
molecules

Article

The Need for Community Standards to Enable Accurate
Comparison of Glycoproteomics Algorithm Performance

William E. Hackett 1 and Joseph Zaia 1,2,*

����������
�������

Citation: Hackett, W.E.; Zaia, J. The

Need for Community Standards to

Enable Accurate Comparison of

Glycoproteomics Algorithm

Performance. Molecules 2021, 26, 4757.

https://doi.org/10.3390/

molecules26164757

Academic Editor: Kiyoko F.

Aoki-Kinoshita

Received: 26 March 2021

Accepted: 3 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Bioinformatics Program, Boston University, Boston, MA 02215, USA; wehacket@bu.edu
2 Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA
* Correspondence: jzaia@bu.edu

Abstract: Protein glycosylation that mediates interactions among viral proteins, host receptors,
and immune molecules is an important consideration for predicting viral antigenicity. Viral spike
proteins, the proteins responsible for host cell invasion, are especially important to be examined.
However, there is a lack of consensus within the field of glycoproteomics regarding identification
strategy and false discovery rate (FDR) calculation that impedes our examinations. As a case study
in the overlap between software, here as a case study, we examine recently published SARS-CoV-2
glycoprotein datasets with four glycoproteomics identification software with their recommended
protocols: GlycReSoft, Byonic, pGlyco2, and MSFragger-Glyco. These software use different Target-
Decoy Analysis (TDA) forms to estimate FDR and have different database-oriented search methods
with varying degrees of quantification capabilities. Instead of an ideal overlap between software,
we observed different sets of identifications with the intersection. When clustering by glycopeptide
identifications, we see higher degrees of relatedness within software than within glycosites. Taking
the consensus between results yields a conservative and non-informative conclusion as we lose
identifications in the desire for caution; these non-consensus identifications are often lower abundance
and, therefore, more susceptible to nuanced changes. We conclude that present glycoproteomics
softwares are not directly comparable, and that methods are needed to assess their overall results
and FDR estimation performance. Once such tools are developed, it will be possible to improve FDR
methods and quantify complex glycoproteomes with acceptable confidence, rather than potentially
misleading broad strokes.

Keywords: glycoproteomics; false-discovery rate; standards; target-decoy analysis

1. Introduction

In order to properly assess the biological roles of glycosylation, there needs to be a
set of consistent standards and assessments for false discovery rate (FDR) methods and
identification schema. The field of glycoproteomics is undergoing exciting developments
and expansions, to the point that many researchers are reporting site-specific glycosylation
for complex glycoproteins, including the spike protein of SARS-CoV-2 [1–5]. Glycopro-
teomics data will inform understanding of virus infection mechanisms and their evolution
over time; however, as more investigators employ glycoproteomics measurements, it is in-
creasingly important to have a firm consensus of best practices for acquiring and analyzing
glycoproteomics data.

To quantify glycoprotein glycosylation and reach confident conclusions regarding
the changes that occur in a biological system, all experimental assumptions that influence
the calculation of FDRs must be made clear. Glycoproteomic FDR methods are largely
developed from those used in proteomics, specifically target decoy analysis (TDA) [6].
TDA is based on scoring a spectrum against a database of potential peptides and decoys,
typically derived from the reversed protein sequences; these scores are then ranked, a
threshold set, and the number of false positives is correlated to the proportion of decoys to
targets scoring above the threshold.
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This process relies on three assumptions: (1) there is a set of reliably false decoys,
(2) these false decoys largely mimic scoring of targets for the unidentifiable region of
the scoring distribution, and (3) the decoy database is large enough to avoid sampling
bias. To date, different glycoproteomic softwares have taken divergent approaches to
calculate TDA with the result that the meaning of FDR depends on the assumptions behind
each algorithm.

The four software’s tested here (Byonic, GlycReSoft, MSFragger-Glyco, and pGlyco2)
use TDA-based methods for calculating FDR. Each has potential benefits and detractors to
be considered.

Byonic [7] uses a reverse protein decoy model but does not employ a glycan decoy.
In the reverse protein decoy model, peptides are well controlled, but the attached glycans
are largely score-dependent features with little direct false positive control.

GlycReSoft [8], as used here, uses a reverse protein decoy model with mass shifted
glycans. Mass shifted glycans have had their mass shifted arbitrarily by 1 to 30 Da; this
creates randomness to affect scoring but is not ideal. GlycReSoft performs better using its
multi-part search and permuted glycan method, but these methods were not used here
due to a data compatibility issue. In the mass-shifted glycan method, both peptide and
glycans are controlled for in the FDR method, but glycans are less reliably accounted for
than the peptides.

MSFragger-Glyco [9] uses the reverse protein decoy model and the extended mass
model from Peptide-Prophet [10] to treat glycans as PTMs. The Peptide-Prophet extended
mass model is a filtering step that calculates the probability of a match based on the
difference between the precursor mass and the calculated match mass. Glycans are not
explicitly controlled in this system, but peptides are highly controlled.

pGlyco2 [11] uses an aggregate system of FDRs from permuted glycans and reversed
peptide searches contributing to the glycopeptide FDR. It tabulates a glycan FDR, a peptide
FDR, and then a glycopeptide FDR, which informatively uses the glycan and peptide
FDR. This makes both portions of the glycopeptide well-controlled for in FDR. Still, it
does make data with poorer fragmentation of either glycan or peptide more susceptible to
false-negative results.

These software’s differ in several other significant ways, but each software should find
the same glycopeptides as the others in a perfect system. This is false as different scoring
algorithms and different FDR methods will lead to divergent findings. But there should be
a common ground that all software’s can agree upon. At the least, there should be a strong
degree of overlap between their outputs as the most prevalent and clearest glycopeptides
rise above the rest in each system.

2. Results

Assignment of site-specific glycosylation in SARS-CoV-2 spike protein requires careful
consideration of the effects of glycopeptide search space selection, post-translational mod-
ification inclusion, protein recombination vectors, software selection, and mass spectral
tolerances. We sought to address whether, in the absence of consensus FDR standards for
quantitative glycopeptidomic data, the different software programs reach similar glycopro-
teomics assignments. To better understand the differences in glycoproteomics assignment
approaches, we re-analyzed two publicly available datasets: one from the Crispin group at
the University of Southampton and the other from the Yang group of Sichuan University.
The Crispin dataset was produced from a genetic construct corresponding to the complete
spike protein; this data is herein referred to as the Watanabe et al. data. The Yang group
analyzed a recombinant S1 subunit of the spike protein; this data is referred to as the Zhang
et al. data. Both groups used HEK-293 cell lines for protein expression.

We compared results for these data sets using Byonic, GlycReSoft, MSFragger-Glyco,
and pGlyco2. The original intent of this study was to use the exact same glycopeptide
search space for each software with the same PTMs at the same FDR with the same error
tolerances. The original intended search-space was a combinatorial search space of viable
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human glycans with the possibility of sulfated and phosphorylated glycans; sulfated
glycans were to be included after their observed presence in a more stringent reanalysis of
prior studies and confirmation by another group [2,12].

Unfortunately, the softwares are unable to all use the same glycopeptide search
space. Some of the softwares did not allow for custom libraries, and others performed too
erroneously in expanded libraries to produce intelligible results even when not considering
sulfated glycans. While pGlyco2 has a robust and capable scoring algorithm, it does not
allow for sulfated glycans and lacks a library generation system. MSFragger-Glyco can
be easily set up to search for sulfated glycans. Still, these searches ran into a problem
of interpretation wherein the mass offset system could not distinguish between sulfated
glycans and similarly massed glycans on mass alone. Mass offset fails because a glycan
with sulfation attached to a HexNAc is less than a twentieth of a Dalton from the same
glycan with three Hex instead [13].

Instead of creating an unbalanced comparison where one software prevailed over
the others, each software was allowed to use its recommended protocol and search space
to assume that these would be the most optimal conditions. The protocols used were
those found on the respective softwares’ papers and user manuals with the following
adjustments. We assumed the protein search space to consist only of the mutated spike
proteins as presented in the repositories; we set error tolerances to 10 ppm for the precursor
match and 20 ppm for the fragment match where possible. Oxidation, carboxymethylation,
and deamidation were used as PTMs in all searches.

The following results are not meant to show that any software finds more glycopep-
tides than another, nor is it intended to provide insight into the best software to use. They
are presented as a case study in the differing results that arise following the recommended
protocols for each software.

2.1. Watanabe et al. Reanalysis

In “Site-specific glycan analysis of the SARS-CoV-2 spike” [1], Watanabe et al. used
long liquid chromatography gradients (over four hours) compared to most quantitative
glycoproteomics experiments (1.5–2 h) and three different proteases in separate experi-
ments, each with a single replicate. They used an automated search and a degree of manual
curation to identify glycans at all 22 N-glycosylation sequons on the spike protein. The
109 glycans identified were split up by degree of processing into three groups: Oligo-
mannose, Hybrid, and Complex. Oligomannose was composed of glycans with only two
HexNAc and four to nine Hexose; hybrid consisted of 8 glycans with low numbers of
HexNAc and relatively minimal processing of the Hex branches; complex composed the
remaining most processed 95 glycans. They reported that 14 of the sites were predomi-
nantly highly processed complex glycans, and eight sites were predominantly minimally
processed oligomannose glycans. They contrast this with the oligomannose shielding
observed in Lassa, HIV, Influenza, and MERS, and conclude that the SARS-CoV-2 spike
glycoprotein is less shielding than in viruses, including HIV and Lassa. They propose that
evolutionary pressure drives the formation of glycan shields against host antibodies and
find the weak glycan shield observed for SARS-CoV-2 to be fairly consistent with other
coronavirus glycosylation.

For the Watanabe et al. data, we used default glycan search spaces for each program,
and the peptide search spaces were all given the same fasta file consisting of the SARS-
CoV-2 mutated spike protein. This produced a wide variety of search space sizes: Byonic’s
182 human N-glycan space with 165 glycans; GlycReSoft’s combinatorial search space with
sulfation and phosphorylated glycans for 3888 glycans; MSFragger’s default glycan list for
182 glycans; pGlyco2’s comprehensive default database of 1670 glycans. The proteomic
search spaces all used their respective digestion enzymes of trypsin, chymotrypsin, and
alpha-lytic protease.

Due to several glycans not existing within the Watanabe classification chart, we used
the system of Zhang et al. [5], which is classified by the number of HexNAc, where those
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with two are Simple, three are Hybrid, and four or more are Complex. Glycans with
less than two HexNAc (included by Byonic, MSFragger, pGlyco2) or glycans that have
been sulfated or phosphorylated (included using GlycReSoft) are classified as Other (see
Figure S2). Compared to the Watanabe system, this creates a higher number of Simple
and Hybrid glycans. A comparison of the proportion of the softwares’ search spaces by
classification shows that all softwares have a majority of Complex glycopeptides, except
GlycReSoft. Due to the inclusion of sulfated and phosphorylated glycans, GlycReSoft has
a much larger proportion of Other-type glycans. Still, if these other-type glycans were
reclassified using only the HexNAc criterion, it would also be a majority Complex-type.
A graphical depiction can be found in the supplemental information (Figure S2).

To better illustrate the overlap between software search spaces, we generated Venn dia-
grams that show the consensus between glycopeptides in Figure 1A. MSFragger-Glyco and
Byonic have few glycopeptides not searched for in other software, but pGlyco2 and Gly-
cReSoft both have a high degree of unique glycans, largely stemming from their inclusion
of NeuGc and of sulfated or phosphorylated glycans, respectively.
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We used the result generated by each software without subjective interpretation. Each
digest’s results were combined for each software to identify as many glycopeptides as
possible (Figure S3b). Byonic observed 14 of the 22 sites (Figure S5a), but there were three
pairs of sites where at least one site was indistinguishable from the other due to proximity
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and peptide overlap for a total of 9 identifiable glycosylation sites. GlycReSoft saw 17 of the
22 sites (Figure S5b) but also had three pairs of overlapping sites for a total of 14 identifiable
glycosylation sites. MSFragger observed 16 of the 22 sites (Figure S5c). pGlyco2 was
ultimately excluded from the Watanabe et al. reanalysis presentation as it only identified
one site, which we suspect is due to the limited search space and FDR method of pGlyco2.

We show in Figure 2 a visualization of the degrees of N-glycan biosynthetic processing
observed by each of the three softwares described above. These pie charts show the totals
of the logged abundance for each site; we only show this for four of the sites on the S1
subunit here, but more can be found in Supplemental Figure S5. Figure 2 begins to show
our difficulties in comparing results. The four selected sites of Figure 2 were chosen for
the shared observance across all programs in both datasets and to contrast the results
to a significant finding of Watanabe et al. They found a high mannose distribution of
glycopeptides on site N234 and how this may be a shielding mechanism for binding sites.
None of the searches performed here found this site to be predominantly unprocessed,
high mannose glycans. Byonic found it to be wholly complex glycans or unglycosylated,
GlycReSoft found a mixture with no predominating type, and MSFragger found a similar
result to GlycReSoft.

In the selected four sites, the closest sites to a consensus are that of N657, which
found a predominantly complex site with a low number of simple and hybrid glycans,
and N282, which saw largely complex glycans but with phosphorylation appearing in
GlycReSoft. Differences arise at N122, showing GlycReSoft and MSFragger agree over
complex glycan occupancy, but GlycReSoft and Byonic have a closer consensus over simple
glycan occupancy. This should not be taken as a refutation of the Watanabe et al. results,
but instead lead us to question: why can three different softwares, given the same error
tolerances, the same PTMs, and the same data, find contrasting results from just the change
in software functionality and the change in search space?

2.2. Zhang et al. Reanalysis

In “Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike
Proteins” by Zhang et al. [5], the classification of the glycans differs from Watanabe et al.
with high-mannose being defined as glycans with only two HexNAc, hybrid are those with
three, and complex are those with more. Overall, this does not greatly impact the results
of either experiment. Of the 13 glycosites observed, only one could be considered to have
close to a majority high mannose, with the other 12 having predominantly complex-type
glycans. Three of those complex sites were oligomannose in Watanabe et al. The most
significant of those is site N234, a very dense oligomannose site and was proposed to be
shielded by the protein itself the receptor-binding domain. While there is not a structure
available for the S1 unit on its own, this could be viewed as confirmation that the lack
of complexity in this site is due to shielding by the protein. More S1 glycopeptides were
identified in this experiment than in the Watanabe experiment, which used a construct
with S1 and S2 domains; the glycopeptides identified are not necessarily those of the whole
protein due to the large difference in the construct.

Figure 1B shows the consensus of glycopeptides found by each software in the
Zhang et al. reanalysis; these results run counter to the glycan proportion. Each soft-
ware has a plurality or majority of their results unique to themselves. We can see that
search space is not the predominant determinant in the differences between these results.
If one were to filter post search to the glycans found only in all searches, these overlaps do
not experience any large shifts in proportion. This can be seen in Figure S3c.

Our comparison of glycoproteomics software performance showed a large degree of
variability, as seen in Figure 3. Byonic found that of the 13 sites, five were complex, and
one was evenly split between complex, hybrid, and high mannose (Figure S4a). GlycReSoft
found seven were complex, and none were high mannose (Figure S4b). MSFragger-Glyco
found six were complex, and none were high mannose (Figure S4c). pGlyco2 found 7 were
complex (Figure S4d). As an overview, these seem predominantly consistent, but looking
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closer, we see varying degrees of correlation between site behavior; when looking at the
individual glycopeptide compositions of a given site, there are additional dissimilarities in
performance between softwares.
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Figure 2. Comparison of results for searching the Watanabe et al. 2020 data using Byonic, GlycReSoft,
and MSFragger. Searches were conducted using the recommended settings for each software. The
pie charts show the degree of N-glycan biosynthetic processing, with sulfated glycans included as
“other”. The sum of relative log abundance determines the area. Green corresponds to Simple, light
blue to Hybrid, purple to Complex, yellow to sulfated or phosphorylated, and grey to unglycosylated
peptides and other edge cases identified by the softwares. Percentages of a pie chart are placed in
clockwise order around it, starting from the twelve-o’clock position; they appear in the following
order, skipping fully absent categories: Sulfated, Simple, Other, Hybrid, Complex.

In Figure 3, the sites show different consensus behaviors compared to the
Watanabe et al. data reanalysis. With the assumption that pGlyco2’s results are skewed by
comparing spectrum counts to log abundances, N122 appears to be a fairly good consensus,
with GlycReSoft differing due to both sulfation and phosphorylation. N234 would be a
consensus of wholly complex glycans were it not for MSFragger’s discovery of simple
glycans. N282 has differing results; all softwares agreed it was overwhelmingly complex,
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but GlycReSoft and MSFragger found 2–4 times the amount of simple and hybrid glycans
that Byonic and pGlyco2 found, along with some phosphorylation from GlycReSoft. The
most differing site is that of N657 wherein Byonic found few simple glycans among the
complex. GlycReSoft found over a third of the occupancy as simple glycans, and a further
tenth were phosphorylated glycans. MSFragger-Glyco found that a tenth of the signal came
from simple glycans and observed hybrid glycans; pGlyco2 observed even more hybrid
glycans than MSFragger.
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The conclusions drawn above are affected by our inability to discern bias from phys-
ical causes, innate biology, experimental procedures, and various computational causes.
For example, the oligomannose glycopeptides may be more likely to co-elute, lead to a
confounding error in signal strength and cause a shorter LC gradient to result in a seem-
ingly more complex set of glycosites. It may be that there was a sample preparation error
in the single replicate runs, introducing noise and diluting the ability to identify more
simple glycopeptides. It may be that the searches were unduly biased against simple
glycosylations by the search space or scoring system used.

In order to address these possibilities, it is important to consider the quality of the FDR
estimation. Because there remains no consensus method for building glycopeptide decoys,
many of the searches may violate the law of large numbers assumptions of TDA-based
FDR methods. The size of the theoretical search space is a few thousand glycopeptides,
which is not very large given the assumptions of TDA [6]. Consider that the original spike
protein glycoproteomics publications for the data used here found just a few hundred
glycopeptides in total; at an FDR of 1%, one expects at least one false positive per hundred,
but this also means that in a normal TDA setup, only one decoy was detected per hundred
identifications. This means that the number of decoy glycopeptides is too few for accurate
estimation of FDR. TDA has an inherently limited shelf life; as experimental quality and
scoring algorithms improve, targets are more likely to outperform decoys as spectra become
clearer and scoring algorithms can pick out individual points; this is especially true for
glycopeptide systems wherein scores are often multifactorial, depending on the glycan and
peptide components. Better scoring algorithms necessitate better decoys, but defining a
better glycopeptide decoy without erasing the real gains of progress is difficult to achieve.

3. Discussion

For the two published data sets [1,5], we find that it is not possible to distinguish
biological from computational sources for observed differences in glycoproteomics search
results. We do not know which software has produced correct results, and we lack a
systematic way to determine correct results. Further, we do not have a systematic way to
determine reasons for the differing search engine results. The differences arise from the
scope of the search space or from the probabilistic shifts in search space. They could easily
come from the change in FDR calculation or the priorities of the scoring systems. They
could also come from the decoy generation method.

While efforts in standardization of output are ongoing, and various attempts at
improving decoy generation and false discovery rate exist [11,14–16], there is not presently
a way to discern their validity as methods beyond low complexity examples, and even
these are not guaranteed to be accurate. The manual examination is likely to produce false
negatives and can produce false positives depending on the examiner’s interpretation.

MS1 examination can help improve the reliability of the MS2 identification and quan-
titation tools, but they experience their own foibles and have to work with the ambiguous
output of the MS2 based methodologies. MS1 identification tools such as Glycopeptide-
GraphMS [17] and GlycoMod [18] can be used to confirm results, but MS1 identifications
are likely to be more error-prone than MS2, based informational availability, and could
potentially generate false-negatives or confirm false-positives. They can serve as an invalu-
able check but ultimately do not eliminate the problem of certainty. Some methodologies
use them to help identify and perform manual examinations, but manual examination can
be variant between researchers and is impractical for larger datasets.

Other MS1 tools can be used for quantifying and qualifying datasets, such as LaCy-
Tools [19] and SkyLine [20], but even they are not silver bullets. If the initial search results
are spurious or missing options, LaCyTools and SkyLine will miss these results.

In order to accurately compare the results among softwares and the results between
experiments, we must overcome the known issues. In reporting experiments, we need
to define our search spaces clearly and justify the most appropriate glycan search space
for a biological system. If the search space is too broad, it will include biosynthetically
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unreasonable glycopeptides; if too narrow, it will ignore viable and potentially significant
results. It should be possible to determine a consensus, biosynthetically-reasonable and
encompassing, search space for humans and model systems. While some softwares include
default search spaces for humans, none of them meet the encompassing requirement.

Reporting in studies needs to include the background proteins and other PTMs
considered in a search space in order to properly assess if the law of large numbers
assumption of TDA is being met; without this assumption interpreting the output of TDA-
based FDR becomes increasingly error-prone. Therefore, in addition to standardizing the
search space, we need to reduce the uncertainty produced by different scoring systems and
FDR methods.

As it currently stands, we do not know if our decoys will suffice for our extant scoring
systems. A decoy should mimic the average false score of a target and be a provably false
result; glycopeptide decoys face the great difficulty of needing to mimic both peptide and
glycan. Suppose the decoys fail to mimic one but not the other. In that case, there is a
higher risk of undetected false-positive results since one can spuriously drive the score
of decoys lower than targets since target scores will be higher if only one portion of their
result matches the spectra in question which is impossible for a decoy to do by definition.
This may create a diversion between the targets and decoys earlier than the assumptions of
TDA provide for, which assumes two largely equivalent distributions with a heavy-tailed
target distribution. This can be solved with improved decoy systems, which can be helped
in development by scoring assessment tools that test the validity of TDA methods.

It is a possibility that glycoproteomics may need to shift away from TDA-based meth-
ods sooner rather than later. TDA was not designed with multimodal scoring distributions
in mind, nor was it designed with filtering in mind; these can actually serve to break the
assumptions of the method. Scores that simultaneously consider glycans and peptides
are bound to generate multimodal scoring distributions depending on the combinations
of correct and incorrect parts of potential matches. Scores which do not simultaneously
consider both parts of a glycopeptide are likely to generate more false positives. And the
better that a scoring system performs in identifying everything that comes out of a mass
spectrometer, the less applicable TDA-based FDR becomes; decoys can only perform so
well in a perfect scoring system.

These difficulties need to be addressed before we can truly discern firm conclusions
on spike protein glycosylation and its evolution.

4. Materials and Methods

Glycopeptide searches were performed according to the recommended protocol of
each software. All searches were performed on default glycan search spaces and with only
the CoV-SARS2 spike protein as proteomic input; they were all performed with a 10 ppm
precursor tolerance, a 20 ppm product ion tolerance, and a 1% FDR threshold or equivalent
therein. Results were grouped by glycosite rather than the specific peptides acquired.

Byonic used the 182 human n-glycan glycan database; GlycReSoft used a combinatorial
sulfated-phosphorylated database and did not receive glycomic or proteomic input to focus
the search space; MSFragger-Glyco used its standard glycan offsets; pGlyco2 used its
standard glycan structure library. MSFragger-Glyco glycan offsets were labeled by glycan
mass. They all produced their own quantitation’s except pGlyco2, which was quantified
by the authors by spectrum count. Glycopeptide quantitations were joined in the Zhang
et al datasets by averaging.

All charts were produced in RStudio using the ggplot2 and VennDiagram libraries.
Venn diagrams show consensus glycans of the softwares and matching identifications of
glycopeptides in the Zhang et al. dataset. Watanabe et al. are not shown here due to a low
number of identifications by one of the softwares. Pie charts are made from a sum of the
log abundance of the identifications by categorization as defined above.
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5. Conclusions

We aimed to discover the sources of the different performance observed among the
glycoproteomics algorithms tested. One possibility was that the search engines matched
the same MS/MS scans to different glycopeptides, suggesting that algorithm performance
differences arise from the glycopeptide scoring model. Another was that that the initial
glycopeptide-to-spectrum matches reported by search engines remained comparable, but
different TDA methods removed different subsets of PSMs. We conclude that the results
as shown do, in part, come from the search engines identifying the same MS/MS scans to
different glycopeptides. But, it is currently impossible to check what glycopeptides were
removed by the FDR systems due to the black-box nature of several of the scoring engines.
Our view is that the FDR systems could be introducing their own biases in addition to the
scoring systems, as we tried to elaborate in this narrative. These sources of bias are separate
from the scoring algorithms themselves. Due to the black-box nature of several softwares
and the lack of metrics and tools, it is impossible to determine the source of bias. There
could be a false positive from an incorrectly highly scored glycopeptide, or there could be
a false positive from a poorly performing decoy system. Without more information than is
typically available, we cannot know which is the case, illustrating the need for an effort by
the glycoproteomics software community to solve these problems.

Supplementary Materials: The following are available online, Figure S1a,b: Alternative Catego-
rization for Selected Pie Charts; Figure S2: Search Space Proportion; Figure S3: Venn Diagram of
Glycopeptide Identifications by Softwares; Figure S4: Tables of Log Abundance of Glycopeptides
by Glycosite for Watanabe et al. reanalysis for: (a) Byonic, (b) GlycReSoft, (c) MSFragger-Glyco,
(d) pGlyco2.; Figure S5: Tables of Log Abundance of Glycopeptides by Glycosite for Zhang et al.
Reanalysis for: (a) Byonic, (b) GlycReSoft, (c) MSFragger-Glyco, (d) pGlyco2.
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