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Abstract

Competitive pressure to maximize the current bibliometric measures of productivity is jeop-

ardizing the integrity of the scientific literature. Efforts are underway to address the ‘repro-

ducibility crisis’ by encouraging the use of more rigorous, confirmatory methods. However,

as long as productivity continues to be defined by the number of discoveries scientists pub-

lish, the impact factor of the journals they publish in and the number of times their papers

are cited, they will be reluctant to accept high quality methods and consistently conduct and

publish confirmatory/replication studies. This exploratory study examined a sample of rigor-

ous Phase II-IV clinical trials, including unpublished studies, to determine if more appropri-

ate metrics and incentives can be developed. The results suggest that rigorous procedures

will help reduce false positives, but to the extent that higher quality methods are accepted as

the standard of practice, the current bibliometric incentives will discourage innovative stud-

ies and encourage scientists to shift their research to less informative studies of subjects

that are already being more actively investigated. However, the results also suggest that it is

possible to develop a more appropriate system of rewards. In contrast to the current biblio-

metric incentives, evaluations of the quality of the methods and reproducibility of the results,

innovation and diversity of thought, and amount of information produced may serve as mea-

sures and incentives that maintain the integrity of the scientific literature and maximize sci-

entific progress.

Introduction

The value of science is that it can address important questions about the real world. Ideally,

rigorous studies are designed to provide the most critical challenge that can be devised for

each new hypothesis. Hypotheses that pass the critical initial test are then confirmed and vali-

dated by demonstrating that they can be reliably reproduced [1–4]. While this process is effec-

tive at increasing knowledge, it is dependent on the production and publication of valid results

regardless of the outcome (i.e., whether the results are positive, statistically significant; or

PLOS ONE | https://doi.org/10.1371/journal.pone.0195321 April 3, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lindner MD, Torralba KD, Khan NA

(2018) Scientific productivity: An exploratory study

of metrics and incentives. PLoS ONE 13(4):

e0195321. https://doi.org/10.1371/journal.

pone.0195321

Editor: Christos A. Ouzounis, CPERI, GREECE

Received: November 6, 2017

Accepted: March 20, 2018

Published: April 3, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0195321
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195321&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195321&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195321&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195321&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195321&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195321&domain=pdf&date_stamp=2018-04-03
https://doi.org/10.1371/journal.pone.0195321
https://doi.org/10.1371/journal.pone.0195321
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


negative, nonstatistically significant). As Chalmers et al. have stated, “Good research ideas

often do not yield the anticipated results. . .[but] these disappointments should not be deemed

wasteful; they are simply an inevitable feature of the way science works” [5].

Unfortunately, the current system of incentives does not adequately support this normative

ideal. There is little reward for ensuring that new findings are valid or for conducting critical

studies to filter out results that cannot be reliably reproduced. Instead, there is tremendous

competitive pressure to claim primacy of discovery and to maximize the numbers of publica-

tions and citations [6]. Only one out of every eight new PhDs survive in their careers to

become principal investigators [7], and their success is based on who can publish the most

papers and garner the most citations, especially in journals with high impact factors [8] (Fig 1).

The pressure to publish lots of highly-cited discoveries affects the perceptions, judgments

and decision-making processes of scientists. While the effects of that pressure are largely out-

side conscious awareness, it encourages the use of exploratory procedures and discourages the

use of rigorous confirmatory procedures that limit the effects of bias and filter out false posi-

tives [9]. High quality procedures that control for the effects of experimenter bias substantially

reduce the number of more highly-cited new, statistically significant results and increase the

number of negative results [10–14]. An emphasis on low-quality exploratory methods have

thus evolved as the standard of practice because they are adaptive for individual scientists,

given the current system of incentives [15–20]. The consequence is that many invalid and non-

reproducible findings are produced and published and not efficiently eliminated with rigorous

replication studies which results in the publication of large numbers of nonreproducible false

positives [21], leading to what is now recognized as a “reproducibility crisis”. For example,

Begley reported that 89% of highly cited landmark preclinical studies of novel targets and

interventions for cancer were not reproducible [22] (Fig 2A).

Effective procedures are available to increase the validity and reproducibility of the results

of studies, such as: randomization, allocation concealment, blinding, using power analyses to

ensure adequate sample size, pre-specifying primary outcome measures and analytical plans

and avoiding extensive post-hoc analyses [9]. The National Institutes of Health (NIH) is devel-

oping policies to address problems with rigor and reproducibility in NIH-funded research

(NOT-OD-16-011, NOT-OD-15-015, NOT-OD-16-149), and many of the major professional

societies and publishers have endorsed guidelines to address these issues (Endorsing Associa-

tions, Journals, and Societies). These changes will likely increase the reproducibility of studies

by decreasing the proportion of false positives and false negatives and increasing the propor-

tion of true positives reported in the literature (Fig 2B). However, so long as the incentives

Fig 1. The current bibliometrics incentives model.

https://doi.org/10.1371/journal.pone.0195321.g001
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continue to emphasize and reward only statistically significant discoveries and highly-cited

papers, there will be resistance to accepting the use of rigorous confirmatory methods and

publication of the results regardless of the outcome.

To change current standards of practice it is important to develop incentives for the indi-

vidual scientist that are consistent with the interests of the scientific community and society as

a whole [23]. It has been suggested that scientific progress is maximized if the expected results

are achieved only approximately 50% of the time [24, 25], but negative results are disappearing

from the literature and now make up only 10% or less of current publications [16]. Phase II-IV

clinical trials are conducted using more rigorous methods than nonclinical studies [9, 26], clin-

ical trials consistently include replication studies as a regular part of the clinical approval pro-

cess, and they produce a much higher proportion of valid but negative results than nonclinical

studies [9]. Therefore, we examined a sample of randomized, controlled, Phase II-IV clinical

trials registered at ClinicalTrials.gov to determine what metrics and incentives could be devel-

oped to encourage scientists to use high-quality methods, to conduct confirmation/replication

studies, to publish the results even if they are not statistically significant, and to achieve an

appropriate balance between positive and negative results (Fig 2C).

For example, if the publication of negative results leads to a decrease in the activity and

resources devoted to that topic, thus diverting resources away from topics that lack promise,

decreases in research activity might be used as a new metric and incentive to encourage scien-

tists to use high-quality methods, to conduct rigorous confirmation/replication studies, and to

publish the results even if they are not statistically significant. We used the number of papers

being published on a topic as a measure of research activity. The number of publications has

Fig 2. Standards of practice and publication patterns. Font size represents relative numbers of publications in each

category.

https://doi.org/10.1371/journal.pone.0195321.g002
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been used as a measure of the overall level of research activity being devoted to specific areas of

investigation for more than 50 years, and this measure is still in common use [27–31].

Methods

This exploratory study analyzed a dataset produced and reported previously by co-authors NK

and KT [32]. The basic procedures will be summarized here but for more detailed descriptions

of the original search procedures used to identify the clinical trials and their related publica-

tions see Khan et al. [32]. ClinicalTrials.gov was searched on January 4, 2012 using the term

“rheumatoid arthritis” and a first received date of December 31, 2011 or earlier. Trials were

excluded based on the following characteristics: condition other than rheumatoid arthritis,

Phase I or observational study types, nonrandom subject allocation, recruitment status termi-

nated or active, primary outcome of safety or completion date after December 31, 2009 (to

provide a minimum of 2 years from study completion to initial publication search). The “pri-

mary completion date” (defined at ClinicalTrials.gov as the date of collection of primary out-

come measure on the last patient to be enrolled) or, when the primary completion date was

unreported, the study completion date defined by the trial’s investigators was used to deter-

mine the study completion date.

In January 2012 peer-reviewed publications were searched for study trials using a standard-

ized strategy. First, the ClinicalTrials.gov record was reviewed for links to publications result-

ing from the registered trial. Next, using PubMed, Medline was searched sequentially using

NCT ID number and the terms “rheumatoid arthritis” and “study intervention(s)”. The search

results were refined, if needed, by specifying study design features, the name of the principal

investigator, and the primary outcome. The Google Scholar database was similarly searched if

the Medline search was unsuccessful. Trial publication was confirmed by matching study char-

acteristics at ClinicalTrials.gov with the description in the manuscript. The article reporting

primary outcome results was chosen if multiple publications originated from a single study.

Principal investigators or study sponsors of trials with an unsuccessful publication search were

contacted by email (up to 3 emails) to inquire about publication status.

Outcomes (i.e., positive, statistically significant results or negative, non-statistically signifi-

cant results) were determined by examining the results of the primary outcomes reported in

the published manuscripts. If the primary outcome was unspecified, then the outcome used

for sample size calculation or first reported clinical efficacy outcome was used. The study

outcome was considered positive if any experimental intervention arm had a statistically sig-

nificant result for the primary outcome, unless safety concerns about the experimental inter-

vention necessitated the authors not to recommend the intervention [32]. For unpublished

studies, outcomes were determined from ClinicalTrials.gov, Thomson Reuters’ Web of Science

(http://ipscience.thomsonreuters.com/product/web-of-science/), online archives of abstracts

presented at annual meetings of the American College of Rheumatology (2006–2011), the

European League Against Rheumatism (2002–2011), industry-sponsored web sites, and Goo-

gle searches. If the experimental intervention was not significantly different from the control

group with respect to the primary outcome, the result was classified as negative. Because many

of the studies included active controls, a negative outcome simply meant that the experimental

intervention was not significantly better than the active control.

All searches were updated and finalized by July 7, 2012. The resulting dataset included

143 Phase II-IV clinical trials focused on interventions for a single clinical indication, rheuma-

toid arthritis, registered at ClinicalTrials.gov and completed by December 31, 2009 [32]. Addi-

tional studies were excluded from the present analyses because the outcomes were unknown

(n = 15), the results were published after 2012 (n = 8), they involved complex interventions

Scientific productivity: An exploratory study of metrics and incentives

PLOS ONE | https://doi.org/10.1371/journal.pone.0195321 April 3, 2018 4 / 16

http://ipscience.thomsonreuters.com/product/web-of-science/
https://doi.org/10.1371/journal.pone.0195321


and/or strategy development and it was not possible to determine appropriate search terms

(n = 8), and because they were not published in English (n = 2). All inclusion and exclusion

decisions were made before proceeding with the data collection and analyses conducted in the

present study (S1 Fig). The remaining dataset included 110 Phase II-IV clinical trials focused

on interventions for a single clinical indication, rheumatoid arthritis: 100% included placebo

or active controls, 100% included randomized subject allocation, and 92% were blinded (86%

were double-blind and 6% were single-blind).

For each study included in the present analysis, search terms were identified to determine

the level of activity of research on that topic for each year during a five-year period, as mea-

sured by the number of other publications on the same topic as the study included in our anal-

ysis. Relevant search terms were identified for each intervention being tested, including the

name of the molecular target, the experimental drug and all other drugs for the same molecular

target. For nonpharmacological interventions, search terms were identified from clinicaltrials.

gov records and publications. All these terms were combined using the Boolean operator ‘OR’,

and these terms were then combined with the search term “Rheumatoid Arthritis” using the

Boolean operator ‘AND’.

Level of research activity was calculated from 2 years before until 2 years after the year of

publication of each study included in our analysis. Therefore, for a clinical trial examining

the efficacy of a tumor necrosis factor (TNF) inhibitor for rheumatoid arthritis, the activity

level of that topic was represented by the number of other papers published each year, from 2

years before until 2 years after the year of publication, with terms relevant to tumor necrosis

factor and rheumatoid arthritis in the title, abstract or keywords. For unpublished studies,

the year the study was completed, as shown in ClinicalTrials.gov was substituted for year of

publication. Searches were conducted in Scopus and Thomson Reuters’ Web of Science. As

the number of publications on the different topics was very consistent between Scopus and

Web of Science, r(110) = 0.99; the publication numbers from Scopus were used in these

analyses.

In addition, the number of citations in Scopus within two years of publication was included

in the analysis for each of the clinical trials in the sample. Citations over the initial two-year

period from the time of publication is a standard bibliometric measure of productivity. Trans-

formations of the raw citation numbers were also included in the analyses using sophisticated

algorithms to normalize for year of publication and field of study: the Relative Citation Ratio

(RCR) developed at NIH, computed and made available to the public using the tool iCite

(https://icite.od.nih.gov/) [33]. Because the RCR is normalized for year of publication and field

of study, it has been suggested as an alternative to raw citation numbers that would be free

from some of the problems related to the use of raw citation counts.

We make all the data included in our analyses available to the scientific community for

further study (S1 Dataset). The supplementary data file includes the clinicaltrials.gov study

number (column heading “NCT ID”), the PubMed publication numbers (column heading

“PubMed ID”), search terms (column “Scopus search terms for searches conducted from

October to December 2015”), study outcomes (column heading “Study Outcome Positive

or Negative), interventions (column heading “Intervention”), publication status (column

heading “Publication Status”), the number of publications found with the Scopus search terms

from two years before until two years after the publication of the trial publications (heading

“Research Activity Levels From 2 years Before until 2 years After Trial Publications”, activity

levels for each of those five years are in columns I through M), the number of citations for the

trial publications (column heading 2-year citation number), and the Relative Citation Ratio

or RCR (column heading “RCR (from iCite—at https://icite.od.nih.gov/analysis on June 4,

2016)”).
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All analyses were conducted on the data included in the supplementary data file using SAS

9.4.

Results

The 110 Phase II-IV clinical trials included in our analysis produced a large proportion of

studies that failed to confirm the hypothesis and resulted in negative, non-statistically signifi-

cant results: 52 (47%) had negative outcomes, and 58 (53%) had positive outcomes (Fig 3).

Assuming the unpublished studies with unknown outcomes were distributed the same as the

unpublished studies with known outcomes, it is estimated that 52% of all the studies con-

ducted produced negative, non-statistically significant effects. Studies that successfully con-

firmed the hypotheses and resulted in positive, statistically significant outcomes were more

likely to be published. Of the studies with positive outcomes, 93% were published, while only

62% of the studies reporting negative results were published. χ2 analyses showed that the pro-

portion of nonpublished studies was significantly higher for trials with negative results than

trials with positive results, χ2(1, N = 110) = 16.01, p< 0.0001 (Fig 3).

Overall, studies reporting negative outcomes did not produce significant decreases in

research activity, as measured by the number of other publications on those same topics. How-

ever, that was primarily due to a floor effect. A between-groups repeated measures ANOVA

was conducted with year from publication as the repeated measure and a planned contrast

between the publications reporting positive results and the publications reporting negative

results. In general, publications reporting positive results were focused on topics that were

already being much more actively investigated than publications reporting negative results,

F(1, 106) = 15.04, p = 0.0002 (Fig 4). Only a few studies with positive outcomes were not pub-

lished (n = 4), and those studies were conducted on topics with very low levels of research

activity.

Based on our search terms, there were large differences in the levels of research activity

between different topics or interventions. For example, more than 1,000 papers were being

published each year related to tumor necrosis factor and rheumatoid arthritis; but, less than

10 papers were being published each year related to A3 adenosine receptors and rheumatoid

arthritis. The 110 studies with known outcomes were divided into five groups (n’s = 22)

based on research activity levels in the same year that the studies were published (Table 1).

For example, group 1 includes studies with research activity levels of 0 to 17, with a median

of 7.

For studies on topics with the lowest activity levels, a median of seven other papers were

published on those same topics in the same year, and success rates (the percentage of positive

outcomes) increased as activity levels increased: from 33% positive outcomes at the lowest

activity level with only seven other publications per year; to more than 86% positive outcomes

at the highest activity level with almost 2,000 other publications per year on the same topic. A

χ2 analysis showed that the proportion of positive results was significantly different across the

5 groups with different activity levels: χ2(4, N = 110) = 17.36, p = 0.0016 (Fig 5A).

In addition, differences in activity levels were related to the range and diversity of topics

being examined. As the levels of research activity increased, the number of different topics

being examined decreased, from many topics or interventions each being examined in one or

two studies at the lowest activity levels, to very few well-established topics, each being exam-

ined in numerous studies at the highest activity levels. A χ2 analysis showed that the number of

different topics tested was significantly different across the 5 groups with different activity lev-

els, χ2(4, N = 110) = 34.77, p< 0.0001. For example, the 22 studies at the lowest research activ-

ity level examined 21 different topics, but the studies on topics with the highest research
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activity levels were concentrated on only 4 different topics: 17 of the 22 studies at that highest

level of activity were focused on tumor necrosis factor and rheumatoid arthritis (Fig 5B).

The levels of research activity were also related to citation numbers. There was a wide range

of citation rates at every level of activity, but as activity levels increased, the range and the

Fig 3. Number of studies published and not published with positive or negative outcomes.

https://doi.org/10.1371/journal.pone.0195321.g003
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means of the citation numbers increased. A between-groups ANOVA showed statistically sig-

nificant differences in 2-year citation numbers across the 5 groups with different activity levels,

F(4,81) = 3.57, p = 0.0099 (Fig 6A). Article-level citation numbers normalized for year of publi-

cation and field of study, the Relative Citation Ratios (RCR), also increased as activity levels

increased, F(4,81) = 4.20, p = 0.004 (Fig 6A).

Fig 4. Research activity levels by study outcome. The number of papers published each year on the same topics as the

studies included in the present analysis (means ± SEM). Publication years range from two years before (-2) until two

years after the year the studies included in the present analysis were either completed or published (year 0). For

example, even two years before the publication of the studies reporting positive results, on average, 544 ± 92 papers

were already being published each year on those same topics. Two years before the publication of the studies reporting

negative results, only 102 ± 56 papers were being published each year on those topics.

https://doi.org/10.1371/journal.pone.0195321.g004
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Negative results were more frequent at lower activity levels where citation numbers were

lower, and positive results were more frequent at higher activity levels where citation num-

bers were much higher (Fig 6B). In addition, publications reporting positive, statistically sig-

nificant results were cited much more often than publications reporting negative results:

63.26 ± 7.74 citations for positive studies (mean ± SEM), and only 21.6 ± 4.02 citations for

negative studies. A between-groups ANOVA showed statistically significant differences in

2-year citation numbers from publications reporting positive results compared to publica-

tions reporting negatives results, F(1, 84) = 13.98, p< 0.0003 (Fig 6B). Differences between

positive and negative publications were still just as clearly evident even if raw citation num-

bers were normalized for year of publication and field of study using the RCR, F(1,84) =

17.53, p< 0.0001 (Fig 6B).

Table 1. Studies divided into 5 groups based on research activity levels.

Group Number of Studies Range of Activity Levels in Each Group Total Number of Positive &

Negative Studies

Number of Published Studies

Minimum Median Maximum Positive Negative Positive Negative

1 22 0 7.0 17 7 15 5 7

2 22 18 30.5 57 9 13 9 11

3 22 58 88.0 128 9 13 7 11

4 22 130 265.0 504 14 8 14 2

5 22 538 1829.0 2058 19 3 19 1

https://doi.org/10.1371/journal.pone.0195321.t001

Fig 5. Success rates increase and number of topics decrease as research activity levels increase. (A) Percent

successful, or positive, statistically significant results, at median activity levels for 5 equal groups (n’s = 22). (B) The

number of interventions or topics of research is shown at each activity level. Symbol size indicates the number of

studies being conducted on the same topic. The Y axes is inverted in this panel in order to convey the concept that,

over time, only a small number of reliable findings rise to the top.

https://doi.org/10.1371/journal.pone.0195321.g005
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Discussion

Intense selection pressure for employment and career advancement [7] combined with an

incentive system that rewards the publication of large numbers of highly-cited discoveries

leads to a large proportion of papers that are not reproducible [21, 22, 34]. Efforts are under-

way to address this reproducibility crisis by making high quality methods the standard of prac-

tice. However, so long as scientists are selected and rewarded for their ability to publish large

numbers of statistically significant, highly-cited papers, there will be resistance to efforts to

increase rigor and reproducibility.

Nonclinical studies rarely include rigorous procedures such as blinding and randomization

[10, 11, 22, 35–42], and negative results account for only 10% of the papers being published

[16]. The present study examined a set of Phase II-IV clinical trials registered at ClinicalTrials.

gov to determine if metrics and incentives could be developed to encourage scientists to use

high-quality, confirmatory methods and to publish their results even if they are not statistically

significant. Of the trials included in the current analysis, 100% included placebo or active con-

trols, 100% included randomized subject allocation, 92% were blinded, and approximately

50% produced negative results. Initial examination of this sample of Phase II-IV clinical trials

revealed a pattern consistent with what has already been reported in the literature: [1] studies

using high-quality methods to ensure the validity of the results often produce negative, non-

statistically significant results that fail to support the hypothesis [10–12], [2] publications of

positive, statistically significant effects are cited much more often than studies reporting

Fig 6. Raw citation counts and RCRs are related to research activity levels. (A) RCR values were calculated

approximately 8 years after the papers were published but RCR values and 2-year raw citation numbers were very

highly correlated, r(86) = 0.96, and both raw citation numbers and RCR values increased as activity levels increase. (B)

Publications reporting positive, statistically significant results were more highly cited than studies reporting negative,

non-statistically significant results, and those differences were still evident even with article-level normalized RCR

values.

https://doi.org/10.1371/journal.pone.0195321.g006
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negative, non-statistically significant effects [13, 14], and [3] partly because they are not highly

valued, non-statistically significant results are often not published [43].

Studies reporting negative outcomes did not produce significant decreases in research

activity, as measured by the number of other publications on those same topics. However, that

was primarily due to a floor effect. Most of the negative results were produced in studies testing

a wide range of different topics that were not yet being very actively investigated. Initial studies

that detected a significant effect attracted more resources and increased research activity, but

with mixed success, more negative results and eliminations, leading to only a few well-estab-

lished topics surviving with very high activity levels that consistently and reliably produced the

expected, positive, statistically significant effects.

These findings are consistent with the way scientific knowledge is expected to increase in

well-controlled clinical trials where rigorous procedures and strict replication/confirmation

studies are accepted as the standard of practice. Initial studies of new and perhaps more inno-

vative topics and approaches that are not yet being actively explored have higher levels of

uncertainty and higher failure rates. As more studies are conducted and more information is

collected, our knowledge increases, uncertainty decreases, and results become more predict-

able. In general, initial, high quality studies of novel subjects produce the largest amount of

information relative to what is already known, and less information is gained with each succes-

sive study. Innovative, rigorous studies of new topics that support the hypotheses only 30–60%

of the time provide more information than studies of well-established topics that reliably pro-

duce the expected, positive results more than 90% of the time [44–46].

Thus, the present study suggests that the number and diversity of topics being investigated,

success rates, research activity levels and the amount of information produced might all be use-

ful as measures to manage innovation and risk, and as incentives to encourage scientists to

conduct and publish rigorous innovative studies and replications, even if the results are not

statistically significant. In contrast, the current bibliometric incentives discourage rigorous

procedures, strict replication/confirmation studies and publication of negative, nonstatistically

significant results. Furthermore, the present results suggest that, to the extent that higher qual-

ity methods are accepted as the standard of practice, the current bibliometric incentives will

discourage innovative studies and will put pressure on scientists to shift their research to areas

of study that are already being more actively investigated. Studies of topics that are already

being very actively investigated are generally less innovative and informative, but they are

more likely to produce positive, statistically significant results and higher citation rates. This is

consistent with what others have reported [47].

It is also important to note that even sophisticated transformations of the current biblio-

metric measures, including article-level citation values normalized for year of publication and

field of study, such as the RCR, do not address this issue. The RCR has been described as a

measure of ‘influence’ that addresses some of the problems related to the use of raw citation

counts [33, 48], but it is not clear that the RCR is fundamentally different than raw citation

counts. In the present study, the RCR was highly correlated with raw citation counts, and sci-

entists select other papers to cite based primarily on their rhetorical utility, to persuade their

readers of the value and integrity of their own work. Papers are not selected for citation pri-

marily based on their relevance or validity [49, 50]. Even the father of the Science Citation

Index (SCI), Eugene Garfield, noted that citations reflect the ‘utility’ of the source, not their

scientific elegance, quality or impact [51]. Authors cite only a small fraction of relevant sources

[13, 52], and studies reporting robust, statistically significant results that support the author’s

agenda have greater utility and are cited much more often than equally relevant studies that

report small or non-statistically-significant effects [13, 14, 52–56]. As Peter Moore at Yale Uni-

versity has noted, “If citations are what you want, devising a method that makes it possible for

Scientific productivity: An exploratory study of metrics and incentives

PLOS ONE | https://doi.org/10.1371/journal.pone.0195321 April 3, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0195321


people to do the experiments they want . . . will get you a lot further than . . .discovering the

secret of the Universe” [57].

The RCR is also very new and has not yet been subjected to extensive independent evalua-

tion. It’s validation is primarily based on correlations between the RCR and evaluations of the

content of the publications by expert reviewers [33]. However, in an independent analysis,

Bornmann and Haunschild reported a correlation of only 0.29 between the RCR and expert

reviewer evaluations, which means that less than 10% of the variance in expert evaluations is

accounted for by the RCR [58]. Janssens also reported that 80% of the citations in the co-cita-

tion network used to calculate the RCR are cited only once, so the RCR calculation may be

based largely on co-citations that have little relevance [59]. Furthermore, the developers of the

RCR acknowledge that the RCR may not be reliable in papers published within the last 2–3

years or cited only 5 times or fewer [60]. More than 50% of all publications have been cited

only 5 times or fewer which suggests that most RCR values may not be reliable.

To maximize scientific progress and productivity it is important to develop metrics and

incentives that align the interests of the individual scientist with the interests of the scientific

community and society as a whole [20, 23]. This study shows that more appropriate metrics

and incentives can be developed, but of course more work is needed to develop and validate

alternatives to the current bibliometric incentives. For example, the present study focused on

clinical trials for rheumatoid arthritis, so it will also be important to determine how to specify

topics and measure research activity levels for topics in broader, less constrained areas of non-

clinical research. In addition, it will be important to evaluate ‘positive’ and ‘negative’ results in

nonclinical publications which often include multiple experiments and numerous outcome

measures.

The optimal range and overall balance of positive and negative results will also need to be

examined. It has been suggested that scientific progress is maximized if overall success rates

are approximately 50% [24, 25]. Rigorous FDA-regulated confirmatory trials of new therapeu-

tics cut the number of therapeutics advancing to the next stage by about 50% each round,

resulting in only about 10% surviving to be approved as safe and effective after only a few itera-

tions of confirmatory tests [61]. More innovative therapeutics have higher failure rates. For

example, only 6% of new molecular entities are eventually approved for clinical use, while 22%

of treatments that are only minor variations of already-approved molecular structures (me-too

drugs) survive the filtering process to be approved [61]. The outcomes of the Phase II-IV clini-

cal trials examined in the present analysis were balanced approximately 50:50 between positive

and negative results but exactly how nonclinical studies should be distributed across the con-

tinuum from new and highly innovative topics at one end, to the few remaining well-estab-

lished topics supported by multiple replication/confirmation studies, remains to be

determined.

The present results also suggest that it may still be possible to measure decreases in research

activity levels, but future efforts will need to focus on topics with fairly high levels of research

activity so that decreases can be detected. The number and proportion of negative results will

also need to be evaluated for each topic, and the duration of study will need to be extended.

Two years is not adequate to detect significant decreases in research activity levels because it

often takes several years for numerous negative results to accumulate, and several more years

before projects that are already in the pipeline have published their results.

To be clear, bibliometric measures are not necessarily dangerous or inappropriate, they are

only problematic when they are overemphasized in decision-making processes. Bibliometric

measures, including the alternative measures we are proposing, should only be used to aug-

ment, never substitute for or replace expert judgment [62–64]. Our results suggest that the

overall pattern of a range of different parameters should be considered. For example,
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determining the quality of the methods and the likelihood that the results will be reproducible

must be determined by careful, expert evaluations of the experimental methods [65]. It may

also be assumed that topics that are not being very actively investigated are exploring ideas

that are novel and more innovative, but it is possible that such topics were already investigated

in the past and did not prove fruitful. Expert evaluation is required to determine if studies are

exploring significant and meaningful issues, and measures of research activity might also be

better estimated by experts who understand how much relevant research has been conducted,

including all previous published and unpublished studies. In addition, while most highly cited

papers in areas that are already being very well explored are reporting only limited, incremen-

tal increases in knowledge, some of them are reporting revolutionary, paradigm-shifting

results, and expert evaluations are required to make those discriminations as well [57]. And of

course, assessing study outcomes and determining what the optimal distribution of success

rates might be are dependent on expert evaluations of the content of the publications.

Previous theoretical and mathematical models have suggested that scientific progress and

productivity is dependent on the exploration of diverse, innovative hypotheses to advance the

frontiers of knowledge, combined with critical replication/confirmation studies to eliminate

results that are not reproducible [1–5, 20, 44, 66]. If rigorous, innovative studies of significant

issues and publication of valid, reproducible results are desired, the best way to achieve those

objectives is to explicitly evaluate and reward scientists based on those criteria. The present

results suggest that metrics and incentives can be developed to reward scientists to achieve

those objectives. Such a system of incentives should produce a portfolio of projects and publi-

cations that range from a large number of different, new and innovative ideas and hypotheses

with high failure rates, down to a small number of well-established subjects that reliably pro-

duce the expected results. This will increase scientific productivity and the integrity of the sci-

entific literature and result in some highly-cited papers, but it will also reduce publication rates

and produce a significant proportion of poorly cited publications reporting valid negative

results.
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