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Mesencephalon and Striatum Primary Cultures
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To study cocaine’s toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain.
Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by
cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus
protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic
mechanism, confirmed by TUNEL assay.Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition
of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could
be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that
cause a major handicap in brain function following prenatal exposure to cocaine.

1. Introduction

Drug abuse can have physiological, psychological, and social
consequences [1]. Cocaine is a drug of abuse with reinforcing
proprieties that can lead to the development of depend-
ence. By binding to plasma membrane transporters, cocaine
pre vents the uptake of extracellular monoamines, conse-
quently enhancing their extracellular levels, including nore-
pinephrine and dopamine [2–4].

The vast majority of developmental studies investigating
cocaine effects have focused on the dopaminergic system,
presumably as a result of dopamine’s well-studied effects
on reward and addiction [5]. The primary mesencephalic
culture contains dopaminergic neurons from both the sub-
stantia nigra and ventral tegmental area, which expresses
tyrosine hydroxylase (TH) [6, 7], the rate-limiting enzyme
in dopamine synthesis. Dopaminergic afferents from sub-
stantia nigra pars compact provide dense innervations to
the striatum [8, 9]. Given the reinforcing properties of

cocaine such mesencephalic structures have been extensively
investigated.

Besides its reinforcing properties, cocaine can cause
damage to the CNS [10], being associated with cerebrovas-
cular pathologies and convulsions that on occasion may be
lethal [11]. More subtle functional and physical impairments
may also be evident. Clinical and preclinical studies show
learning and memory impairments, as well as the presence
of movement disorders, following cocaine abuse, even after
long periods of drug withdrawal [12, 13].

Cocaine can cross the placenta and accumulate in the
fetus [14], with cocaine effects being especially evident in the
newborns of females that abused cocaine during pregnancy.
Maternal cocaine use during pregnancy is associated with
significant impairment of cognitive development [15–17] that
is detectable during the first two years of life and which may
continue to contribute to learning difficulties and attentional
dysfunction during later childhood [18]. In addition to the
direct effects of cocaine, cocaine has a number ofmetabolites,

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 750752, 7 pages
http://dx.doi.org/10.1155/2015/750752

http://dx.doi.org/10.1155/2015/750752


2 BioMed Research International

which will be present in the mother and fetus and which have
a number of biological effects, including local anesthesia [19]
and the inhibition of monoamine transporters [20], as well as
vascular effects [21] and seizure induction [22].

Prior work on the effects of gestational cocaine has shown
apoptosis in the fetal heart [23], decreased birth weight and
head size, and deficits in cognition, attention, and language
development in childhood [24, 25]. The prenatal cocaine
exposure can result in molecular adaptations or anatomy
changes in specific brains regions, including the hippocam-
pus and cortex [26, 27]. The mechanisms underlying the
damage caused by cocaine may involve a number of fac-
tors, including mitochondrial dysfunction, toxicity from
dopaminemetabolism, and/or reactive oxygen species (ROS)
formation [28]. The nature of any subsequent cell death may
be via either apoptotic or necrotic cell death processes.

The aim of this study was to determinate the toxicity
of cocaine in two different types of primary culture, striatal
and mesencephalic. To our knowledge, this is the first study
showing cocaine to cause cell death in such cultures. It is
of note that the cocaine concentrations in this study are
comparable to those of previous investigators, although in
different cell types [29–32], as well as in the plasma of human
drug abusers, ranging between 0.3 𝜇M and 1mM [30].

2. Materials and Methods

2.1. Primary Mesencephalic/Striatal Cultures. Primary cul-
tures were cultured as previously described [33]. In brief,
the mesencephalon or striatum of Sprague-Dawley rat
embryos on embryonic day 17 was isolated and digested
with 0.5mg/mL trypsin in Earle’s Balanced Salt Solution
(EBSS) (Life Scientific) for 2 hr at 37∘C with 5% CO

2
and

plated on poly-L-lysine (Sigma) coated glass coverslips on
plastic culture dishes (MatTek), at a density of 1 × 106
cells/mL in high glucose Dulbecco’s minimum essential
medium (DMEM) supplementedwith 10%bovine calf serum,
25U/mL penicillin, 25mg/mL streptomycin, and 2mM glu-
tamine (Invitrogen). These mixed neuronal/glial cultures
were treated with cocaine hydrochloride (Sigma) 1.0mM or
phosphate saline buffer (PBS) as control, on day 9 in vitro,
for 24 hours.The chosen cocaine concentration was based on
previous studies [34].

2.2. Immunostaining. On day 10, after 24 hours in vitro,
neurons were identified by staining with anti-MAP2 (1 : 100;
Sigma) or anti-NeuN (1 : 100; Chemicon; MAB 377) [33, 35].
Unless otherwise stated, each experiment described below
was repeated at least three times, and >100 neurons were
scored for each condition on triplicate coverslips. After 24
hours of cocaine exposure, cultures were fixed with 4%
paraformaldehyde (Sigma) in PBS and permeabilized with
0.1% Triton X-100. After blocking nonspecific binding with
PBS plus 3% BSA and 3% fetal bovine serum, the cells
were incubated with antibodies to identify neurons (anti-
MAP2 or anti-NeuN) followed by secondary Alexa Fluor 594
goat anti-mouse antibodies (1 : 100; Molecular Probes). In the
last wash step, Hoechst 33324 (1 g/mL) was added to assess
nuclear morphology. Hoechst 33342 is a UV-excitable nucleic

acid stain readily taken up by all cells. Its blue fluorescence
is particularly bright in the condensed nuclei of apoptotic
cells. Typically, several hundred cells were scored in each
experiment using fluorescent microscopy.

2.3. TUNEL Assay. Cells with DNA fragmentation were
detected by the terminal deoxynucleotidyl transferase-medi-
ated biotinylated UTP nick end labeling (TUNEL) method
using the “in situ cell death detection-fluorescein kit”
(Roche).

2.4. Statistical Analysis. Data were obtained from three inde-
pendent experiments. In each experiment three replicate
samples were quantified. Statistical comparisons were made
by Student’s t-test for single comparisons. All values of 𝑃 <
0.05 were considered statistically significant.

3. Results

To characterize the primary striatum culture, on day 10 in
vitro, we observed the expression of GABAergic neurons
that were stained with anti-GAD65/67 [36]. Our results
demonstrated that 90% of the neurons present in the culture
wereGABAergic neurons (data not shown).We also tested for
the presence of dopaminergic neurons by antibody staining to
identify tyrosine hydroxylase (TH), the rate-limiting enzyme
in the dopamine synthetic pathway. The results showed that
there was no sign of striatal neurons expressing TH (data
not shown). The mesencephalic culture was positive for TH,
indicating that our mesencephalic culture comprises 10%
dopaminergic neurons, which is characteristic of mesen-
cephalic cultures [6].

In the primary striatal culture, control neurons exhibited
normal chromatin, showing only 3% cell death. In con-
trast, after cocaine treatment (1.0mM, 24 hours), neurons
manifested an increase in bright/condensed Hoechst 33342
fluorescence, with evidence of 10% cell death (Figures 1(a)
and 1(b)).We also observed, as indicated byMAP2 andNeuN
staining, that neurite extension was inhibited after cocaine
treatment (Figure 1(a)).

Similarly, in the primary mesencephalic culture, treat-
ment with cocaine (1.0mM) for 24 hours caused a decrease
in neuronal viability coupled to an inhibition of neurite
prolongation (Figures 2(a) and 2(b)).

The TUNEL assay confirmed that cocaine caused apop-
totic death in both striatal and mesencephalic cultures
(Figures 3(a), 3(b), 4(a), and 4(b)).

4. Discussion

Cocaine abuse can lead to toxic effects, including causing
damage in specific brain areas. Studies in humans [37, 38],
animals [39], and cell cultures [40, 41] have shown the toxic
effects of cocaine, which can lead to cell death. Neuronal
death during CNS development can change the organization
of synaptic connectivity, leading to developmental and behav-
ioral abnormalities in the offspring. Previous work shows
cocaine to modulate the development [42–44] and survival
[43–45] of CNS cells.
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Figure 1: (a) Immunostaining of striatal primary cells treated with
PBS (left panel) or treated with cocaine 1.0mM (right panel) for
24 hours. Neurons were labeled with MAP2 and NeuN (red label).
Hoechst 33342 (blue label) was added to monitor chromatin con-
densation. Arrows indicate dying neurons. Staining was observed
under a fluorescent microscope. The treatment with cocaine caused
a decrease in neuronal viability and an inhibition of neurite prolon-
gation. (b) Percentage of cell death observed by immunostaining
of striatal primary cultures treated with PBS and cocaine for 24
hours. Values are mean ± SEM from five independent experiments.
The treatment with cocaine caused a decrease in the viability of
the neurons. ∗Significantly different from the control (PBS) value:
∗

𝑃 < 0.05 by Student’s t-test.

The present study demonstrates that cocaine decreases
neuronal survival in primary striatal and mesencephalic
cultures, two different brain regions relevant to cocaine’s
mechanism of action. Most neurons in striatal culture are
GABAergic, with some cholinergic neurons. Also, striatal
cultures of primary neurons express functional D

1
and

D
2
dopamine receptors [46, 47] as well as the dopamine

transporter [7]. We also observed morphological changes in
both cultures, characterized by chromatin condensation and
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Figure 2: (a) Immunostaining of mesencephalic primary cells
treated with PBS (left panel) or treated with cocaine 1.0mM (right
panel) for 24 hours. The neurons were labeled with MAP2 and
NeuN (red labels). Hoechst 33342 (blue label) was added to monitor
chromatin condensation. Arrows indicate dying neurons. Staining
was observed under a fluorescent microscope. Cocaine treatment
caused a decrease in neuronal viability. (b) Percentage of cell death
observed by immunostaining of the mesencephalic primary culture
treated with PBS and cocaine for 24 hours. Values are mean ± SEM
from four independent experiments. Cocaine treatment decreased
neuronal viability. ∗Significantly different from the control (PBS)
value: ∗𝑃 < 0.05 by Student’s t-test.

DNA fragmentation, which indicates a process of apoptosis.
In our model, striatal neurons in cell culture do not express
the TH enzyme, the rate-limiting enzyme in dopamine syn-
thesis, suggesting that this culture cannot produce dopamine.
However, mesencephalic neurons in culture did express TH
and therefore produce dopamine. Given the cocaine toxicity
in both cultures, this suggests that cocaine’s toxic effect may
be regulated by dopamine, but also possibly by an array of
signaling through multiple and diverse secondary messenger
system(s).
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Figure 3: (a) In situ histochemical evidence of DNA fragmentation
after cocaine exposure. Striatal cultures were first established for
7 days and incubated with cocaine (1.0mM) for 24 hours. After
cells were fixed, the TUNEL method was performed. Cultures
were photographed at the level of the neuronal layer. Note the
labeling in the vast majority of treated cells, in contrast with the
labeling of a few control cells. TUNEL positive cells were dUTP
labeled (brown label). The neurons were labeled with MAP2 and
NeuN (green label) and Hoechst 33342 (blue label) was added to
monitor chromatin condensation. (b) Number of TUNEL positive
cells observed by immunostaining of the striatal primary culture
treated with PBS or cocaine for 24 hours. Values are mean ± SEM
from five independent experiments. Cocaine treatment decreased
neuronal viability. ∗Significantly different from the control (PBS)
value: ∗𝑃 < 0.05 by Student’s t-test.

We showed that the exposure of both primary mes-
encephalic and striatal culture neurons to cocaine evoked
an apoptotic process. Apoptosis has also been reported
by some authors in other models but not always [48–50].
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Figure 4: (a)Mesencephalic cultureswere first established for 7 days
and incubated with cocaine (1.0mM) for 24 hours. After cells were
fixed, the TUNEL method was used. Cultures were photographed
at the level of the neuronal layer. Note the labeling in the vast
majority of treated cells, in contrast with the labeling of a few
control cells. TUNELpositive cells were dUTP labeled (brown label).
The neurons were labeled with MAP2 and NeuN (green label)
and Hoechst 33342 (blue label) was added to monitor chromatin
condensation. (b) Number of TUNEL positive cells observed by
immunostaining of the mesencephalic primary culture treated with
PBS or cocaine for 24 hours. Values are mean ± SEM from five
independent experiments. Cocaine treatment decreased neuronal
viability. ∗Significantly different from the control (PBS) value: ∗𝑃 <
0.05 by Student’s t-test.

It might be that the great variability in the physiological
and functional effects of cocaine on developing CNS is
due to the multiple biochemical and pathophysiological
routes of cocaine’s actions. For example, dopamine and 5-
hydroxytryptamine (serotonin) transporter knock-out mice
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still continue to exhibit drug seeking behavior, suggesting
the involvement of additional molecular pathway for cocaine
action, besides blockingmonoamine neurotransmitter trans-
porters [4]. Studies demonstrated that GABA transmission in
the nucleus accumbens is also altered after withdrawal from
repeated cocaine [51]. At higher concentrations, cocaine can
act as a local anesthetic, interacting with a variety of targets
in both specific and nonspecific manners.

Chronic cocaine treatment can modulate voltage-gated
Na+ and Ca2+ channels activity via the production of cyclic
AMP by DA

1
receptor stimulation [52, 53]. Also, direct

modulation of ion channels can be responsible for some
cocaine effects. It has been shown that cocaine can block
voltage-dependentNa+ channels [54] andCa2+ channels [53].
Other ion channels are modified by cocaine including the
K+ channels activated by acetylcholine and adenosine [55].
Ca2+ and K+ channels are involved in the repolarization
and after-hyperpolarization phases of the action potential.
The magnitude and duration of the after hyperpolarization
phase determine the rate of neuronal firing. Blockade of the
Ca2+-activated-K+ channelsmay facilitate repetitive neuronal
firing thatmay enhance the propensity to induce seizures and
neuronal function during cocaine overdose [56]. Blockade
of K+ could also underline a variety of effects mediated by
cocaine, including increased Ca2+ influx at the presynaptic
terminal, which can augment neurotransmitter and hormone
release and can contribute to neurodegenerative processes.
As such ionic regulation may be a significant mediator of
cocaine’s neurotoxicity. Although we have no evidence of the
presence of cocaine metabolites (ecgonine, ethyl ecgonine,
and ecgonine methyl ester) in these cultures, we cannot rule
out that they could also be involved in the mechanism of
cell death. However, previous work showed that only cocaine
significantly decreasedMAP2 content in cortical culture [57].
This could suggest that the apoptotic cascade might require
the intracellular penetration of cocaine.

We also observed an inhibition of the neurite outgrowth
in the cells exposed to cocaine. This could be due to the
influence of cocaine on cytoplasmic calcium, thereby affect-
ing the cytoskeletal network and altering neuronal regulation.
Cocainemay target cytoskeleton proteins, particularlymicro-
tubule associated proteins (MAPs) [58] and actin filaments,
altering the process of initiation, elongation, and turning of
neuritic branches [59]. Cocaine can also act to modulate
integrin structure and functions, thereby contributing to
decreased neurite outgrowth. Nonintegrin ligands can alter
neuronal integrin expression, with consequences for neurite
outgrowth [60].

Maternal gestational cocaine abuse can cause damage to
their offspring. Since the migration of neurons ultimately
determines their connectivity, synaptic potential, and viabil-
ity, altered neuronal migration may be a significant deter-
minant of the consequences of maternal gestational cocaine
use in the offspring. Here we demonstrate, for the first time,
that an acute dose of cocaine can cause the apoptosis of pri-
mary striatal and mesencephalic culture cells after 24 hours.
Further investigation as to the biological underpinnings of
cocaine’s effects is likely to contribute to the etiology, course,

and treatment of the consequences of maternal gestational
cocaine abuse in the offspring.
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