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Abstract. Type 2 innate lymphoid cells (ILC2s) are important
innate immune cells that are involved in type 2 inflammation,
in both mice and humans. ILC2s are stimulated by factors,
including interleukin (IL)-33 and IL-25, and activated ILC2s
secrete several cytokines that mediate type 2 immunity by
inducing profound changes in physiology, including activation
of alternative (M2) macrophages. M2 macrophages possess
immune modulatory, phagocytic, tissue repair and remodeling
properties, and can regulate ILC2s under infection. The present
review summarizes the role of ILC2s as innate cells and M2
macrophages as anti-inflammatory cells, and discusses current
literature on their important biological significance. The present
review also highlights how the crosstalk between ILC2s and M2
macrophages contributes to lung development, induces pulmo-
nary parasitic expulsion, exacerbates pulmonary viral and fungal
infections and allergic airway diseases, and promotes the devel-
opment of lung diseases, such as pulmonary fibrosis, chronic
obstructive pulmonary disease and carcinoma of the lungs.
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1. Introduction

Lung development initiates in utero and continues until
infancy, and involves a complex process regulated by different
types of cells, factors and mediators, such as macrophages,
dendritic cells and lymphocytes (1). Abnormal lung develop-
ment can be harmful to respiratory health, which may result
in bronchopulmonary dysplasia, neonatal respiratory distress
syndrome, asthma and chronic obstructive emphysema (2-4).
Type 2 immune response is important for pulmonary
development and several types of pulmonary diseases, such as
asthma, lung infection and pulmonary fibrosis (5-7).

Interleukin (IL)-4, IL-5, IL-9 and IL-13 are important
cytokines that play key roles in type 2 immunity, and are
usually involved in allergic diseases or during helminthic
parasitic infections (8,9). Th2 cells and certain myeloid cells
are considered the primary source of these type 2 cyto-
kines (10,11); however, recent studies have reported that a rare
subpopulation of innate lymphocytes are the predominant
source (12-14). Type 2 innate lymphoid cells (ILC2s), which
were first discovered as non-T and B cells (15,16), play a
defensive role in the initial stage of helminthic infestation (17),
and are considered a major component of type 2 immunity in
lungs (18,19).

Several types of cells, including eosinophils, mast cells,
basophils and alternative (M?2) macrophages, activated by
IL-4 and IL-13 that are involved in type 2 immune response,
also regulate the repair response following tissue injury (20).
M2 macrophages initiate different responses to parasites,
tissue remodeling, angiogenesis and allergic diseases (21-23).
Therefore, it may be hypothesized that M2 macrophages can
crosstalk with ILC2s during pulmonary development and in
different pulmonary diseases.

2.ILC2s

ILCs are innate immune cells that regulate mucosal immune
response (24). ILCs are important effector cells in the innate
immune system (25). In addition to acting as first-line defense
against pathogen invasion and infection, ILCs are also involved
in lymphoid organ formation, tissue repair and mucosal
homeostasis (26).

ILC2s are a subset of ILCs, and activation of these
produce several Th2 cytokines, including IL-4, IL-5, IL-9
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and IL-13, and/or dual-regulatory proteins, such as amphi-
regulin (AREG) (27). ILC2s depend on transcription factors,
GATA binding protein 3 and retinoid acid receptor related
orphan receptor a, for their development and function, but
lack antigen-specific receptors (28,29). ILC2s are distributed
throughout the body and are abundant on mucosal surfaces,
such as the lungs, gastrointestinal tract and skin, in both
humans and mice (30). ILC2s account for a major proportion
in mouse pulmonary innate lymphocytes, and <3% of human
lung innate lymphocytes (31,32).

Lung ILC2s are rapidly activated when exposed to
epithelial-derived alarmin proteins and other inflamma-
tory mediators, including IL-33, IL-25 and thymic stromal
lymphopoietin (TSLP) (33). A previous study demonstrated
that IL-25 reactive lung ILC2s can change into IL-33 reactive
lung ILC2s, both in vivo and in vitro (34).1L-33 and IL-25 both
promote the enrichment of ILC2s in lung in vivo; however, only
IL-33 can directly induce the migration of ILC2s in vitro (35).
Similar effects of IL.-33 are observed in skin (36), while TSLP
and IL-25 exhibit relatively poor chemotaxis, although they
can be detected at high concentrations in lungs (37,38).

Although ILC2s secrete IL-9, autocrine IL-9 maintains
homeostasis of pulmonary ILC2s (37,38). IL-2 was the
first cytokine reported to promote the secretion of IL-9 by
ILC2s (39). IL-2 is also important for activating and culturing
ILC2s in vitro (39,40). Another study demonstrated that
IL-4 can increase IL-9 expression by stimulating ILC2s (41).
Suppression of IL-9 production inhibits IL-33-induced
eosinophilic airway inflammation, highlighting its role in
effectively proliferating and activating ILC2s (42). In addition,
the synergistic effects of TSLP and IL-33 markedly effect the
production of IL-9 via ILC2s (37).

ILC2s express corresponding receptors, including suppres-
sion of tumorigenicity 2 (ST2), IL-25R (IL-17RB), TSLPR and
AREG receptor, as well as toll-like receptors (TLRs) 2 and
4 (28,29,43-45). Upon activation, excluding Th2-type cytokines
and/or AREG, ILC2s also secrete other factors, including
granulocyte-macrophage colony stimulating factor (GM-CSF),
IL-6 and IL-10 (46-48). In addition to stimulators, there are also
inhibitors of ILC2s. For example, the neuropeptide calcitonin
gene-related peptide and its receptor can inhibit the secretion
and enrichment of pulmonary ILC2s and Th2 cytokines driven
by alarmin, both in vitro and in vivo (49).

Elevated numbers of ILC2s in patients with asthma
and chronic sinusitis suggest that ILC2s are detrimental to
chronic inflammation (50). However, intrahepatic ILC2s can
exacerbate fibrosis in liver diseases by secreting AREG (51).
Thus, the roles of ILC2s vary in different tissues and diseases,
and involve complex molecular mechanisms.

Recently, ILC2s have become the research focus in different
tissue and organ diseases. It has been reported that intestinal
helminthic infection induces activation of ILC2s, proliferation
of IL-13 dependent goblet cells and increases mucin produc-
tion at distal sites, including the lungs (52). In severe cases,
increased mucus secretion via alveoli and the lungs inhibits
lung metastasis (52). This suggests that the innate immunity
of ILC2s is not only limited to certain tissues, but also influ-
ences and interacts with different organs. According to a
previous study, aging influences innate immunity (53). ILC2s
in elderly lungs are not uniform in transcription and function,

and cannot produce cytokines during influenza infection and
homeostasis in vivo (53). The transfer of ILC2s in the lungs
of young mice strengthens the immunity of old mice to influ-
enza infection (53). Notably, ILC2s in neonatal lungs involve
distinct pro-inflammatory and tissue repair subgroups (54).
Neonatal endogenous IL-33 stimulates ILC2s in the pulmo-
nary, which may ‘train’ ILC2s for implantation into the lungs
following birth, thus becoming resident cells that respond
more effectively to future challenges (55). Thus, by secretion
of a plethora of mediators, ILC2s play vital roles in inducing
and supporting type 2 immune responses in lung tissues.

3. M2 macrophages

Macrophages, which act as myeloid cells, are among the first
cells that respond to pathogens and tissue damage (56). They
not only have innate immune function, which acts by phagocy-
tizing and killing pathogens directly to exert innate immunity,
but also initiate adaptive immunity by presenting pathogens
to T lymphocytes (57,58). Tissue macrophages, which are
important immune cells, are produced by yolk sac or fetal liver
and their function is guided by resident tissues (59). Thus, it is
important to study the macrophages that reside in the lung to
understand the role of macrophages in lung diseases. There
are two subtypes based on anatomical position of pulmonary
resident macrophages, alveolar macrophages (AMs) and
interstitial macrophages (60).

AMs, which are the most important resident macrophages
in the lung, act as immune barriers in the alveoli against
several pathogens of the respiratory tract (61). Alveolar
macrophages are highly heterogeneous and exhibit unique
phenotypes and functions in the complex microenvironment
of the body (62). They are non-polarized under normal condi-
tions (63). However, macrophages are induced and polarized
into classical activation (M1) or alternate activation (M2)
phenotypes under the stimulation of inflammation or in
different immune development stages (64,65). These also play
arole in producing different chemokines and cytokines in the
local microenvironment (66).

M2 macrophages are predominantly induced by cytokines,
including IL-4, IL-10 and IL-13, glucocorticoids and immune
complexes TLRs (67). Similar to ILC2s, they can also induce
typical Th2 cytokines to decrease inflammatory response
by promoting angiogenesis, tissue repairing, remodeling and
wound healing (68). In addition, excessive tissue repair and
remodeling results in fibrosis, which can aggravate the condi-
tion (69). M2 macrophages highly express type I arginase
encoding genes (arginase-1, Argl) and mannose receptor
(CD206), and thus the expression and activity of Argl and
CD206 are used to identify M2 macrophages (70). Under the
induction of memory Th2 cells, M2 macrophages, which are
important immune effector cells, can scavenge pathogens,
which is associated with Argl activity (71). M2 macrophages
have a weak antigen-presenting capacity compared with M1
macrophages, and downregulate the immune response by
secreting inhibitory cytokines, such as IL-10 and/or tumor
growth factor f (TGF-) (72). A different type of M2 macro-
phage exists in the tumor site, which can be induced by IL-10
and is affected by chemokines, including CCL2, M-CSF and
vascular endothelial growth factor (58).
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Figure 1. Quantitative changes of ILC2s and M2 macrophages in lung development and the effect of crosstalk on alveolarization. ILC2, type 2 innate lymphoid
cell; M2-AM, alternative macrophage; IL, interleukin; AM, alveolar macrophage; AECI, type 1 alveolar epithelial cell; AEC2, type 2 alveolar epithelial cell.

4. Crosstalk between ILC2s and M2 macrophages during
lung development

The developmental process of lungs involves complex steps in
humans/mice, and is subdivided into five stages, embryonic,
pseudoglandular,canalicular,saccularandalveolar (73). Among
these, the vesicle [Embryo day(E)16-E266/E17.5-Postnatal day
(P)5] and alveolar (E252-2 years/P5-P30) stages are impor-
tant as they affect the development and maturity of lungs
(Fig. 1) (73). Macrophages first appear on day 10 of pregnancy
and can be continuously detected during fetal lung develop-
ment (74), which then increases with alveolarization (75,76).
The perinatal period is a critical window for transferring and
distributing congenital immune cells to all the tissues and
organs during lung development (77). ILC2s, which are similar
to tissue macrophages, also appear during pregnancy, but at a
later stage, and most of the peripheral ILC2 pools are produced
de novo following birth (77). Several studies have confirmed
that rapid amplification and activation of ILC2s in pulmonary
occur during the early postnatal period (78-80). Pulmonary
resident ILC2s are minimal at birth, increase during alveolar-
ization, reach peak at 7-14 days and subsequently decrease in
adulthood, similar to AMs (76,81-83). Thus, the interactions
between ILC2s and macrophages most likely occur during
the vesicle and alveolar stages. Gradually, fewer ILC2s in

lung tissues are replaced by newly generated ILC2s, but the
expanded ILC2s during the early postnatal period account for
the majority of adult lung ILC2s (77).

From the very start, the lung is exposed to the external
environment (84). The microenvironment of the lung
undergoes a notable change within a short period of time
and requires rapid regulation to avoid inflammatory response
caused by environmental stimulation (84). After being stimu-
lated during labor, IL-33 rapidly increases and activates ILC2s
in the fluid filled lung and begins to promote the formation
of type 2 immune environment in pulmonary tissues (76).
Type 2 immunity involves type 2 cytokines, eosinophilia,
mucogenesis, IgE and M2 macrophages (85). The presence of
AMs is consistent with that of IL-13-secreting ILC2s, which
exhibit IL-13 dependent anti-inflammatory M2-type in the
early stage of lung development (76). It has also been reported
that IL-4 receptor o (IL-4R ), including IL-4 and IL-13, can
promote AMs to polarize into M2 macrophages, suggesting
that the crosstalk between ILC2s and M2 macrophages plays
a role in regulating type 2 immunity (86,87). Another study
demonstrated that the addition of ILC2s can make AMs
express more M2 macrophages-related markers in vitro (88).
Postnatal adaptation to breathing depends on pulmonary
surfactant being synthesized and secreted by type 2 alveolar
epithelial cells (AEC2) (89). Promoted by M2 macrophages,
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AEC?2 continuously proliferate and differentiate to accelerate
alveolar formation (90).

A previous study revealed that M2 macrophages are
enriched in lung tissues and AEC2 proliferated rapidly
following pneumonectomy (91). ILC2s increase and become
the main source of IL-13, which induces AMs to differentiate
into M2 phenotype (91). Both IL-4R a-expressing ILC2s and
M2 macrophages, which are necessary for optimal lung regen-
eration, promote the regeneration of lung tissues by stimulating
the growth of AEC2 (91). Rindler et al (92) reported that M2
macrophages are clustered together and localized in the site of
AEC2 multiplication during regeneration.

It has been reported that activation of IL-33 can promote
type 2 immunity in pulmonary development by amplifying
and activating ILC2s during the perinatal period (81). IL-4,
IL-5 and IL-13 exhibit upregulation after activation of ILC2s,
which constitutively express ST2. In addition to activating
ILC2s, IL-33 also stimulate the expression and polarization of
AMs by basophils during alveolar formation (93,94). Thus, it
is hypothesized that IL-33 promotes proliferation and activa-
tion of ILC2s and M2 macrophages during lung development,
and crosstalk between ILC2s and M2 macrophages promotes
alveolarization. This is consistent with the IL-33-ST2 axis
regulating regeneration of epithelial through activation of
monocyte differentiation into reparative M2 macrophages and
ILC2s-mediated M2 macrophages (95). In summary, ILC2s
promote the polarization of M2 macrophages via IL-4/13. In
addition to IL-4/13, there may be other associations between
ILC2s and M2 macrophages in the complex process of
embryonic development, which have not been fully investi-
gated. Thus, future studies are required to determine how M2
macrophages directly affect ILC2s, and how their crosstalk
promotes fetal and preterm lung development.

5. Crosstalk between ILC2s and M2 macrophages in lung
diseases

The arrest of alveolar development or disruption of alveolar
structure is not only associated with neonatal respiratory
distress syndrome, bronchopulmonary dysplasia and persis-
tent pulmonary hypertension, but also chronic lung diseases,
such as asthma, allergic diseases and chronic obstructive
pulmonary emphysema (2-4). Pulmonary epithelial barrier
dysfunction is an important pathological component of lung
injury, which is mainly caused by damage of epithelial cell
migration (96). ILC2s participate in the regulation of AEC2
and different lung diseases (37). M2 macrophages are a
subgroup of macrophages whose polarization is important
for AEC2 regulation and inflammatory response (97). Thus,
the crosstalk between increased ILC2s and upregulated M2
macrophages may regulate lung development, and modulate
the processes of several lung diseases (Fig. 2).

Pulmonary parasitic infection. Several parasites, namely
pulmonary parasitic diseases, spread to other parts of the
human body via blood circulation, and often reside in the lungs,
causing pathological changes (98). The host cells of helminth
mega parasites are involved in type 2 immune response,
including Th2 cells and type 2 cytokines (IL-4, IL-5,IL-9 and
IL-13), which are required to fight these pathogens (99,100).

Recently, it has been reported that the relative abundance
of these macrophages and the rare ILC2s have a swift and
strong response to helminth antigen and helminth induced
injury, activating damaged epithelial cells and recruiting
other effector factors (101). Immunocompromised larvae of
helminths have a significant morphological defect, which is
affected by aggregation of IL-13-secreting ILC2s and CD4*
T cells, and the polarization of M2 macrophages (102).
Application of IL-2 or IL-33 can bypass the requirement of
T cells, resulting in proliferation of IL-13 and secretion of
ILC2s and death of larvae, and exhaustion of ILC2s inhibits
larval death in mice by transferring IL-2 (102). Thus, it is
not surprising that ILC2s are the key factor during infection
and are maintained by CD4* T cells, which not only ensure
rapid activation of IL-13 dependent M2 macrophages, but also
maintain their immune function in lung tissues (102).

Amp activated protein kinase (AMPK) is a significant
driving factor of cellular energy, which exists in AMs (103).
Deletion of AMPK decreases the secretion of IL-13 and
impairs the expansion of ILC2s in lung tissues from mice that
are selectively deprived of a 1 subunit, thereby exacerbating
lung injury following ancylostoma infection (103). Surfactant
protein D (SP-D) is an important epithelial product (104).
Increased levels of pulmonary SP-D before infection can
enhance parasite excretion and type 2 immune response,
including the increase of IL-13-producing ILC2s, M2
macrophages and the cytokines, IL-4 and IL-13 (104). Thus,
it is speculated that AMs and ILC2s assist in coordinating
the regulation of mucosal tissue damage through metabolic
enzyme function (103,104).

Pulmonary viral and fungal infections. Several studies have
confirmed that the intensity of infection is affected by type 1
immune response and polarization of M1 macrophages,
while type 2 immunity and polarization of M2 macro-
phages are closely associated with disease progression and
adverse outcomes (105-107). In infected lungs, the number
of ILC2s significantly increase following induction of type 2
response (108). ILC2-deficient mice exhibit a notable declina-
tion in type 2 immune response 14 days after infection, which
is characterized by decreased expression levels of IL-4, IL-5
and IL-13, as well as the number of M2 macrophages (108).

The change in polarization of pulmonary macrophages
in ILC2-deficient mice is frequently associated with
better control of fungi and prolongation of survival time of
infected mice (108). Rhinovirus (RV) infection also induces
IL-25, IL-33, IL-4, IL-5, IL-13 and ILC2s expansion, mucus
metaplasia and airway hyperresponsiveness (109). IL-1  of
pulmonary macrophages inhibits type 2 inflammation and
mucus metaplasia following RV infection by decreasing ILC2s
and cytokines (109).

Group V phospholipase A2 (Pla2g5) is a lipid-producing
enzyme that is required for macrophage functioning in lung
inflammation (110). Macrophages also assist in regulating
IL-33 induction and free fatty acids (FFAs)-driven ILC2s
activation via Pla2g5, significantly contributing to type-2
immunity (110). In addition, mass spectrometry analysis
demonstrated significant reduction of FFAs in Pla2g5 deficient
lung tissues and BM-macrophages in Alternaria-exposed
wild-type mice (110).
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Figure 2. Crosstalk between ILC2s and M2 macrophages regulates type 2 immune response in lung diseases. ILC2, type 2 innate lymphoid cell; M2-AM, alterna-
tive macrophage; IL, interleukin; AMPK, Amp activated protein kinase; SP-D, surfactant protein D; TGF-f3, tumor growth factor §; TREM-2, triggering receptors
on myeloid cell 2; Pla2g5, group V phospholipase A2; Earl1, eosinophil-associated ribonuclease 11; GM-CSF, granulocyte-macrophage colony stimulating factor.

Another study reported that type 2 immunoregulatory
neutrophil infiltration is influenced by mouse eosinophil asso-
ciated ribonuclease 11, and is secreted by M2 macrophages
downstream of ILC2s that are stimulated by IL-25 (111).
Furthermore, neutrophils can promote type 2 immune
response without aggravating inflammation (111).

Chronic post viral disease is characterized by excessive
airway mucus formation and multiplication of M2 differ-
entiated pulmonary macrophages, requiring expression
of macrophages for triggering receptors on myeloid cell 2
(TREM-2) (112). With increasing levels of IL-13, virus repli-
cation increases the levels of macrophages and TREM-2
in the lung tissues, preventing macrophage apoptosis in
acute diseases (112). Following infection clearance, IL-13
promotes cleavage of TREM-2 into the soluble form,
STREM-2, which prevents macrophage apoptosis (112).
These results may explain how crosstalk between ILC2s
with M2 macrophages in acute infection results in chronic
inflammatory diseases.

Recruitment of neutrophils, eosinophils and inflamma-
tory chemokines (KC, eotaxin-1, MIPla and MIP1b), Th2
cytokines (IL-4/5), arginase-1 (M2 macrophage marker) and
IL-33R+ ILC2s cells are significantly elevated in adenovirus
Oncostatin M (OSM) mice, while these responses are

significantly attenuated in IL-33-/- mice (113). In vitro, IL-33
upregulates OSM expression in RAW264.7 macrophage cells
and bone marrow-derived macrophages (113). Thus, IL-33 is
a key mediator of OSM-driven lung inflammation, induction
of type 2 immune responses and M2 macrophages in mice,
which contributes via activation of ILC2s (113).

Allergic airway diseases (AAD). In addition to the common
tissue tropism, AAD also have obvious inflammatory patterns,
including eosinophils, M2 macrophages, ILC2s, IgE secreting
B cells and Th2 cells, and cytokines, including 1L-33, IL-4,
IL-5 and IL-13 (114,115). Reduction of Th2 cytokines (IL-4,
IL-5 and IL-13), macrophages, ILC2s and other cells in lung
tissues, and alveolar lavage fluid, can improve allergic airway
inflammation in mice, which may be a potential way to treat
allergic asthma (58,116).

Argl, produced by M2 macrophages, can regulate asthma
and allergic inflammation (117). A study demonstrated that
compared with M2 macrophages expressing Argl after
activation of STAT6 mediated by IL-4/13, ILC2s constitu-
tively express Argl in a STAT6-independent manner (117).
IL-33 can affect Argl in lung tissues by promoting the
proliferation of ILC2s and indirectly activating macrophages
via STAT6 (117). These results further highlight that ILC2s
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and M2 macrophages have a synergistic regulatory effect on
asthma and allergic inflammation via Argl.

During allergic response, the selective depletion of E3
ligase VHL in innate lymphoid progenitor cells increases
hypoxia inducible factor-1a. (HIF-1a) expression, which in turn
decreases ST2 and inhibits the development of ILC2s induced
by IL-33 via epigenetic modification (118). HIF-1a affects
glycolysis and phenotype of macrophages (119), suggesting
that HIF-1a acts through the regulation of ILC2s and macro-
phages during allergic reaction.

Lung ILC2s exhibit an inverse correlation with MHC-II"ie"
resident macrophages (M1), and a positive correlation with
MHC-IT"" resident macrophages (M2), and their contribu-
tion to AAD induced by HDM may also be affected by
heredity (120). Notably, ILC2s, which are amateur antigen
presenting cells (121), cooperate with macrophages to form and
regulate adaptive immunity to allergens and helminth (121).

Pulmonary fibrosis. Idiopathic pulmonary fibrosis is
characterized by fibroblast aggregation, collagen deposition
and extracellular matrix remodeling, in which myofibroblasts
are considered effector cells (72). In the pulmonary fibrosis
model, AMs were recruited into the alveoli, and the phenotype
involves M2 macrophages, which upregulates CD206 on the
cell surface (72). In vitro, 264.7 cells treated with IL-4 were
used as M2 macrophages, and the TGF-f3 levels in the super-
natant significantly increased. a-SMA expression increased
following co-culturing of lung epithelial cells (MLE-12) with
M2 macrophages, suggesting that M2 macrophages regulate
pulmonary fibrosis by inducing epithelial-to-mesenchymal
transition (72).

In addition to the increase of M2 macrophages, the
increase of 1L-33, IL-13, TGF-PB1 and inflammatory chemo-
kines are also observed during pulmonary fibrosis (122). IL-13
and TGF-B1 are produced by M2 macrophages, and IL-13
is secreted by ILC2s, both in vivo and in vitro, and induced
by IL-33 (122). As IL-13 can induce the polarization of M2
macrophages (123), a cycle where IL-13 can be produced by
M2 macrophages and promotes polarization of M2 macro-
phages is formed. IL-33 sends signals through ST2, and
recruits and guides inflammatory cell function in ST2- and
macrophage-dependent manners, and enhances the generation
of pro-fibrosis cytokines, thus promoting the occurrence and
development of pulmonary fibrosis (122).

Zhao et al (124) reported that bone marrow-derived ILC2s
accumulate in the fibrotic lung and activated fibroblasts
to promote pulmonary fibrosis by inducing the IL-33/ST2
signaling pathway. In addition, ILC2s are induced by IL-25,
which results in significant changes in the pathological process
of pulmonary fibrosis through the production of IL-13 (125).
Thus, the application of anti-IL-33 antibody and depletion
of AMs or ILC2s may be potential therapeutic methods for
pulmonary inflammation and fibrosis.

Chronic obstructive pulmonary disease (COPD). A clinical
study demonstrated that normal AMs are mainly nonpolar-
ized (63). However, the polarization of M1 and M2 macrophages
significantly enhances, and the co-expression of M1 and M2
markers in the same AMs also significantly increases, with the
aggravation of smoking and COPD severity (63).

In human COPD, ILCs accumulate in lung tissues,
with increasing signature cytokines, such as IL-5 and
GM-CSF (126). The levels of neutrophil elastase and IL-5
increase in patients with acute exacerbation of COPD (127),
and the levels of IL-13 mRNA in eosinophils and endothelial
cells in the sputum also increase to about 30 times (128). In
addition, Th2 cytokine IL-9 can also aggravate lung injury by
activating STAT3 in COPD mice and increasing inflammation
and oxidative stress (129).

For the interaction of STIP1 homology and U-box-1
(STUBI), IL-4R a is used as the target, which prevents I1L-4
or IL-13 signal transduction via ubiquitination mediated
proteasome degradation (130). In STUBI-deficient mice,
spontaneous airway inflammation increases IL-4R o expres-
sion, STAT6 is continuously activated, M2 macrophages are
activated and serum IgE increases (130). The level of STUBI
in the airway of patients with asthma or COPD increases,
suggesting that upregulation of STUBI may be an important
feedback mechanism for inhibiting IL-4R signal transduction
in airway inflammation (130).

Carcinoma of the lungs. In different tumors, type 2 immune
responses induce polarization of M2 macrophages, which
in turn enhances the invasion and migration of tumor cells
by secreting Argl, IL-10 and TGF-f (107,131,132). The
progression of lung cancer is associated with poor patient
prognosis and high mortality (133). The survival rate of
tumor-bearing mice with vitamin A deficiency diet is low,
and the tumor size increases with increasing number of
type 2 cytokines, ILC2s and M2 macrophages in BALF of
mice, suggesting that ILC2s and polarized M2 macrophages
play a synergistic role in promoting cancer progres-
sion (133). This synergistic effect may be accomplished
via two pathways, the co-promotion of ILC2s and M2-type
macrophages by IL-33 (134-136), and the promotion of M2
macrophage polarization by type 2 cytokines (123,137),
such as IL-4 and IL-13, secreted by ILC2s (138). This is
consistent with the fact that both M2 subtype macrophages
(M2a and M2b) and IL-25-stimulated ILC2s favor cancer
progression (139). Notably, other substances that inhibit the
polarization of M2 macrophages by 1L-4/13 can change the
tumor microenvironment (140). However, further studies are
required to understand the crosstalk between ILC2s and M2
macrophages in lung cancer and determine their underlying
molecular mechanisms.

Other diseases affecting the lungs. Sepsis is defined as
life-threatening organ dysfunction caused by a dysregulated
host response to infection (141). The lung is an extremely
fragile organ that is prone to sepsis (142). In sepsis model
with cecal ligation and puncture, IL-33 upregulates IL-5
in ILC2s, whereas IL-5 inhibits neutrophil and monocyte
infiltration, suggesting that this axis is involved in lung
injury early after sepsis (142). Survivors of sepsis will have
chronically low immune functions (143). IL-33, which is
produced following sepsis, activates ILC2s and promotes
the polarization of M2 macrophages, thus accelerating the
proliferation of Treg cells through IL-10 (143). Subsequently,
increased ILC2s, M2 macrophages, IL-10 and Treg cells result
in immunosuppression (143).
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6. Conclusions and perspective

Lung resident ILC2s are important immunoregulatory cells that
are involved in metabolism, tissue repair and multiple organ remod-
eling, outlining a previously unanticipated role of type 2 immunity
in regulating basal homeostasis. Similarly, macrophages are a
group of pluripotent and plasticity immune cells, that also regulate
type 2 immune response. In lungs, AMs and interstitial macro-
phages differentiate into different cell phenotypes at different
stages of development, including M1 and M2 macrophages.

The proliferation and activation of ILC2s and M2 macro-
phages are consistent, and are not only involved in lung
development, but also in lung diseases. In addition, ILC2s
and M2 macrophages interact to regulate the lung microen-
vironment, which is effective in pulmonary development and
pulmonary diseases. The crosstalk between IL-4R a-expressing
ILC2s and upregulated M2 macrophages produces remark-
able effects in lung inflammation, allergy, tumor and fibrosis
responses. Further studies are required to better understand
the development, activation, turnover and interaction between
ILC2s and M2 macrophages in lung tissues. Targeting the
IL-33/ILC2s/M2-macrophage axis may be an effective novel
approach for the treatment of several lung diseases.
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