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Abstract

Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially

costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which

rely on widely administered frequent and rapid diagnostics to identify and isolate infected

individuals, could be a potentially less disruptive management strategy, particularly where

vaccine access is limited. In this paper, we assess the extent to which mass testing and iso-

lation strategies can reduce reliance on socially costly non-pharmaceutical interventions,

such as distancing and shutdowns. We develop a multi-compartmental model of SARS-

CoV-2 transmission incorporating both preventative non-pharmaceutical interventions

(NPIs) and testing and isolation to evaluate their combined effect on public health outcomes.

Our model is designed to be a policy-guiding tool that captures important realities of the test-

ing system, including constraints on test administration and non-random testing allocation.

We show how strategic changes in the characteristics of the testing system, including test

administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs

without compromising public health outcomes in the future. The lowest NPI levels are possi-

ble only when many tests are administered and test delays are short, given limited immunity

in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing

program to identify and isolate unreported, asymptomatic infections. Changes in NPIs,

including the intensity of lockdowns and stay at home orders, should be coordinated with

increases in testing to ensure epidemic control; otherwise small additional lifting of these

NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly,

our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for
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the flexible design of combined interventions based on social context, and inform future

cost-benefit analyses to identify efficient pandemic management strategies.

Author summary

The global spread of SARS-CoV-2 and the strategies used to manage it have come at sig-

nificant societal costs. We analyze how mixed control strategies, which utilize interven-

tions that prevent new infections from occurring (e.g., distancing or shut-downs) and

others that actively search for and isolate existing infections (here, mass testing), can

achieve improved public health outcomes while avoiding severe socio-economic burdens.

Our results suggest that increasing testing capacity, including the number of tests available

and the speed at which test results are provided, can reduce reliance on costly preventative

interventions. Such reduction is possible with more isolation of active infections, includ-

ing those without reported symptoms. However, failing to maintain preventative inter-

ventions without sufficient testing capacity can lead to large increases in infection

burdens. By defining the combined effect of these interventions through mathematical

models, this study provides insight into relaxation of distancing measures, and lays the

groundwork for future public health economics analyses on the cost-effectiveness of com-

bined management strategies.

Introduction

A wide range of public health interventions have been employed globally in response to the

rapid pandemic spread of the SARS-CoV-2 virus, and the associated global burden of COVID-

19 disease. In the early days of the pandemic, when little was known about the biology of the

virus and the strategies that would most effectively mitigate its transmission [1], many coun-

tries implemented strict lockdowns to limit contacts between individuals [2–9]. Though effec-

tive in reducing virus spread and minimizing public health burden [7,8,10], significant social

and economic costs [11,12] meant these lockdowns have been increasingly unsustainable over

time.

Some countries and states are turning to testing and isolation-based strategies as a viable

mechanism for control while waiting for effective vaccines and pharmaceuticals to become

widely available [13]. The utility of “test, trace, and isolate” strategies has been demonstrated

in prior outbreaks of novel infectious diseases, including SARS [14] and Ebola [15], as well as

in a multitude of mathematical models [16]. For SARS-CoV-2 specifically, contact tracing and

isolation have been shown effective for suppressing early spread, both empirically [17,18] and

via modeling [19,20]. However, contact tracing systems have struggled to keep up as caseloads

become large [21].

Developments in testing technology and capacity (e.g., United States Food and Drug

Administration [22]) have made it potentially feasible and cost-effective to implement larges-

cale testing and isolation strategies for the management of SARS-CoV-2. An increasing body

of literature describes the characteristics of mass, population-level testing and isolation pro-

grams that successfully control community transmission. These studies emphasize the neces-

sity of testing frequently and providing results quickly, even if this requires sacrifices to test

sensitivity (i.e., the ability of the test to correctly identify infected individuals) [23,24]. Unlike

symptomatic, or reactive, testing currently being used in many countries, these mass testing
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strategies require frequently testing a significant proportion of the population, including

groups of individuals that may generally not present symptoms (e.g., testing on college cam-

puses [25,26]).

However, testing capacity, though growing, remains relatively low across much of the

world [27]. Consequently, few locales are currently in a position to provide large-scale testing

as a sole, or even primary, method for SARS-CoV-2 control. In these cases, where the virus

cannot be sufficiently contained by testing and isolation and sufficient vaccination thresholds

have not been achieved, preventative non-pharmaceutical interventions (NPIs), such as mask-

ing or distancing, are necessary to further mitigate viral transmission. Yet, the interaction

between preventative NPIs and isolation of active infections, especially mass testing strategies,

is even less understood than the effects of either intervention alone (though see McCombs and

Kadelka [28] for a COVID-19 example). Identifying effective combination interventions will

be crucial as countries move from control strategies based primarily on preventative NPIs

towards those that rely more heavily on testing and isolation, and ultimately wide-spread phar-

maceutical reduction in burden of disease.

Using multiple interventions has proven effective for controlling transmission in a variety

of pathogens (e.g., influenza [29,30], early SARS-CoV-2 in China [18], HIV [31]). However,

combining NPIs with testing and isolation is likely to produce complex transmission dynam-

ics, making it difficult to quantify the effects of mixed control. These complex dynamics may

arise in part because of differences in the timing of non-pharmaceutical interventions and iso-

lation relative to the infection process. NPIs, like physical distancing, prevent new infections

by preemptively reducing contacts across the entire population, whereas isolation of infected

individuals reduces subsequent transmission after, but not before isolation. Further, variation

in compliance or existing immunity may make the needs of each locale different.

To clarify these decision-critical issues, we develop a mathematical model to explore the

interaction between various preventative NPIs and testing and isolation strategies. Our analy-

sis addresses how the testing strategy’s characteristics affect the intensity of the minimally suf-

ficient NPIs to achieve desired public health outcomes, including daily test administration

(i.e., how many tests are performed each day), test delays (i.e., the average time from test

administration to isolation), and test sensitivity (defined as the accuracy of a test in identifying

infectious individuals). By describing the effectiveness of these combined public health inter-

ventions, our framework can help, in a time of extreme social, economic, and psychological

hardship, to clarify a path to lifting costly NPIs and ramping-up testing capacity, all while

maintaining control of transmission.

Methods

Model description

Transmission during the acute phase of the SARS-CoV-2 pandemic can plausibly be assumed

to follow an SEIR-like epidemiological model (Susceptible-Exposed-Infected-Recovered)

because waning of immunity is unlikely within the short (< 6 months) timeframe of our

model (Fig 1). We account for key aspects of SARS-CoV-2 biology, including transmission

without symptoms (both infections that never develop reportable symptoms and those that are

infectious before symptom onset and subsequent reporting) [32,33].

In our model, individuals move from being susceptible to exposed once they have been

infected (the E class: infected but not yet infectious). On becoming infectious, individuals

move into one of three categories: asymptomatic (i.e., never develop reportable symptoms),

mild symptomatic (i.e., develop reportable symptoms that are not severe enough to require

hospitalization), or severe symptomatic (i.e., develop reportable symptoms that eventually lead
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to hospitalization). We distinguish infections based on reported symptom status because self-

reporting is a primary mechanism for test administration in many countries. We assume that

60% of all infections would eventually develop reportable symptoms [34], and 5% of those

with symptoms would be severe enough to require hospitalization [35].

We assume infected individuals who will eventually be symptomatic can start infecting oth-

ers before symptom onset and reporting. All asymtomatic and mildly symptomatic infections

are assumed to eventually recover. Severe symptomatic infections are assumed to be hospital-

ized and isolated from the population until recovery or death. We assume that recovery

Fig 1. Compartmental structure of the model. Individuals are classified by epidemiological and testing state (S:

susceptible, E: exposed, PS and PM: presymptomatic transmission for severe and mild infections, respectively, IS and

IM: symptom reporting for severe and mild infections, respectively, A: asymptomatic infection, H: hospitalized, W:

awaiting test results, T: isolated, R: recovered). Pathogen transmission occurs between non-isolated, infected

individuals (P, I, A, and W classes) and susceptible individuals (S class). Red filled compartments are isolated, and thus

are assumed to not contribute to onward transmission of the pathogen. Solid lines show epidemiological transitions,

with parameters to define the rate of transition (see S1 Appendix for full list of transition rates and Table 1 for

parametric assumptions). Dashed lines show transitions made through testing, and grey lines show transitions out of

waiting and testing classes. The W and T classes are a set of compartments broken down by infection status of tested

and isolated individuals respectively (expanded in bottom half of figure). Individuals that report symptoms (I classes)

isolate upon test administration, whereas randomly tested individuals await results in the W classes, where they can (1)

develop and report symptoms (i.e., move from WP to WI), (2) recover or become hospitalized before they receive test

results, or (3) receive test results and isolate. Individuals remain isolated until recovery.

https://doi.org/10.1371/journal.pcbi.1009518.g001
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confers immunity over the short timeframe of our model in alignment with evidence that

SARS-CoV-2 reinfection is rare in the six months following infection [36,37]. We maintain

standard assumptions about homogenous mixing, as other modeling studies assessing testing

programs have shown little difference between such a model and one with a more realistic con-

tact structure [24]. For a deterministic representation of our model structure, which was based

on the model of Davies et al. [38], see S2 Appendix.

Interventions

We model public health interventions that combine preventative NPIs (e.g., masking, distanc-

ing, and lockdown) with testing and isolation. As preventative NPIs reduce the chance of new

infection, they are modeled to decrease transmission by some fraction, d, which we call the

‘NPI intensity’. Isolation reduces the effective number of infected individuals in the population

and thus prevents an infected individual from contributing to onwards transmission.

We assume that testing is the primary mechanism for identifying infections to be isolated.

The testing system in our model is characterized by three components: test administration,

test delays, and test sensitivity. We explicitly model the number of tests that are administered

each day (in some places this may be limited by availability of tests and in others by demand

for tests). Testing delays represent the average time, after test administration, it takes to receive

test results and subsequently isolate those with a positive diagnosis. We define effective test

sensitivity as the percent of actively infectious individuals correctly identified by the diagnostic

test. This definition differs from the way sensitivity is determined for other tests (e.g., sensitiv-

ity as defined for reverse transcription polymerase chain reaction (RT-PCR) which detects the

presence of a viral sequence), but reflects our focus on public health rather than individual

patient objectives [23,39,40]. Consistent with our definition of effective sensitivity, we assume

that exposed individuals (E class) cannot be detected.

Test allocation follows a consistent state-dependent rule and is executed stochastically

using the following sequential steps:

1. Allocate one test for each newly hospitalized patient.

2. Using the remaining tests, allocate one test for each individual that has reported symptoms.

The group of individuals reporting symptoms each day includes a constant background

rate of non-SARS-CoV-2-infected individuals that report for testing. If there are more indi-

viduals reporting symptoms than available tests, allocate tests randomly among the group

reporting symptoms.

3. Using the remaining tests, randomly sample individuals without symptoms for testing.

Whilst we do not claim this is the most efficient way to utilize a fixed number of tests, we believe

it represents a simple and logical prioritization that could be implemented. Silverman et al. [41]

showed that increases in all-cause care seeking for respiratory infections was highly correlated

with cases of COVID-19 early in the pandemic, so we model a constant background rate of

symptomatic non-SARS-CoV-2-infected care seeking (test allocation step 2). We further

assume that reporting for influenza-like illness (ILI) and SARS-CoV-2 are related, where

increases in SARS-CoV-2 reporting also yield higher background care seeking rates. As such, in

our model, 0.1(1-p)% of the population reports for testing each day despite not being infected

with SARS-CoV-2, where p is the proportion of SARS-CoV-2 infections that are not reported

(Table 1) and 0.1 aligns the order of magnitude with estimates of influenza related medical visits

in the United States [42,43]. This simplifying assumption ignores seasonality and potential feed-

backs between SARS-CoV-2 interventions and ILI care seeking or prevalence.
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Individuals who report with symptoms are assumed to quarantine immediately upon test

administration (test allocation step 2), and those who are randomly sampled isolate only after

receiving results (test allocation step 3). We compared this policy with a second, where all indi-

viduals isolate only after receiving positive results. All individuals awaiting results are assumed

to continue mixing in the population, and thus can transmit virus to others. Note, for simplic-

ity, we omitted isolation of individuals who receive a false positive result, though we acknowl-

edge that imperfect specificity could indirectly affect disease dynamics by impacting long-term

compliance with mass testing strategies [50] or further decreasing transmission through addi-

tional contact reduction.

Model implementation, parameterization, and initiation

We implemented the model stochastically using the chain-binomial framework [51–53].

This method assumes that all individuals in the population are classified into a set of compart-

ments (defined for our model in Fig 1), and that individuals move between compartments in

discrete time steps. The number of individuals that transition from compartment i to compart-

ment j at time t is determined by a random draw from a binomial distribution, Binomial(tN,

tp), where tN is the number of individuals in compartment i at time t and tp is the probability

of transitioning from i to j. This probability, tp, is derived from the transition rate, ri,j(t),

between compartments i and j (defined for our model in Table 1). Given that a transition

event happens at rate ri,j(t), the number of transitions that occur in a time interval Δt is distrib-

uted as Poisson(ri,j(t)Δt). Consequently, the probability of no transition events occurring is

Table 1. Model parameters. Where no reference is provided, values were assumed. Values shown with an asterisk (�)

were considered in sensitivity analyses. The transmission rate, β, was calibrated to yield R0 = 2.5 using the next genera-

tion matrix method. Transmission rate shown is for primary parameters but was recalibrated for each set of sensitivity

analyses.

Biological Parameters Value

Transmission rate for infected individuals, β 0.502

Relative transmissibility of asymptomatic infections, ρ 1, 0.5� [44]

Time from exposure to infectiousness (days), 1

s
3 [38]

Time from infectiousness to symptom reporting (days), 1

d
2.1 [38]

Recovery time for asymptomatic infections (days), 1

gA
5 [38]

Recovery time for mild symptomatic infections (days), 1

gM
2.9 [38,45,46]

Time from symptom reporting to hospitalization (days), 1

Z
2.1 [47]

Recovery time for hospitalized infections (days), 1

gS
12 [48]

Time from hospitalization to death (days), 1

a
7.5 [48]

Proportion of infections that are not reported (asymptomatic), p 0.4 [34], 0.2�, 0.6�[49]

Proportion of reported (symptomatic) infections requiring

hospitalization, q
0.05 [35]

Intervention Parameters Values assessed

Non-pharmaceutical intervention (NPI) intensity, (1-d) 0% to 60%, in 5% increments

Delay between test administration and results, τ 1 hour, and 12 hours to 8 days, in 12-hour

increments

Number of tested individuals from class I, ωi, on a given day,

dependent on:

Test administration 1%, 2.5%, and 5% to 50% in 5%

increments

Effective test sensitivity 90%, 100%

Proportion of population without SARS-CoV-2 infection reporting

for testing each day

0.001 (1-p)

https://doi.org/10.1371/journal.pcbi.1009518.t001
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exp(-ri,j(t)Δt) and the probability of transitioning is 1- exp(-ri,j(t)Δt). Since we implement our

model in daily time steps (i.e., Δt = 1), the transition probability can be simplified to 1- exp(-ri,

j(t)). S1 Appendix includes a full list of transition probabilities for our model. To avoid nega-

tive numbers of individuals, we update the transition probabilities and the resulting number of

individuals in each compartment asynchronously in the following order: (1) biological transi-

tions, including infection events, symptom reporting, hospitalization, recovery, and death; (2)

test administration and quarantine, if applicable; (3) test results and corresponding isolations

for those that are positive.

Model parameters were chosen from literature sources (Table 1). We used the next-genera-

tion matrix method [54] to calibrate the transmission parameter to yield an initial, uncontrolled

basic reproduction number, R0, of 2.5, as estimates of R0 before interventions are reported

between 2.2 and 2.68 [44,45,55,56] (though some estimates are higher, see [57] for a review).

For our analyses, we considered a well-mixed population of 10,000 individuals with low levels

of existing immunity in the midst of a growing outbreak of SARS-CoV-2. To generate initial

conditions for this scenario, we modeled an initial importation of one mild, presymptomatic

infection and one asymptomatic infection that seeded an outbreak which grew unbounded for

7 days (unbounded R0 = 2.5) and then experienced moderate growth for 90 days (R0 = 1.125

during this period). This setup is not meant to reflect an actual location. We simulated this sce-

nario 1000 times, and the simulation with the 50th percentile of prior immunity (i.e. recovered

individuals) on Day 97 was used as our initial conditions (S1 Fig and S1 Table). This approach

yielded a population in which approximately 5% of individuals have immunity.

Using these initial conditions, we implemented a range of combination interventions

(Table 1) for 30 days, to replicate a short-term planning scenario. Each combination interven-

tion included NPI intensity, test administration, test delay, and effective test sensitivity. NPI

intensity ranged from no use of NPIs (0%) to strong reliance on NPIs (60%), a range that cap-

tures realistic decreases in transmission due to NPIs (e.g., Flaxman et al. [7]). We modeled test

administration from testing 0% to 50% of the population each day. Though this range includes

values for daily test administration that have yet to be achieved and sustained, we intentionally

include scenarios where tests are widely available to explore the effects of mass testing on

transmission. This aligns with other analyses in the literature (e.g., Larremore et al. [24]). To

capture an extreme range of testing delays observed during the pandemic, we considered rapid

tests (which yield results in an hour, on average) to those that take up to 8 days on average to

return results. Lastly, we used 90% and 100% effective test sensitivities. These values are not

intended to reflect actual diagnostics, but rather explore the effects of decreases in test sensitiv-

ity that may be necessary to achieve large numbers of tests and/or rapid results as it is difficult

to measure effective test sensitivity empirically (though see [58,59] for estimates).

We performed 5000 simulations for each potential combination intervention and tracked

infection events (i.e., “true” cumulative incidence, regardless of reporting), hospitalizations

and deaths. We interpolated the resulting administration-delay-sensitivity-NPI-infection sur-

face to derive contours for 250, 500, and 1000 total infections over 30 days after the interven-

tion change. We ran an additional 5000 simulations for interventions along the 500-infection

contour and for interventions where NPI intensity was 5% less than those on the contour. As

our model does not consider age or comorbidities, we focus primarily on cumulative infec-

tions in our results. We acknowledge that there may be other public health objectives of inter-

est [60,61] and choosing a different objective could alter intervention recommendations [62].

We report all results as median values in alignment with other COVID-19 modeling efforts,

including the Forecasting Hub [63] and Scenario Modeling Hub [61].

At the time of model parameterization, there was significant uncertainty about the nature

of asymptomatic infections. Additional sensitivity analyses assessed the impact of this
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uncertainty in two key areas: (1) the proportion of infections that do not develop reportable

symptoms (including values that align with more recent reviews [49]) and (2) the relative

infectiousness of asymptomatic infections (Table 1). In addition, as immunity levels vary

greatly across settings, we quantified the effect of the degree of prior immunity in the popula-

tion when the intervention change is implemented (S1 Table).

The model and analyses were implemented in R version 3.5.1 [64]. All code is available on the

following GitHub repository: https://github.com/eahowerton/COVID19_combined_interventions.

Results

Our analyses describe the combined effect of preventative NPIs and testing and isolation strat-

egies for epidemic control. As expected, high test administration, short testing delays, and

more intense NPIs all decrease SARS-CoV-2 infection burdens (Fig 2). Specifically, contours

illustrate sets of combined interventions which yield approximately equivalent cumulative

infections (median over 5000 simulations; black lines, Fig 2A and 2B). Thus, a public health

system willing to tolerate a given level of infection could in principle choose any intervention

combination above this contour without exceeding their infection threshold.

For a fixed test delay, testing a larger percent of the population each day can maintain pub-

lic health outcomes with less reliance on NPIs (Fig 2A). The magnitude of test delays deter-

mines the extent to which improvements in test administration permit a reduction in NPIs

without increasing disease burden. When delays are relatively long (5 days), testing an addi-

tional 5% of the population each day yields at most a 1.5% decrease in the minimally sufficient

Fig 2. Efficacy of combined interventions including preventative NPIs (e.g., masking, distancing, lockdowns) and testing and isolation. Infections in the

30 days after intervention change (represented as a median of 5000 stochastic simulations) are shown across non-pharmaceutical intervention (NPI) intensities

both when test delays are fixed (A) and test administration is fixed (B) for several sample values. In both, isoclines are shown for 250, 500, and 1000 infections,

representing potential threshold levels of median infections that a local system can tolerate. Similarly, the test delay and administration required to achieve a

given NPI intensity (C) are shown for four potential NPI intensities (line color) across two possible effective test sensitivities (line type; solid = 100%,

dashed = 90%), all assuming 500-infection threshold levels (contours for 250- and 1000-infection thresholds shown in S2 Fig). Grey arrows represent sample

policy movements between interventions that maintain public health outcomes, where moves can be made by increasing testing administration (vertical

arrows), decreasing test delays (horizontal arrows), or a combination (diagonal arrows). Moves can maintain NPI intensity with a less sensitive test (thick

arrows), decrease NPI intensity with the same test (medium arrows), and decrease NPI intensity with a less sensitive test (light arrows). See S3 Fig for a version

of this figure showing results when individuals who report for testing are assumed to wait for a test result to isolate.

https://doi.org/10.1371/journal.pcbi.1009518.g002
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NPI intensity required to achieve the same level of pandemic control; whereas when tests are

rapid, this same increase in test administration yields up to a 12.6% decrease. Since rapid tests

isolate infections more quickly and thus have a greater effect on reducing overall transmission,

we expect increasing the administration of rapid tests to have the largest impact on the mini-

mally sufficient NPI intensity.

The extent to which minimally sufficient NPIs are decreased by shortening test delays

depends on both test administration and current test delays (Fig 2B). When test administra-

tion is low (e.g., 1%), which reflects testing levels across much of the world [27], decreasing

test delays permits little reduction in NPI intensity. This result is due primarily to the immedi-

ate isolation of cases reporting for testing, as in the model most tests are used for this purpose

when administration is low. As more tests are administered, the delays associated with these

tests have a large influence on the minimally sufficient NPI intensity. In high-administration

cases (e.g., 50%), decreases in test delays when delays are already long makes a less substantial

difference on NPI intensity, but as test turnaround times become sufficiently fast, small

improvements in test delays can yield large changes in the minimally sufficient NPIs. For

example, assuming 20% daily test administration and a moderate tolerance threshold (500

infections), a 1-day decrease in testing delays lowers the minimally sufficient NPI intensity by

1.4% when current delays are 7 days, but by 12.8% when current delays are 2 days.

To reduce costs incurred by NPIs or the testing program, policy makers may move between

mixed intervention strategies that maintain satisfactory public health outcomes. Fig 2C illus-

trates how reductions in the intensity of NPIs can be facilitated by improving the performance

of a testing program. Consider, for example, a policy that seeks to reduce NPI intensity from

30% to 20% (medium-thickness arrows, Fig 2C) without increasing total infection burden.

This can be achieved by reducing test delays by 1.6 days (horizontal arrow), increasing daily

testing to an additional 22% of the population per day (vertical arrow), or a smaller combined

improvement in both (diagonal arrow). Note that if these gains come at the expense of effective

test sensitivity (light-thickness arrows, Fig 2C; e.g., by switching from RT-PCR to rapid diag-

nostic tests), additional, but small, gains in test turnaround times or administration are neces-

sary (difference between medium and light grey arrows). Similarly, a less sensitive test may

offer cost savings; the same reliance on NPIs can be maintained without increasing burdens if

the less sensitive test increases administration to at least 3% of the population per day or

decreases delays by approximately half a day (heavy-thickness arrows, Fig 2C). As more tests

are administered, false negative results accumulate and consequently larger gains in test

administration are required to compensate for decreased sensitivity.

Sensitivity analyses show that test administration, test delays, and the minimally sufficient

NPI intensity maintain approximately the same contours across uncertainty about prior

immunity, percent of infections that are asymptomatic, and the relative infectiousness of

asymptomatic infections (S4 Fig). Testing capacity (i.e., administration and delays) that

achieves tolerable public health outcomes decreases if there is a higher degree of population

immunity, achieved through vaccination for example, and if asymptomatic infections are less

infectious than those with symptoms. Changes in the percent of infections that are asymptom-

atic, which could arise from differences in age structure or access to care, has little effect on the

minimally sufficient NPI intensity for a given testing capacity.

Combined interventions with less intense NPIs can achieve equivalent public health out-

comes because they isolate a greater number of infected individuals via testing (Fig 3). The

minimally sufficient NPIs are lowest when a significant proportion of infections are isolated

before symptom reporting (i.e., presymptomatic and asymptomatic infections), which

increases with higher test administration and shorter test delays. For example, consider two

interventions with NPI intensity of 35% and 25%. Public health outcomes are maintained
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under 35% NPI intensity when tests are available for 5% of the population each day and delays

are 2 days; this results in isolating 55% of all infections, with 9% of the infections being isolated

before symptom reporting (cross, Fig 3). In contrast, reducing NPIs to 25% can maintain pub-

lic health outcomes when tests are available for 20% of the population if delays are at most 2.5

days. Such an intervention results in a similar percent of infections being isolated (58%) but

now 25% of those infections are isolated before reporting symptoms (asterisk, Fig 3). Similarly,

isolating reported infections immediately upon test administration has a substantial impact on

the minimally sufficient NPI intensity because fewer infected individuals recover before being

isolated, especially when test delays are long (S5 Fig).

Lifting NPIs an additional 5% (beyond what is recommended along the contours in Fig 2),

leads to an average 20% increase in infections over 30 days (Fig 4). Long test delays and low

test administration both exacerbate increases caused by additional reopening. For example,

Fig 3. Total isolations, and of those how many were individuals without symptoms (presymptomatic and

asymptomatic infections), for various combined interventions. Each dot represents an intervention combination

that results in a median of 500 infections over the 30 days after intervention change (i.e., falls along the contour in Fig

2). For each intervention combination, we record the percent of all infections that are isolated while infectious (x-axis)

and isolated before reporting (y-axis). Dot color represents non-pharmaceutical intervention (NPI) intensity and dot

size represents test delay of the corresponding strategy. Outcomes are shown for a fixed number of test administration

levels (1%, 5%, 20%, 50% of the population tested per day), and dashed lines connect strategies with the same NPI

intensity across administration levels. Grey lines serve as a reference to show the percent of all isolations that occurred

in those without reported symptoms. Points with cross and asterisk are discussed in the text. See S6 Fig for a version of

this figure comparing results when individuals with symptomatic infections are assumed to wait for a test result to

isolate.

https://doi.org/10.1371/journal.pcbi.1009518.g003

PLOS COMPUTATIONAL BIOLOGY Synergistic interventions to control COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009518 October 28, 2021 10 / 19

https://doi.org/10.1371/journal.pcbi.1009518.g003
https://doi.org/10.1371/journal.pcbi.1009518


assuming 20% test administration, lifting NPIs by an additional 5% yields a 20% increase in

infections when delays are 7 days, and only a 14% increase when delays are 1 day. Similarly,

total infections increase 21% when 1% of the population is tested daily, compared to 14%

when 20% is tested daily, assuming delays are 1 day. Larger increases correspond to interven-

tion strategies that rely more heavily on NPIs for transmission control (i.e., long test delays or

low test administration). Note that the appearance of a slightly higher increase in infections

under very long test delays and 50% test administration is a result of a large number of individ-

uals passing through both the asymptomatic and waiting classes. Because the model does not

track individuals, passing through both classes can yield a minor increase in the infectious

period; the effect is negligible for most settings but results in a minimial increase in infections

under this most extreme intervention scenario. We note that this slight bias is within the range

of stochastic variation.

Discussion

Large-scale testing and isolation provides promise as a public health intervention that both

maintains control of the COVID-19 pandemic and enables continued social and economic

activity [13]. In this paper, we discuss how testing and isolation strategies can be combined

with preventative non-pharmaceutical interventions such as lockdowns, physical distancing

Fig 4. Increases in infections due to additional lifting of NPIs. Increases measure the change in cumulative

infections in the 30 days after intervention implementation caused by lifting non-pharmaceutical interventions (NPIs)

an additional 5% beyond the recommended NPI intensity. Each point represents a unique combination of test delay

(x-axis) and test administration (color). The percent increase was calculated as (OL−OR)/OR, where OL is the number

of infections that occur with additional NPI lifting, and OR is the outcome when intervention adheres to NPI

recommendations as indicated along the 500-infection contour in Fig 2. Points are not shown for interventions with

short delays and high administration because such combinations yield fewer than 500 median cumulative infections

without any NPIs (e.g., see Fig 2A: 1 hour, or Fig 2B: 50% administration).

https://doi.org/10.1371/journal.pcbi.1009518.g004
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and mask wearing to reduce socio-economic and psychological burdens. Identifying effective

combination interventions is instrumental for safely ramping-up testing capacity and lifting

costly NPIs without causing adverse public health outcomes. Our analysis demonstrates inter-

actions between multiple interventions focused on this goal. It further provides a decision-

making framework with numerous equally effective options for meeting tolerable infection

thresholds. Such flexibility is crucial for successfully implementing interventions across a

range of social contexts, including situations with different NPI compliance levels.

Maintaining NPIs will be critically important to ensure control of SARS-CoV-2 while con-

tinuing to build testing capacity, where capacity refers to the overall ability to process tests

including administration and delays. When few tests are available or delays are long, relatively

strong NPIs must be continued to keep public health burdens to manageable levels. Impor-

tantly, both high testing capacity and short test delays must be achieved in order to safely

reduce NPIs to low levels. Failing to maintain sufficient NPIs can lead to considerable

increases in infections, hospitalizations and deaths. These increases are most extreme when

testing capacity is small since management strategies rely heavily on NPIs in these cases.

Higher degrees of immunity in the population, enabled by vaccination for example, reduce

testing capacity and NPIs needed to control burdens, though continuing these interventions

through vaccine rollout will be critically important to prevent interim increases in cases. Our

results emphasize the importance of minimizing time from infection to isolation, as shown in

other modeling studies [19,24,28]. Long testing delays significantly limit the range of interven-

tions available to meet public health requirements. As such, the development and use of rapid

tests provides decision-makers with more intervention options, including a shift away from

burdensome and costly NPIs or an ability to compensate for decreases in compliance.

Swiftly identifying and isolating infections in individuals with symptoms or those reporting

for testing can decrease reliance on NPIs; yet, public health outcomes can be maintained

under the lowest NPI levels when interventions isolate a large proportion of asymptomatic

infections. Increases in test administration enable the testing of individuals who do not self-

report and subsequent isolation of asymptomatic infections. However, systems which fail to

test individuals without reported symptoms, or those that do not provide access to testing for

all, will not achieve the same results no matter how many tests are performed. Thus, we

emphasize the importance of building testing systems to screen individuals without symptoms

as a necessary step in the process of decreasing our reliance on NPIs, especially when pharma-

ceutical alternatives are not readily available. Testing in asymptomatic populations can also

allow more accurate measurement of epidemiological dynamics and estimation of key parame-

ters, which are crucial for epidemiological modeling for future decision-making [39].

Potential policy options are limited by resource, compliance, and technological constraints.

As such, feasible interventions represent only a limited set of the combinations we explore in

this paper. Outlining the most efficient ways to move between these possible interventions,

including health economic modeling to investigate cost-benefit tradeoffs (e.g., Lee et al. [65]),

is an important next step for future research and could build directly on the outputs of our

study. For example, some NPIs (e.g., masking and between-individual physical distancing, or

“staying six-feet apart”), though less effective in reducing transmission, are much less costly

than lockdowns. This difference means it may be more cost effective to continue low-cost pre-

ventative interventions with a mass testing strategy, as we show a small degree of preventative

intervention has a meaningful effect on required testing capacity. Considering both short- and

long-term costs, across many domains including public health, social, and economic, will be

important for designing readily achievable and sustainable strategies.

In addition to practical constraints, uncertainty further inhibits decision making. An ability

to precisely estimate the effect of an NPI on transmission is a difficult task retrospectively
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[66,67], and even more challenging prospectively. Our results show the sensitivity of public

health outcomes to NPI intensity, and thus an ability to accurately predict and estimate the

effect of NPIs on transmission is central to implementing this approach and should be the

focus of future research. Advances in behavioral science on differential compliance across

interventions and statistical methods for estimating transmission-reducing effects of interven-

tions, given compliance, would allow us to integrate across biological and behavioral uncer-

tainty to identify strategies with the greatest chance of success in a given context. Though

some countries (e.g., Slovakia [13], South Korea and Singapore [68]) and institutions (e.g.,

some university campuses [25]) have achieved remarkably high testing rates, we acknowledge

that widely implementing mass testing will require broad buy-in from institutions (e.g., gov-

ernments and employers) and individuals (i.e., willingness on the part of people to participate

in testing and abide by isolation), as well as proper technology, such as low-cost, at-home,

rapid diagnostic tests [23,40,69].

Our model framework is intentionally designed to be general in order to allow for explora-

tion of epidemic outcomes under combined interventions. As such, the estimates in this paper

are not meant to provide exact testing requirements, but rather to draw general conclusions

about the relationship between NPI intensity and testing and isolation strategies for control-

ling COVID-19. As a result of this generality, there are components of SARS-CoV-2 dynamics

that are not included explicitly, such as reintroduction [70], potential reinfection [71], age

structure [8,9,38], viral-load dynamics [24,65], time-varying biological and intervention

parameters [72], and widespread vaccination, though our framework supports the inclusion of

these components. Further, we make specific assumptions about the testing system that war-

rant additional exploration, including the effect of daily testing (as compared to using the

same number of tests at other frequencies) and test allocation. Finally, we make no assump-

tions about the relative costs of different intervention combinations. A comprehensive cost-

benefit analysis would be beneficial to determine how to prioritize different intervention com-

binations to balance direct public health burden from disease, while recognizing important

downstream costs from quarantines, shut-downs, and isolations.

Like other modeling [24,26,28] and empirical [13] studies, our results suggest that rapid or

more available tests provide increased control of transmission and can also compensate for

decreases in test sensitivity typically associated with rapid tests. However, unlike previous work,

we define how these testing characteristics interact with NPIs in a model framework that explicitly

accounts for constraints on daily test administration and non-random test allocation. We show

that increases in test administration have the greatest impact when test delays are small, less than

48 hours, and decreases in test delays enable the most reopening when delays are already relatively

short or more tests are administered. Lifting NPIs too rapidly can lead to significant increases in

infections, hospitalizations, and deaths in the 30 days after the intervention change.

Strategically combining public health interventions could allow us to maintain control of

SARS-CoV-2, achieve increasing degrees of social and economic activity, and therefore

decrease the significant overall societal costs incurred because of the COVID-19 pandemic.

Understanding the efficacy of combined public health interventions is a key first step in identi-

fying cost-effective ways to manage the pandemic.

Supporting information

S1 Fig. Simulations used to generate initial conditions. Grey lines show all simulations, and

black line shows simulation selected as initial conditions for interventions. See Methods for

details on how initial conditions were generated.

(TIF)
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S2 Fig. Contours for additional tolerance thresholds. Test delay and administration required

to achieve a given non-pharmaceutical intervention (NPI) intensity (line color) are shown for

two possible test sensitivities (line type; solid = 100% effective test sensitivity, dashed = 90%

effective test sensitivity), across 250- and 1000-infection thresholds.

(TIF)

S3 Fig. Outcomes when symptomatic infections are isolated upon receiving test results.

Infections in the 30 days after intervention change (represented as a median of 5000 stochastic

simulations) are shown across non-pharmaceutical intervention (NPI) intensities both when

test delays are fixed (A) and test administration is fixed (B) for several sample values. In both,

isoclines are shown for 250, 500, 1000, and 2000 infections. Similarly, the test delay and admin-

istration required to achieve a given NPI intensity (C) are shown for five potential NPI intensi-

ties (line color) across two possible test sensitivities (line type; solid = 100% sensitivity,

dashed = 90% sensitivity), all assuming 500-case tolerance. Note: colors have been rescaled

compared to main text.

(TIF)

S4 Fig. Results of sensitivity analyses. Sensitivity analyses considered the effect of assump-

tions about (A) prior immunity; (B) the percent of infections that are asymptomatic; and (C)

the relative infectiousness of asymptomatic infections. Each panel shows contours representing

combination interventions (test delay, x-axis, and test administration, y-axis) that yield equiva-

lent public health outcomes (as in Fig 2C). In all panels, contours show interventions which

yield a median 250 infections in the 30 days following intervention change. The base scenario,

as reported in the main text and represented with a black line in each panel, has 4.77% prior

immunity, 40% asymptomatic infections, and equal infectiousness between symptomatic and

asymptomatic infections.

(TIF)

S5 Fig. Changes in total isolations and NPI intensity due to immediate quarantine of

symptomatic infections. Interventions which quarantine symptomatic infections immediately

upon test administration are compared to the corresponding intervention (identical test

administration and delay, with non-pharmaceutical intervention (NPI) intensity adjusted to

yield 500-infection tolerance threshold, i.e., chosen to fall along the isocline shown in Fig 2)

where symptomatic infections wait to be isolated until receiving test results. Differences are

shown for four sample test administrations (color) by test delay (dot size). The difference was

calculated as OD−OI, where OD is the outcome (total isolations or minimally sufficient NPI

intensity) when symptomatic isolation is delayed based on time to test results, and OI is the

outcome under immediate quarantine of symptomatic infections.

(TIF)

S6 Fig. Isolations comparing strategies which isolate symptomatic infections immediately

(red) vs. upon receiving results (grey). See Fig 3 legend for figure description. Note: red

points shown are identical to those shown in Fig 3, with colors rescaled to match those in grey,

and are provided as a reference.

(TIF)

S1 Appendix. Transitions between model compartments.

(PDF)

S2 Appendix. Deterministic model representation.

(PDF)
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S1 Table. Initial conditions. Initial conditions representing moderate levels of prior immu-

nity at the time of intervention change. All W classes and T classes are represented by Wi and

Ti, respectively. Increased levels of prior immunity were also considered in sensitivity analyses

(denoted by �).

(PDF)
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foot-and-mouth disease control: Objectives matter. Epidemics. 2016; 15: 10–19. https://doi.org/10.

1016/j.epidem.2015.11.002 PMID: 27266845

63. Cramer EY, Ray EL, Lopez VK, Bracher J, Brennen A, Rivadeneira AJC, et al. Evaluation of individual

and ensemble probabilistic forecasts of COVID-19 mortality in the US. medRxiv. 2021;

2021.02.03.21250974. https://doi.org/10.1101/2021.02.03.21250974

64. R Core Team. R: A language and environment for statistical computing. Vienna, Austria; 2018. Avail-

able: https://www.R-project.org/

PLOS COMPUTATIONAL BIOLOGY Synergistic interventions to control COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009518 October 28, 2021 18 / 19

https://doi.org/10.1016/S1473-3099%2820%2930144-4
http://www.ncbi.nlm.nih.gov/pubmed/32171059
https://doi.org/10.1016/j.ijid.2020.11.005
https://doi.org/10.1016/j.ijid.2020.11.005
http://www.ncbi.nlm.nih.gov/pubmed/33181330
https://doi.org/10.3390/jcm9051297
http://www.ncbi.nlm.nih.gov/pubmed/32369975
https://doi.org/10.1016/S0140-6736%2820%2930566-3
http://www.ncbi.nlm.nih.gov/pubmed/32171076
https://doi.org/10.1371/journal.pmed.1003346
https://doi.org/10.1371/journal.pmed.1003346
http://www.ncbi.nlm.nih.gov/pubmed/32960881
https://doi.org/10.1128/JCM.02225-20
http://www.ncbi.nlm.nih.gov/pubmed/32843531
https://doi.org/10.1016/j.mbs.2005.08.002
http://www.ncbi.nlm.nih.gov/pubmed/16216286
https://doi.org/10.1007/978-3-319-97487-3
https://doi.org/10.1007/BF00178324
http://www.ncbi.nlm.nih.gov/pubmed/2117040
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1056/NEJMoa2001316
http://www.ncbi.nlm.nih.gov/pubmed/31995857
https://doi.org/10.1016/S0140-6736%2820%2930260-9
http://www.ncbi.nlm.nih.gov/pubmed/32014114
https://doi.org/10.3961/jpmph.20.076
https://doi.org/10.3961/jpmph.20.076
http://www.ncbi.nlm.nih.gov/pubmed/32498136
https://doi.org/10.15585/mmwr.mm7003e3
http://www.ncbi.nlm.nih.gov/pubmed/33476316
https://doi.org/10.1093/cid/ciaa1890
http://www.ncbi.nlm.nih.gov/pubmed/33367619
https://doi.org/10.1101/2020.11.03.20225409
http://www.ncbi.nlm.nih.gov/pubmed/33173914
https://doi.org/10.15585/mmwr.mm7019e3
http://www.ncbi.nlm.nih.gov/pubmed/33988185
https://doi.org/10.1016/j.epidem.2015.11.002
https://doi.org/10.1016/j.epidem.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/27266845
https://doi.org/10.1101/2021.02.03.21250974
https://www.R-project.org/
https://doi.org/10.1371/journal.pcbi.1009518


65. Lee BY, Bartsch SM, Ferguson MC, Wedlock PT, O’Shea KJ, Siegmund SS, et al. The value of

decreasing the duration of the infectious period of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection. PLoS Comput Biol. 2021; 17: e1008470. https://doi.org/10.1371/journal.pcbi.

1008470 PMID: 33411742

66. Gostic KM, McGough L, Baskerville EB, Abbott S, Joshi K, Tedijanto C, et al. Practical considerations

for measuring the effective reproductive number, Rt. PLoS Comput Biol. 2020; 16. https://doi.org/10.

1371/journal.pcbi.1008409 PMID: 33301457

67. Kendall M, Milsom L, Abeler-Dörner L, Wymant C, Ferretti L, Briers M, et al. Epidemiological changes

on the Isle of Wight after the launch of the NHS Test and Trace programme: a preliminary analysis. Lan-

cet Digit Health. 2020; 2: e658–e666. https://doi.org/10.1016/S2589-7500(20)30241-7 PMID:

33078140

68. Cheng MP, Papenburg J, Desjardins M, Kanjilal S, Quach C, Libman M, et al. Diagnostic testing for

Severe Acute Respiratory Syndrome–Related Coronavirus 2: A narrative review. Ann Intern Med.

2020; 172: 726–734. https://doi.org/10.7326/M20-1301 PMID: 32282894

69. Manabe YC, Sharfstein JS, Armstrong K. The need for more and better testing for COVID-19. JAMA.

2020; 324: 2153. https://doi.org/10.1001/jama.2020.21694 PMID: 33185688

70. Gonzalez-Reiche AS, Hernandez MM, Sullivan MJ, Ciferri B, Alshammary H, Obla A, et al. Introduc-

tions and early spread of SARS-CoV-2 in the New York City area. Science. 2020; 369: 297–301. https://

doi.org/10.1126/science.abc1917 PMID: 32471856

71. Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, et al. Genomic evidence for

reinfection with SARS-CoV-2: a case study. Lancet Infect Dis. 2020; 21: 52–58. https://doi.org/10.1016/

S1473-3099(20)30764-7 PMID: 33058797

72. Ali ST, Wang L, Lau EHY, Xu X-K, Du Z, Wu Y, et al. Serial interval of SARS-CoV-2 was shortened over

time by nonpharmaceutical interventions. Science. 2020; 369: 1106–1109. https://doi.org/10.1126/

science.abc9004 PMID: 32694200

PLOS COMPUTATIONAL BIOLOGY Synergistic interventions to control COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009518 October 28, 2021 19 / 19

https://doi.org/10.1371/journal.pcbi.1008470
https://doi.org/10.1371/journal.pcbi.1008470
http://www.ncbi.nlm.nih.gov/pubmed/33411742
https://doi.org/10.1371/journal.pcbi.1008409
https://doi.org/10.1371/journal.pcbi.1008409
http://www.ncbi.nlm.nih.gov/pubmed/33301457
https://doi.org/10.1016/S2589-7500%2820%2930241-7
http://www.ncbi.nlm.nih.gov/pubmed/33078140
https://doi.org/10.7326/M20-1301
http://www.ncbi.nlm.nih.gov/pubmed/32282894
https://doi.org/10.1001/jama.2020.21694
http://www.ncbi.nlm.nih.gov/pubmed/33185688
https://doi.org/10.1126/science.abc1917
https://doi.org/10.1126/science.abc1917
http://www.ncbi.nlm.nih.gov/pubmed/32471856
https://doi.org/10.1016/S1473-3099%2820%2930764-7
https://doi.org/10.1016/S1473-3099%2820%2930764-7
http://www.ncbi.nlm.nih.gov/pubmed/33058797
https://doi.org/10.1126/science.abc9004
https://doi.org/10.1126/science.abc9004
http://www.ncbi.nlm.nih.gov/pubmed/32694200
https://doi.org/10.1371/journal.pcbi.1009518

