IL‑17RB), TSLPR and 
AREG receptor, as well as toll‑like receptors (TLRs) 2 and 
4 (28,29,43‑45). Upon activation, excluding Th2‑type cytokines 
and/or AREG, ILC2s also secrete other factors, including 
granulocyte‑macrophage colony stimulating factor (GM‑CSF), 
IL‑6 and IL‑10 (46‑48). In addition to stimulators, there are also 
inhibitors of ILC2s. For example, the neuropeptide calcitonin 
gene‑related peptide and its receptor can inhibit the secretion 
and enrichment of pulmonary ILC2s and Th2 cytokines driven 
by alarmin, both in vitro and in vivo (49).

Elevated numbers of ILC2s in patients with asthma 
and chronic sinusitis suggest that ILC2s are detrimental to 
chronic inflammation (50). However, intrahepatic ILC2s can 
exacerbate fibrosis in liver diseases by secreting AREG (51). 
Thus, the roles of ILC2s vary in different tissues and diseases, 
and involve complex molecular mechanisms.

Recently, ILC2s have become the research focus in different 
tissue and organ diseases. It has been reported that intestinal 
helminthic infection induces activation of ILC2s, proliferation 
of IL‑13 dependent goblet cells and increases mucin produc‑
tion at distal sites, including the lungs (52). In severe cases, 
increased mucus secretion via alveoli and the lungs inhibits 
lung metastasis (52). This suggests that the innate immunity 
of ILC2s is not only limited to certain tissues, but also influ‑
ences and interacts with different organs. According to a 
previous study, aging influences innate immunity (53). ILC2s 
in elderly lungs are not uniform in transcription and function, 

and cannot produce cytokines during influenza infection and 
homeostasis in vivo (53). The transfer of ILC2s in the lungs 
of young mice strengthens the immunity of old mice to influ‑
enza infection (53). Notably, ILC2s in neonatal lungs involve 
distinct pro‑inflammatory and tissue repair subgroups (54). 
Neonatal endogenous IL‑33 stimulates ILC2s in the pulmo‑
nary, which may ‘train’ ILC2s for implantation into the lungs 
following birth, thus becoming resident cells that respond 
more effectively to future challenges (55). Thus, by secretion 
of a plethora of mediators, ILC2s play vital roles in inducing 
and supporting type 2 immune responses in lung tissues.

3. M2 macrophages

Macrophages, which act as myeloid cells, are among the first 
cells that respond to pathogens and tissue damage (56). They 
not only have innate immune function, which acts by phagocy‑
tizing and killing pathogens directly to exert innate immunity, 
but also initiate adaptive immunity by presenting pathogens 
to T lymphocytes (57,58). Tissue macrophages, which are 
important immune cells, are produced by yolk sac or fetal liver 
and their function is guided by resident tissues (59). Thus, it is 
important to study the macrophages that reside in the lung to 
understand the role of macrophages in lung diseases. There 
are two subtypes based on anatomical position of pulmonary 
resident macrophages, alveolar macrophages (AMs) and 
interstitial macrophages (60).

AMs, which are the most important resident macrophages 
in the lung, act as immune barriers in the alveoli against 
several pathogens of the respiratory tract (61). Alveolar 
macrophages are highly heterogeneous and exhibit unique 
phenotypes and functions in the complex microenvironment 
of the body (62). They are non‑polarized under normal condi‑
tions (63). However, macrophages are induced and polarized 
into classical activation (M1) or alternate activation (M2) 
phenotypes under the stimulation of inflammation or in 
different immune development stages (64,65). These also play 
a role in producing different chemokines and cytokines in the 
local microenvironment (66). 

M2 macrophages are predominantly induced by cytokines, 
including IL‑4, IL‑10 and IL‑13, glucocorticoids and immune 
complexes TLRs (67). Similar to ILC2s, they can also induce 
typical Th2 cytokines to decrease inflammatory response 
by promoting angiogenesis, tissue repairing, remodeling and 
wound healing (68). In addition, excessive tissue repair and 
remodeling results in fibrosis, which can aggravate the condi‑
tion (69). M2 macrophages highly express type I arginase 
encoding genes (arginase‑1, Arg1) and mannose receptor 
(CD206), and thus the expression and activity of Arg1 and 
CD206 are used to identify M2 macrophages (70). Under the 
induction of memory Th2 cells, M2 macrophages, which are 
important immune effector cells, can scavenge pathogens, 
which is associated with Arg1 activity (71). M2 macrophages 
have a weak antigen‑presenting capacity compared with M1 
macrophages, and downregulate the immune response by 
secreting inhibitory cytokines, such as IL‑10 and/or tumor 
growth factor β (TGF‑β) (72). A different type of M2 macro‑
phage exists in the tumor site, which can be induced by IL‑10 
and is affected by chemokines, including CCL2, M‑CSF and 
vascular endothelial growth factor (58). 
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4. Crosstalk between ILC2s and M2 macrophages during 
lung development

The developmental process of lungs involves complex steps in 
humans/mice, and is subdivided into five stages, embryonic, 
pseudoglandular, canalicular, saccular and alveolar (73). Among 
these, the vesicle [Embryo day(E)16‑E266/E17.5‑Postnatal day 
(P)5] and alveolar (E252‑2 years/P5‑P30) stages are impor‑
tant as they affect the development and maturity of lungs 
(Fig. 1) (73). Macrophages first appear on day 10 of pregnancy 
and can be continuously detected during fetal lung develop‑
ment (74), which then increases with alveolarization (75,76). 
The perinatal period is a critical window for transferring and 
distributing congenital immune cells to all the tissues and 
organs during lung development (77). ILC2s, which are similar 
to tissue macrophages, also appear during pregnancy, but at a 
later stage, and most of the peripheral ILC2 pools are produced 
de novo following birth (77). Several studies have confirmed 
that rapid amplification and activation of ILC2s in pulmonary 
occur during the early postnatal period (78‑80). Pulmonary 
resident ILC2s are minimal at birth, increase during alveolar‑
ization, reach peak at 7‑14 days and subsequently decrease in 
adulthood, similar to AMs (76,81‑83). Thus, the interactions 
between ILC2s and macrophages most likely occur during 
the vesicle and alveolar stages. Gradually, fewer ILC2s in 

lung tissues are replaced by newly generated ILC2s, but the 
expanded ILC2s during the early postnatal period account for 
the majority of adult lung ILC2s (77). 

From the very start, the lung is exposed to the external 
environment (84). The microenvironment of the lung 
undergoes a notable change within a short period of time 
and requires rapid regulation to avoid inflammatory response 
caused by environmental stimulation (84). After being stimu‑
lated during labor, IL‑33 rapidly increases and activates ILC2s 
in the fluid filled lung and begins to promote the formation 
of type 2 immune environment in pulmonary tissues (76). 
Type 2 immunity involves type 2 cytokines, eosinophilia, 
mucogenesis, IgE and M2 macrophages (85). The presence of 
AMs is consistent with that of IL‑13‑secreting ILC2s, which 
exhibit IL‑13 dependent anti‑inflammatory M2‑type in the 
early stage of lung development (76). It has also been reported 
that IL‑4 receptor α (IL‑4R α), including IL‑4 and IL‑13, can 
promote AMs to polarize into M2 macrophages, suggesting 
that the crosstalk between ILC2s and M2 macrophages plays 
a role in regulating type 2 immunity (86,87). Another study 
demonstrated that the addition of ILC2s can make AMs 
express more M2 macrophages‑related markers in vitro (88). 
Postnatal adaptation to breathing depends on pulmonary 
surfactant being synthesized and secreted by type 2 alveolar 
epithelial cells (AEC2) (89). Promoted by M2 macrophages, 

Figure 1. Quantitative changes of ILC2s and M2 macrophages in lung development and the effect of crosstalk on alveolarization. ILC2, type 2 innate lymphoid 
cell; M2‑AM, alternative macrophage; IL, interleukin; AM, alveolar macrophage; AEC1, type 1 alveolar epithelial cell; AEC2, type 2 alveolar epithelial cell. 
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AEC2 continuously proliferate and differentiate to accelerate 
alveolar formation (90).

A previous study revealed that M2 macrophages are 
enriched in lung tissues and AEC2 proliferated rapidly 
following pneumonectomy (91). ILC2s increase and become 
the main source of IL‑13, which induces AMs to differentiate 
into M2 phenotype (91). Both IL‑4R α‑expressing ILC2s and 
M2 macrophages, which are necessary for optimal lung regen‑
eration, promote the regeneration of lung tissues by stimulating 
the growth of AEC2 (91). Rindler et al (92) reported that M2 
macrophages are clustered together and localized in the site of 
AEC2 multiplication during regeneration. 

It has been reported that activation of IL‑33 can promote 
type 2 immunity in pulmonary development by amplifying 
and activating ILC2s during the perinatal period (81). IL‑4, 
IL‑5 and IL‑13 exhibit upregulation after activation of ILC2s, 
which constitutively express ST2. In addition to activating 
ILC2s, IL‑33 also stimulate the expression and polarization of 
AMs by basophils during alveolar formation (93,94). Thus, it 
is hypothesized that IL‑33 promotes proliferation and activa‑
tion of ILC2s and M2 macrophages during lung development, 
and crosstalk between ILC2s and M2 macrophages promotes 
alveolarization. This is consistent with the IL‑33‑ST2 axis 
regulating regeneration of epithelial through activation of 
monocyte differentiation into reparative M2 macrophages and 
ILC2s‑mediated M2 macrophages (95). In summary, ILC2s 
promote the polarization of M2 macrophages via IL‑4/13. In 
addition to IL‑4/13, there may be other associations between 
ILC2s and M2 macrophages in the complex process of 
embryonic development, which have not been fully investi‑
gated. Thus, future studies are required to determine how M2 
macrophages directly affect ILC2s, and how their crosstalk 
promotes fetal and preterm lung development.

5. Crosstalk between ILC2s and M2 macrophages in lung 
diseases

The arrest of alveolar development or disruption of alveolar 
structure is not only associated with neonatal respiratory 
distress syndrome, bronchopulmonary dysplasia and persis‑
tent pulmonary hypertension, but also chronic lung diseases, 
such as asthma, allergic diseases and chronic obstructive 
pulmonary emphysema (2‑4). Pulmonary epithelial barrier 
dysfunction is an important pathological component of lung 
injury, which is mainly caused by damage of epithelial cell 
migration (96). ILC2s participate in the regulation of AEC2 
and different lung diseases (37). M2 macrophages are a 
subgroup of macrophages whose polarization is important 
for AEC2 regulation and inflammatory response (97). Thus, 
the crosstalk between increased ILC2s and upregulated M2 
macrophages may regulate lung development, and modulate 
the processes of several lung diseases (Fig. 2).

Pulmonary parasitic infection. Several parasites, namely 
pulmonary parasitic diseases, spread to other parts of the 
human body via blood circulation, and often reside in the lungs, 
causing pathological changes (98). The host cells of helminth 
mega parasites are involved in type 2 immune response, 
including Th2 cells and type 2 cytokines (IL‑4, IL‑5, IL‑9 and 
IL‑13), which are required to fight these pathogens (99,100). 

Recently, it has been reported that the relative abundance 
of these macrophages and the rare ILC2s have a swift and 
strong response to helminth antigen and helminth induced 
injury, activating damaged epithelial cells and recruiting 
other effector factors (101). Immunocompromised larvae of 
helminths have a significant morphological defect, which is 
affected by aggregation of IL‑13‑secreting ILC2s and CD4+ 
T cells, and the polarization of M2 macrophages (102). 
Application of IL‑2 or IL‑33 can bypass the requirement of 
T cells, resulting in proliferation of IL‑13 and secretion of 
ILC2s and death of larvae, and exhaustion of ILC2s inhibits 
larval death in mice by transferring IL‑2 (102). Thus, it is 
not surprising that ILC2s are the key factor during infection 
and are maintained by CD4+ T cells, which not only ensure 
rapid activation of IL‑13 dependent M2 macrophages, but also 
maintain their immune function in lung tissues (102). 

Amp activated protein kinase (AMPK) is a significant 
driving factor of cellular energy, which exists in AMs (103). 
Deletion of AMPK decreases the secretion of IL‑13 and 
impairs the expansion of ILC2s in lung tissues from mice that 
are selectively deprived of α 1 subunit, thereby exacerbating 
lung injury following ancylostoma infection (103). Surfactant 
protein D (SP‑D) is an important epithelial product (104). 
Increased levels of pulmonary SP‑D before infection can 
enhance parasite excretion and type 2 immune response, 
including the increase of IL‑13‑producing ILC2s, M2 
macrophages and the cytokines, IL‑4 and IL‑13 (104). Thus, 
it is speculated that AMs and ILC2s assist in coordinating 
the regulation of mucosal tissue damage through metabolic 
enzyme function (103,104).

Pulmonary viral and fungal infections. Several studies have 
confirmed that the intensity of infection is affected by type 1 
immune response and polarization of M1 macrophages, 
while type 2 immunity and polarization of M2 macro‑
phages are closely associated with disease progression and 
adverse outcomes (105‑107). In infected lungs, the number 
of ILC2s significantly increase following induction of type 2 
response (108). ILC2‑deficient mice exhibit a notable declina‑
tion in type 2 immune response 14 days after infection, which 
is characterized by decreased expression levels of IL‑4, IL‑5 
and IL‑13, as well as the number of M2 macrophages (108). 

The change in polarization of pulmonary macrophages 
in ILC2‑deficient mice is frequently associated with 
better control of fungi and prolongation of survival time of 
infected mice (108). Rhinovirus (RV) infection also induces 
IL‑25, IL‑33, IL‑4, IL‑5, IL‑13 and ILC2s expansion, mucus 
metaplasia and airway hyperresponsiveness (109). IL‑1 β of 
pulmonary macrophages inhibits type 2 inflammation and 
mucus metaplasia following RV infection by decreasing ILC2s 
and cytokines (109). 

Group V phospholipase A2 (Pla2g5) is a lipid‑producing 
enzyme that is required for macrophage functioning in lung 
inflammation (110). Macrophages also assist in regulating 
IL‑33 induction and free fatty acids (FFAs)‑driven ILC2s 
activation via Pla2g5, significantly contributing to type‑2 
immunity (110). In addition, mass spectrometry analysis 
demonstrated significant reduction of FFAs in Pla2g5 deficient 
lung tissues and BM‑macrophages in Alternaria‑exposed 
wild‑type mice (110). 
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Another study reported that type 2 immunoregulatory 
neutrophil infiltration is influenced by mouse eosinophil asso‑
ciated ribonuclease 11, and is secreted by M2 macrophages 
downstream of ILC2s that are stimulated by IL‑25 (111). 
Furthermore, neutrophils can promote type 2 immune 
response without aggravating inflammation (111).

Chronic post viral disease is characterized by excessive 
airway mucus formation and multiplication of M2 differ‑
entiated pulmonary macrophages, requiring expression 
of macrophages for triggering receptors on myeloid cell 2 
(TREM‑2) (112). With increasing levels of IL‑13, virus repli‑
cation increases the levels of macrophages and TREM‑2 
in the lung tissues, preventing macrophage apoptosis in 
acute diseases (112). Following infection clearance, IL‑13 
promotes cleavage of TREM‑2 into the soluble form, 
STREM‑2, which prevents macrophage apoptosis (112). 
These results may explain how crosstalk between ILC2s 
with M2 macrophages in acute infection results in chronic 
inflammatory diseases.

Recruitment of neutrophils, eosinophils and inflamma‑
tory chemokines (KC, eotaxin‑1, MIP1a and MIP1b), Th2 
cytokines (IL‑4/5), arginase‑1 (M2 macrophage marker) and 
IL‑33R+ ILC2s cells are significantly elevated in adenovirus 
Oncostatin M (OSM) mice, while these responses are 

significantly attenuated in IL‑33‑/‑ mice (113). In vitro, IL‑33 
upregulates OSM expression in RAW264.7 macrophage cells 
and bone marrow‑derived macrophages (113). Thus, IL‑33 is 
a key mediator of OSM‑driven lung inflammation, induction 
of type 2 immune responses and M2 macrophages in mice, 
which contributes via activation of ILC2s (113).

Allergic airway diseases (AAD). In addition to the common 
tissue tropism, AAD also have obvious inflammatory patterns, 
including eosinophils, M2 macrophages, ILC2s, IgE secreting 
B cells and Th2 cells, and cytokines, including IL‑33, IL‑4, 
IL‑5 and IL‑13 (114,115). Reduction of Th2 cytokines (IL‑4, 
IL‑5 and IL‑13), macrophages, ILC2s and other cells in lung 
tissues, and alveolar lavage fluid, can improve allergic airway 
inflammation in mice, which may be a potential way to treat 
allergic asthma (58,116).

Arg1, produced by M2 macrophages, can regulate asthma 
and allergic inflammation (117). A study demonstrated that 
compared with M2 macrophages expressing Arg1 after 
activation of STAT6 mediated by IL‑4/13, ILC2s constitu‑
tively express Arg1 in a STAT6‑independent manner (117). 
IL‑33 can affect Arg1 in lung tissues by promoting the 
proliferation of ILC2s and indirectly activating macrophages 
via STAT6 (117). These results further highlight that ILC2s 

Figure 2. Crosstalk between ILC2s and M2 macrophages regulates type 2 immune response in lung diseases. ILC2, type 2 innate lymphoid cell; M2‑AM, alterna‑
tive macrophage; IL, interleukin; AMPK, Amp activated protein kinase; SP‑D, surfactant protein D; TGF‑β, tumor growth factor β; TREM‑2, triggering receptors 
on myeloid cell 2; Pla2g5, group V phospholipase A2; Ear11, eosinophil‑associated ribonuclease 11; GM‑CSF, granulocyte‑macrophage colony stimulating factor.
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and M2 macrophages have a synergistic regulatory effect on 
asthma and allergic inflammation via Arg1.

During allergic response, the selective depletion of E3 
ligase VHL in innate lymphoid progenitor cells increases 
hypoxia inducible factor‑1α (HIF‑1α) expression, which in turn 
decreases ST2 and inhibits the development of ILC2s induced 
by IL‑33 via epigenetic modification (118). HIF‑1α affects 
glycolysis and phenotype of macrophages (119), suggesting 
that HIF‑1α acts through the regulation of ILC2s and macro‑
phages during allergic reaction.

Lung ILC2s exhibit an inverse correlation with MHC‑IIhigh 
resident macrophages (M1), and a positive correlation with 
MHC‑IIlow resident macrophages (M2), and their contribu‑
tion to AAD induced by HDM may also be affected by 
heredity (120). Notably, ILC2s, which are amateur antigen 
presenting cells (121), cooperate with macrophages to form and 
regulate adaptive immunity to allergens and helminth (121).

Pulmonary f ibrosis. Idiopathic pulmonary fibrosis is 
characterized by fibroblast aggregation, collagen deposition 
and extracellular matrix remodeling, in which myofibroblasts 
are considered effector cells (72). In the pulmonary fibrosis 
model, AMs were recruited into the alveoli, and the phenotype 
involves M2 macrophages, which upregulates CD206 on the 
cell surface (72). In vitro, 264.7 cells treated with IL‑4 were 
used as M2 macrophages, and the TGF‑β levels in the super‑
natant significantly increased. α‑SMA expression increased 
following co‑culturing of lung epithelial cells (MLE‑12) with 
M2 macrophages, suggesting that M2 macrophages regulate 
pulmonary fibrosis by inducing epithelial‑to‑mesenchymal 
transition (72). 

In addition to the increase of M2 macrophages, the 
increase of IL‑33, IL‑13, TGF‑β1 and inflammatory chemo‑
kines are also observed during pulmonary fibrosis (122). IL‑13 
and TGF‑β1 are produced by M2 macrophages, and IL‑13 
is secreted by ILC2s, both in vivo and in vitro, and induced 
by IL‑33 (122). As IL‑13 can induce the polarization of M2 
macrophages (123), a cycle where IL‑13 can be produced by 
M2 macrophages and promotes polarization of M2 macro‑
phages is formed. IL‑33 sends signals through ST2, and 
recruits and guides inflammatory cell function in ST2‑ and 
macrophage‑dependent manners, and enhances the generation 
of pro‑fibrosis cytokines, thus promoting the occurrence and 
development of pulmonary fibrosis (122).

Zhao et al (124) reported that bone marrow‑derived ILC2s 
accumulate in the fibrotic lung and activated fibroblasts 
to promote pulmonary fibrosis by inducing the IL‑33/ST2 
signaling pathway. In addition, ILC2s are induced by IL‑25, 
which results in significant changes in the pathological process 
of pulmonary fibrosis through the production of IL‑13 (125). 
Thus, the application of anti‑IL‑33 antibody and depletion 
of AMs or ILC2s may be potential therapeutic methods for 
pulmonary inflammation and fibrosis. 

Chronic obstructive pulmonary disease (COPD). A clinical 
study demonstrated that normal AMs are mainly nonpolar‑
ized (63). However, the polarization of M1 and M2 macrophages 
significantly enhances, and the co‑expression of M1 and M2 
markers in the same AMs also significantly increases, with the 
aggravation of smoking and COPD severity (63). 

In human COPD, ILCs accumulate in lung tissues, 
with increasing signature cytokines, such as IL‑5 and 
GM‑CSF (126). The levels of neutrophil elastase and IL‑5 
increase in patients with acute exacerbation of COPD (127), 
and the levels of IL‑13 mRNA in eosinophils and endothelial 
cells in the sputum also increase to about 30 times (128). In 
addition, Th2 cytokine IL‑9 can also aggravate lung injury by 
activating STAT3 in COPD mice and increasing inflammation 
and oxidative stress (129).

For the interaction of STIP1 homology and U‑box‑1 
(STUB1), IL‑4R α is used as the target, which prevents IL‑4 
or IL‑13 signal transduction via ubiquitination mediated 
proteasome degradation (130). In STUB1‑deficient mice, 
spontaneous airway inflammation increases IL‑4R α expres‑
sion, STAT6 is continuously activated, M2 macrophages are 
activated and serum IgE increases (130). The level of STUB1 
in the airway of patients with asthma or COPD increases, 
suggesting that upregulation of STUB1 may be an important 
feedback mechanism for inhibiting IL‑4R signal transduction 
in airway inflammation (130).

Carcinoma of the lungs. In different tumors, type 2 immune 
responses induce polarization of M2 macrophages, which 
in turn enhances the invasion and migration of tumor cells 
by secreting Arg1, IL‑10 and TGF‑β (107,131,132). The 
progression of lung cancer is associated with poor patient 
prognosis and high mortality (133). The survival rate of 
tumor‑bearing mice with vitamin A deficiency diet is low, 
and the tumor size increases with increasing number of 
type 2 cytokines, ILC2s and M2 macrophages in BALF of 
mice, suggesting that ILC2s and polarized M2 macrophages 
play a synergistic role in promoting cancer progres‑
sion (133). This synergistic effect may be accomplished 
via two pathways, the co‑promotion of ILC2s and M2‑type 
macrophages by IL‑33 (134‑136), and the promotion of M2 
macrophage polarization by type 2 cytokines (123,137), 
such as IL‑4 and IL‑13, secreted by ILC2s (138). This is 
consistent with the fact that both M2 subtype macrophages 
(M2a and M2b) and IL‑25‑stimulated ILC2s favor cancer 
progression (139). Notably, other substances that inhibit the 
polarization of M2 macrophages by IL‑4/13 can change the 
tumor microenvironment (140). However, further studies are 
required to understand the crosstalk between ILC2s and M2 
macrophages in lung cancer and determine their underlying 
molecular mechanisms. 

Other diseases affecting the lungs. Sepsis is defined as 
life‑threatening organ dysfunction caused by a dysregulated 
host response to infection (141). The lung is an extremely 
fragile organ that is prone to sepsis (142). In sepsis model 
with cecal ligation and puncture, IL‑33 upregulates IL‑5 
in ILC2s, whereas IL‑5 inhibits neutrophil and monocyte 
infiltration, suggesting that this axis is involved in lung 
injury early after sepsis (142). Survivors of sepsis will have 
chronically low immune functions (143). IL‑33, which is 
produced following sepsis, activates ILC2s and promotes 
the polarization of M2 macrophages, thus accelerating the 
proliferation of Treg cells through IL‑10 (143). Subsequently, 
increased ILC2s, M2 macrophages, IL‑10 and Treg cells result 
in immunosuppression (143). 
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6. Conclusions and perspective

Lung resident ILC2s are important immunoregulatory cells that 
are involved in metabolism, tissue repair and multiple organ remod‑
eling, outlining a previously unanticipated role of type 2 immunity 
in regulating basal homeostasis. Similarly, macrophages are a 
group of pluripotent and plasticity immune cells, that also regulate 
type 2 immune response. In lungs, AMs and interstitial macro‑
phages differentiate into different cell phenotypes at different 
stages of development, including M1 and M2 macrophages.

The proliferation and activation of ILC2s and M2 macro‑
phages are consistent, and are not only involved in lung 
development, but also in lung diseases. In addition, ILC2s 
and M2 macrophages interact to regulate the lung microen‑
vironment, which is effective in pulmonary development and 
pulmonary diseases. The crosstalk between IL‑4R α‑expressing 
ILC2s and upregulated M2 macrophages produces remark‑
able effects in lung inflammation, allergy, tumor and fibrosis 
responses. Further studies are required to better understand 
the development, activation, turnover and interaction between 
ILC2s and M2 macrophages in lung tissues. Targeting the 
IL‑33/ILC2s/M2‑macrophage axis may be an effective novel 
approach for the treatment of several lung diseases.
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