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Abstract

In diabetes mellitus, the polyol pathway is highly active and consumes approxi-

mately 30% glucose in the body. This pathway contains 2 reactions catalyzed by

aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose

to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sor-

bitol to fructose at the expense of NAD+, leading to NADH production. Consump-

tion of NADPH, accumulation of sorbitol, and generation of fructose and NADH

have all been implicated in the pathogenesis of diabetes and its complications. In

this review, the roles of this pathway in NADH/NAD+ redox imbalance stress and

oxidative stress in diabetes are highlighted. A potential intervention using nicoti-

namide riboside to restore redox balance as an approach to fighting diabetes is also

discussed.
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1 | INTRODUCTION

Diabetes mellitus is a debilitating disease. It impairs the biological

function of many organs in the body. The underlying mechanism of

diabetic pathogenesis is hyperglycemia-induced chronic glucotoxic-

ity,1-6 which impairs numerous pathways in the biological metabolome.

During development and progression of diabetes, many pathways are

upregulated in an attempt to handle the overflow of glucose in the

body. These pathways include the polyol pathway,7-12 the glycation

pathway,13-15 the protein kinase c pathway,16-19 the hexosamine path-

way,20-22 and the enediol/alpha-ketoaldehyde pathway.23-25 It is now

believed that all the pathways converge on elevation of reactive oxy-

gen species (ROS) by a variety of ROS generation systems.25-28

Under normoglycemic conditions, the major purpose of glucose

combustion is to produce energy in the form of ATP, and to produce

NADPH and ribose via the pentose phosphate pathway (Figure 1A).

Excess glucose can be further stored in the body as either glycogen

or fatty acids (Figure 1A).29 As glucose metabolism involves electron

extraction, storage, and transportation, nearly all the biochemical

reactions in glucose metabolism are actually redox reactions. For

example, splitting of glucose to 2 molecules of pyruvate during gly-

colysis stores the extracted electrons in NADH, as does the pyruvate

dehydrogenase complex pathway whereby pyruvate is decarboxy-

lated to form acetyl-CoA. After entry of acetyl-CoA into the Krebs

cycle, electrons are stored in both NADH and FADH2. These elec-

tron donors then donate their electrons to complex I (NADH) or

complex II (FADH2) in the mitochondrial electron transport chain.

Oxygen is only used at the last step whereby complex IV transports

electrons from cytochrome c to oxygen.

As glucose provides electrons that are mainly stored in NADH,

the higher the blood glucose levels, the higher the NADH contents.

This can tilt the redox balance between NADH and NAD+ toward

the side of NADH, resulting in redox imbalance.6,30 This is indeed

what occurs in diabetes31,32 and the polyol pathway is known to
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play a major role in breaking the redox balance between NADH and

NAD+.33-36

2 | THE POLYOL PATHWAY

The polyol pathway consists of 2 reactions catalyzed by 2 respective

enzymes.7,10,35 As shown in Figure 1B, the first reaction is reduction

of glucose to sorbitol, which is catalyzed by aldose reductase (AR).

This reaction is the rate-limiting reaction37 in this pathway and also

converts NADPH to NADP+. The second reaction converts sorbitol

to fructose and is catalyzed by sorbitol dehydrogenase, which makes

NADH from NAD+. So the overall products of the polyol pathway

are sorbitol, fructose, and NADH. NADH production results from the

consumption of NADPH. Because nearly 30% of blood glucose can

flux through the polyol pathway in diabetes,38,39 this pathway has

been thought to be the major pathway contributing to NADH/NAD+

redox imbalance in diabetes.7,8,26,34 I will now dissect each of the

pathway’s components (Figure 2) and their role in redox imbalance

stress and diabetes mellitus.

2.1 | Aldose reductase

The physiological function of this enzyme still remains murky, but it

is usually thought that the enzyme, under normal physiological

conditions, can degrade toxic aldehyde byproducts formed by lipid

peroxidation such as 4-hydroxy-nonenal (HNE) and its glutathione

conjugates (GSH-HNE).40,41 However, its ability to catalyze glucose

reduction is nearly negligible under physiological conditions due to

the high Km of its reaction with glucose.42 In contrast, when the glu-

cose level is high, this enzyme and the polyol pathway becomes a

major pathway in disposing of glucose.7,35-37,43

The role of AR in diabetes has been well elucidated by using its

inhibitors and by AR knockout animal models. It has been found that

AR inhibitors can ameliorate diabetes mellitus.44,45 In fact, numerous

AR inhibitors have been tested and evaluated.46-50 For example, the

AR inhibitor zopolrestato can lower acetate utilization in the diabetic

heart,45 indicating increased glucose combustion via the glycolytic

pathway and the Krebs cycle, that otherwise is inhibited in diabetes.

Another example is the use of AR inhibitor sorbinil,51 which has

been clinically used to stabilize diabetic corneal epithelial disorders.52

One caveat of inhibiting the polyol pathway is that it could be over-

inhibited, leading to increased protein glycation by glucose.53

With respect to AR deletion or knockout studies, it has been

demonstrated that AR deletion from mice could inhibit diabetes-

induced retinal capillary degeneration mediated by superoxide pro-

duction.54 It has also been demonstrated that the AR knockout

mouse is resistant to the development of diabetic nephropathy.55

2.2 | Consumption of NADPH and redox imbalance
of NADPH and NADP+

As glucose flux through the polyol pathway consumes NADPH, it

has been suggested that the level of NADPH could be significantly
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F IGURE 1 Glucose metabolic pathways under euglycemic and
hyperglycemic conditions. A, Under normal physiological conditions,
glucose is used for energy (ATP) production via glycolysis and the
Krebs cycle pathways. Glucose can also be fluxed to the pentose
phosphate pathway that makes NADPH and ribose. Excess glucose
can be stored as glycogen or fatty acids. B, Under diabetic
conditions, approximately 30% of glucose can be fluxed to the
polyol pathway, whereby glucose is converted to fructose via 2
consecutive reactions that also transform NADPH to NADH

F IGURE 2 Pathophysiological effects of the polyol pathway
activated by persistent hyperglycemia. Activation of the polyol
pathway can (1) decrease the NADPH/NADP+ ratio and nitric oxide
production; (2) induce sorbitol accumulation and osmotic stress; (3)
increase fructose content, leading to increased protein glycation and
development of non-alcoholic fatty liver disease (NFALD); (4)
increase NADH/NAD+ ratio leading to ROS production and oxidative
stress. The consequences of these events are diabetic complications
including retinopathy, nephropathy, and neuropathy
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decreased.56 Indeed, we have found that this is the case in diabetic

lung and pancreas,31,57 whereby NADPH content is lower than that

in controls. It has been established that there is about a 15%

decrease in NADPH in the diabetic lens.35 The NADPH decrease

could further impair the GSH/GSSG redox balance, as GSSG reduc-

tion by glutathione reductase requires NADPH as a cofactor.58,59

NADPH is also involved in the biosynthesis of biological molecules

such as fatty acids and nitric oxide, so its decrease or depletion

should have deleterious effects on many anabolic pathways.60 Addi-

tionally, from a chemical point of view, the polyol pathway can also

compete with glutathione reductase for NADPH,61,62 leading to fur-

ther impairment in glucose metabolism.

2.3 | Accumulation of sorbitol

In certain tissues such as retina, sorbitol dehydrogenase content is

low,63 so sorbitol formed from glucose reduction can accumulate.35

This accumulation can change cellular membrane osmotic pressure

and triggers osmotic stress.35 This osmotic stress has been thought

to be the main underlying mechanism for diabetic retinopathy64,65

and has also been implicated in diabetic kidney dysfunction or

nephropathy.9 It should be noted that even in the same organ, dif-

ferent cell populations may have different levels of sorbitol dehydro-

genase;66 hence, the effect of sorbitol on diabetic tissue is

differential.

2.4 | NADH overproduction and NAD+ depletion

The second reaction of the polyol pathway involves NADH pro-

duction from NAD+. This pathway has therefore been regarded as

the major source of NADH/NAD+ redox imbalance.5,6,26,32 On one

hand, NADH is overproduced, which could lead to reductive stress

followed by oxidative stress.26,28 This is because elevated levels

of NADH could overwhelm mitochondrial complex I, leading to

more ROS production from the mitochondrial electron transport

chain.26 Additionally, excess NADH can also inhibit the glycolytic

pathway, the pyruvate dehydrogenase complex, and the Krebs

cycle,12,67 leading to more flux of glucose through the polyol

pathway. On the other hand, an NAD+ decrease also imposes

deleterious effects on a variety of metabolic pathways.6 A major

one is the sirtuin pathway,6 which is responsible for protein

deacetylation.68 A decrease in NAD+ would inactivate sirtuins,

leading to over-acetylation of proteins and less efficient glucose

metabolism.69-71

In the case of NADH/NAD+ redox imbalance, it has been

demonstrated that restoring the redox balance by supplementing

with an NAD+ precursor or analogue is a valuable approach.72 In this

regard, the recently identified precursor nicotinamide riboside is very

promising as this chemical is more tolerant and has fewer side-

effects than niacin.73 For example, it has been reported that nicoti-

namide riboside can ameliorate diabetes and diabetic neuropathy in

mice, and can enhance metabolism and prevent development of

obesity induced by a high fat diet.74,75

2.5 | Fructose

As the polyol pathway consumes approximately 30% of blood glu-

cose in diabetes,39 fructose is overproduced in the body. Overpro-

duction of fructose can lead to severe metabolic consequences. On

one hand, fructose can chemically glycate proteins,76 leading to pro-

tein dysfunction. It is known that fructose can be further metabo-

lized to produce 3-deoxyglucose and fructose-3-phosphate, both of

which are very potent nonenzymatic glycation agents.76 On the

other hand, as fructose metabolism by fructokinase, with the con-

sumption of ATP, can bypass the regulation of the glycolytic path-

way,77,78 acetyl-CoA could be overproduced78 and ATP could be

depleted.79 Acetyl-CoA overproduction could cause non-alcoholic

fatty liver disease (NAFLD), as acetyl-CoA is the precursor of fatty

acid,77,80-82 while ATP depletion could cause cell death. Additionally,

overproduction of acetyl-CoA can result in more protein acetylation,

leading to protein functional impairment.83-85 Protein acetylation can

worsen when sirtuin proteins are inactive due to lack of NAD+ in

diabetes.6,86 Therefore, fructose accumulation due to activation of

the polyol pathway by hyperglycemia can accentuate diabetes and

its complications.

2.6 | Effect of redox imbalance on sirtuins

Sirtuins are protein deacetylases that use NAD+ as their substrate.87

So when NAD+ levels decrease during diabetes, sirtuin activities will

be decreased,69,88 and this can also be modulated by decreased

expression of sirtuin proteins. Indeed, numerous studies including

ours, have demonstrated attenuated expression of sirtuin proteins in

diabetes.31,57,88,89 As a consequence, protein acetylation is increased

(Figure 3A), leading to functional changes of numerous proteins.83,90

Accordingly, studies have demonstrated that supplementing with

NAD+ precursors or analogous can serve as an approach for enhanc-

ing sirtuin activity, thereby augmenting protein deacetylation, which

can lead to amelioration of diabetes.70,71,91

2.7 | Effect of redox imbalance on poly-ADP-
ribosylase function

In diabetes, it is usually thought that DNA damage occurs first,

which triggers the upregulation of poly-ADP-ribosylase (PARP) activ-

ity.32,92,93 This upregulation can deplete NAD+, as PARP also uses

NAD+ as its substrate during repair of damaged DNA.94-96 Indeed,

PARP knockout mouse has been found to be resistant to diabetes

development97,98 and inhibition of PARP can also retard the devel-

opment of diabetes.99-102 On the other hand, it is also possible that

decreased levels of NAD+ caused by activation of the polyol path-

way could impair PRAP activity, leading to accentuation of diabetes,

as it is likely that damaged DNA would not get repaired promptly.

Nonetheless, the crosstalk between the polyol pathway and the

PARP pathway will need to be further investigated. This author

tends to believe that the 2 pathways may form a vicious cycle that

will worsen the situation during progression of diabetes.
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2.8 | Redox imbalance and oxidative stress

One of the major consequences of NADH/NAD+ redox imbalance

is oversupply of electron donors to the mitochondrial electron

transport chain.26 Oversupply of NADH would overwhelm com-

plex I, which relays electrons from NADH to CoQ.32 One feature

of complex I electron transport is that the more electrons it trans-

ports, the more superoxide it will produce.103-106 This is because

more electrons could leak and partially reduce oxygen, leading to

overproduction of superoxide which is the precursor of all the

ROS.107-110 Hence, oversupply of NADH in diabetes driven by

constant hyperglycemia can devastate cells with enhanced

oxidative stress, impaired mitochondrial function, and increased

cell death, as has been demonstrated by numerous

investigators.17,27,28,111-118

2.9 | Targeting redox imbalance as an approach for
diabetes therapy

It is reasonable to say that diabetes is a redox imbalance dis-

ease.32 Hence restoration of NADH/NAD+ redox balance may

serve to combat diabetes. One approach, as mentioned above, is

supplementing with NAD+ precursors or analogues (Figure 3B). In

particular, the utilization of nicotinamide riboside in a variety of

experimental settings has demonstrated the beneficial effects of

this compound.10,74,75,119 Additionally, plant extracts or com-

pounds that are antioxidants in nature have also been evaluated

for their effects in mitigating oxidative stress and promoting cell

survival.120-123 As these compounds can counteract the deleteri-

ous effects of the activated polyol pathway that is responsible for

redox imbalance in diabetes, an understanding of how they work

in alleviating diabetes and its complications should provide insights

into the design of novel strategies for fighting this epidemic and

devastating disease.

3 | CONCLUDING REMARKS

The active polyol pathway in diabetes mellitus is a major contributor

to NADH/NAD+ redox imbalance due to its ability to convert NADPH

to NADH. Not only can excess NADH induce oxidative stress via gen-

eration of ROS through the mitochondrial electron transport chain and

other pathways, but lowered NADPH content can also induce oxida-

tive stress by impairing glutathione metabolism. Approaches to

restoration of redox balance by targeting the polyol pathway have

been explored and should remain a research focus in order to provide

novel strategies for fighting diabetes and its complications.
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