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ABSTRACT

Carbon storage regulator (CsrA) is a eubacterial
RNA-binding protein that acts as a global regulator
of many functionally diverse chromosomal genes.
Here, we reveal that CsrA represses expression
from an extrachromosomal element of Escherichia
coli, the lysis gene (cel) of the ColE7 operon
(cea-cei-cel). This operon and colicin expression
are activated upon SOS response. Disruption of
csrA caused ~5-fold increase of the lysis protein.
Gel mobility shift assays established that both the
single-stranded loop of the T1 stem-loop distal to
cei, and the putative CsrA binding site overlapping
the Shine-Dalgarno sequence (SD) of the cel gene
are important for CsrA binding. Substitution muta-
tions at SD relieved CsrA-dependent repression of
the cel gene in vivo. Steady-state levels and half-life
of the cel mRNA were not affected by CsrA, implying
that regulation is mediated at the translational level.
Levels of CsrB and CsrC sRNAs, which bind to and
antagonize CsrA, were drastically reduced upon in-
duction of the SOS response, while the CsrA protein
itself remained unaffected. Thus, CsrA is a trans-
acting modulator that downregulates the expression
of lysis protein, which may confer a survival advan-
tage on colicinogenic E. coli under environment
stress conditions.

INTRODUCTION

The Csr (carbon storage regulator) global regulatory
system of Escherichia coli comprises four components.
CsrA is a homodimeric RNA-binding protein containing
two binding surfaces per dimer. Two non-coding small

RNAs (CsrB and CsrC) antagonize CsrA activity by
binding to and sequestering this protein. CsrD is a
GGDEF-EAL domain protein that targets CsrB and
CsrC for degradation by RNase E (1-4). CsrA was
identified as a repressor of glycogen metabolism, and
mediates posttranscriptional repression or activation
of Dbacterial gene expression (5-7). The mechanism
by which CsrA negatively regulates glgC, encoding a
glycogen biosynthetic enzyme, has been well documented
(8). CsrA binds to the untranslated leader of the glgCAP
message at two primary sites, one of which overlaps the
glgC Shine-Dalgarno (SD) sequence and prevents
ribosome binding. Binding at the second site, which is
found in the loop of an RNA hairpin that lies upstream
from the SD sequence, tethers CsrA to the mRNA and
facilitates bridging of its remaining RNA binding surface
to the SD (9). Translational repression apparently leads to
accelerated turnover of glgCAP mRNA and decreased ex-
pression of the glgCAP genes (10). CsrA represses other
genes and operons in a similar manner (11,12). CsrA
activity is modulated by the action of the small untrans-
lated RNAs, CsrB and CsrC, which contain multiple
copies of an imperfectly repetitive sequence element (22
in CsrB and 13 in CsrC) that serves as a CsrA binding
site. In this way, CsrB binds to and sequesters ~9 to 10
CsrA dimers, preventing their interaction with mRNA
targets (2,3,6). In a variety of species, transcription of
Csr RNAs requires a conserved two component signal
transduction system, which is known as BarA-UvrY in
E. coli (6). However, the molecular mechanisms by
which environmental stimuli control the Csr global regu-
latory system remain elusive.

CsrA orthologs are found in many bacteria (13-15)
and regulate numerous cellular behaviors (16), including
carbon metabolism (8), biofilm formation (17,18), motility
(19-22), quorum sensing (23), epithelial cell invasion
(24-26) and virulence factor production (19,27-29).
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Despite its broad regulatory role in bacterial physiology
(16,30), only a few direct mRNA targets of CsrA from
E. coli have been identified (8,11,12,31,32).

Colicins are plasmid-encoded bacteriocins produced by
E. coli, which are secreted into the environment and
exhibit toxicity against FE. coli and closely related
Enterobacteriae (33). They are produced to gain advantage
over the competing bacteria for survival under unfavor-
able conditions, such as nutrient deficiency and DNA
damage (34). The bactericidal activity of Colicin E7
(ColE7) is a nonspecific endonuclease (35), which is
encoded by the colicin structural gene cea of the ColE7
operon. The ColE7 operon also possesses the immunity
(cei) and lysis (cel) genes, which are responsible for
neutralization of colicin toxicity (36), and release of
colicin into the extracellular space (37), respectively.
Transcription of colicin E7 is regulated by an SOS respon-
sive promoter, which can be induced by ultraviolet
(UV) irradiation and DNA-damaging agents such as
mitomycin C (38).

Lysis proteins, also referred to bacteriocin release
proteins (BRP) or kil proteins, are small lipoproteins of
47 amino acids and synthesized as precursors containing a
signal peptide of 19 amino acids at the N-terminus (37).
They are synthesized as precursors in the cytoplasm,
targeted to the inner membrane by their N-terminal
signal sequences, and translocated via the Sec-translocon
to the outer leaflet of the inner membrane (39). The pre-
cursors are lipid-modified and processed to the mature
form on the periplasmic side of the inner membrane.
The mature forms of lysis proteins are detached from
the inner membrane by the action of an ATP-binding
cassette (ABC) transporter LolCDE and a periplasmic
carrier chaperone, LolA. Lysis proteins are sequentially
transferred from LolA to receptor LolB, which incorpor-
ates lipoproteins into the inner leaflet of the outer
membrane (40-42). The mature form of lysis protein acti-
vates phospholipase A in the outer membrane and conse-
quently increases cell membrane permeability and colicin
release (43). Lysis protein is essential for the release of the
Col-Im complex from the cell (44,45). Despite the import-
ance of lysis protein in colicin release, overexpression of
cel gene is lethal to the producing E. coli cell (46-48), and
should be subject to rigid regulatory control. Thus far,
little is known about the fine-tuning of this expression in
response to environmental stimuli.

We previously reported that the T1 transcriptional ter-
minator is situated in the cei—cel intercistronic region (35).
Since the cel gene is transcribed at lower level than the
other two proximal cea and cei genes, it was proposed that
cel expression is regulated by the T1 transcriptional ter-
minator (T1 stem—loop structure), resulting in alleviation
of the expression below the lethal dose of the ce/ gene
(42,49). Nevertheless, unambiguous involvement of regu-
latory factors in the quantitative control of lysis expres-
sion has not yet been established.

Here, we examined the mechanism of CsrA-mediated
repression of cel expression. Our findings established
that CsrA binds directly and specifically to the upstream
noncoding segment of the cel transcript, which requires
sequences at the T1 stem—loop and SD element. CsrA
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repressed lysis protein expression by reducing its transla-
tional efficiency without affecting the rate of ce/ mRNA
decay. Substitution of the first two nucleotides (AC to TT)
of the putative CsrA binding site (ACAAGGAGT)
overlapping the ce/ SD substantially relieved the
CsrA-mediated repression of ce/ gene expression in vivo.
Intriguingly, the CsrB and CsrC RNA levels were notably
decreased under the stress of SOS response, which should
increase the intracellular biological activity of CsrA.
To our knowledge, this study provides the first evidence
for a regulatory role of CsrA in the expression of an
extra-chromosomal gene and identifies CsrA as a frans-
acting factor that specifically modulates ce/ gene expres-
sion. A model depicting the way in which the Csr system
coordinates lysis of a colicinogenic cell under environmen-
tal stress is discussed.

MATERIALS AND METHODS
Bacterial strains and growth conditions

The bacterial strains used in this study are listed in
Table 1. Escherichia coli DH5a served as host for
standard cloning procedures. Overnight culture of E. coli
cells were inoculated at a dilution of 1:100 into 50 ml of
Luria-Bertani (LB) medium and grown at 37°C with agi-
tation. Kornberg medium (1.1% K,HPO,, 0.85%
KH,POy4, 0.6% yeast extract containing 0.5% glucose
for liquid medium or 1% glucose for agar plates) was
used for assessment of intracellular glycogen in colonies
by iodine staining (3). Bacteria harboring resistance deter-
minants were grown in the presence of the appropriate
antibiotics at the following concentrations: ampicillin,
100 pg/ml; kanamycin, 50 pg/ml; and chloramphenicol
and 50pg/ml. For induction of the cloned genes or
ColE7 operon, IPTG or mitomycin C (MMC) was
added to final concentrations of 1mM and 0.5pg/ml,
respectively.

Plasmid construction

The plasmids used in this study are described in Table 1.
Table 2 lists the oligonucleotide primers used. Plasmid
pColE7-K317 (pK317) referred in this study, which was
different from the wild-type plasmid, was engineered by
inserting bla gene (B-lactamase producing, ampicillin-
resistant) into the BgllI-Ndel sites on wild-type ColE7
plasmid. For the complementation experiment in TR1-5
mutant, the csr4 gene was amplified from E. coli
MG1655 by PCR using the primers csrAComFor and
csrAComRev. The resulting gene fragments were
inserted into the BamHI-Sphl sites of the plasmid
pACYC184, generating plasmid pACYCI184-CsrA. For
CsrA protein preparation, the DNA fragment encoding
the csrA gene was amplified from E. coli MG1655 using
primers csrA29For and csrA29Rev. The PCR product
digested with Ndel and Xhol was ligated into the corres-
ponding cloning sites of plasmid pET29a to generate
plasmid pYM24. This plasmid was designed to facilitate
the purification of CsrA containing six additional His
residues at the C-terminus. Plasmid pYM9820 contains
the 134-nt fragment consisting of glgC leader and the
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Table 1. Bacterial strains and plasmids used in this study

Strain or plasmid

Relevant genotype or description

Reference or source

Escherichia coli strains
MG1655
TRI1-5MG1655
BL21(DE3)
DH5a
KSB837
GSl1114

Plasmids
pColE7-K317
pACYC184
pACYCI184-CsrA
pET29a
pYM24
pSPT18
pYM9820
pYMO9821
pYMO9865
pPYM9866
pPYMOI867
pPYMO9868
pTY003

F~ i~

MG1655 esrA::kan

F~ ompT hsdSg (1 my) gal dem (DE3)

F~ v80dlacZAMI15 A(lacZY A-argF) U169 hsdR17 recAl thi-1 relAl
CF7789 A(ratt-lom)::bla®(csrB-lacZ)I(Hyb) Amp"

CF7789 A(ratt-lom)::blad(csrC-lacZ)1(Hyb) Amp"

pK317 derivative with bla gene inserted in BglII-Ndel sites; Amp"

A general cloning vector compatible with ColEl plasmid; P15A replicon; Tet", Cm"
pACYC184 derivative containing csr4 gene (BamHI-Sphl sites); Cm"

IPTG-inducible expression vector; T7 promoter; Kan"

pET29a derivative containing csr4 gene on an Ndel-Xhol fragment; Kan"

Cloning vector for in vitro transcription with SP6/T7 promoter; Amp"

pSPT18 derivative carrying HindIII/EcoRI fragment of g/lgC behind SP6 promoter; Amp"
pSPT18 derivative carrying HindIII/EcoRI fragment of #rpL behind SP6 promoter; Amp"
pSPTI18 derivative carrying HindIII/EcoRI fragment of ce/ behind SP6 promoter; Amp"
pYMOI865 derivative with a GGA to CCC alteration in the loop region of T1 hairpin; Amp"
pYMOI865 derivative with a GGA to CCC alteration in the ce/ SD region; Amp"
pYMOI866 derivative with a GGA to CCC alteration in the cel SD region; Amp"
pColE7-K317 derivative with a AC to TT alteration upstream of the ce/ SD region; Amp"

(5)

(5)

Novagen
Laboratory stock
(50)

3)

This study
New England Biolabs
This study
Novagen
This study
Roche
This study
This study
This study
This study
This study
This study
This study

Table 2. Oligonucleotide primers used in this study

Primer

Sequence (5" to 3')

Construct generation

blaFor
blaRev
cstAComFor
csrAComRev
csrA29For
csrA29Rev

TGATAATAATAGATCTTTAGACGTCAGG
GGTGCTACACATATGTTGAAGTGGTG
ATTGCAATAATATAAGGATCCGGCAATGCC

GTCTCACGCATGCTTAGTGATGGTGATGGTGATGGTAACTGGACTGCTGGGATTTT

CAAGGAGTTCCATATGCTGATTCTG
GAGACGCGGAACTCGAGGTAACTG

RNA gel mobility shift assays

glgCFor
glgCRev
trpLFor
trpLRev
celFor
celRev

CCCCCAAAGCTTGGAGAGGATAACC
TTTCAAGAATTCCTGGCGCGCCAACAT
TACGATAAGCTTAGCTTAGAAATACAC
AAAGACGAATTCTGGGTAGAATAAACATAA
AAAGAAAAGCTTGCTGCTAACGGTAA
AGCAAGAATTCTGGCTGCAAGAA

Site-directed mutagenesis

BS1mutFor
BSImutRev
BS2mutFor
BS2mutRev
CelmutFor
CelmutRev

GTTTAACCCTGAATGACTGGCATTCTTTCACAACAAGGAGTCGTTATG
CATAACGACTCCTTGTTGTGAAAGAATGCCAGTCATTCAGGGTTAAAC

GACTGGCATTCTTTCACAACAACCCGTCGTTATG
CCTGTTATTTTTTTCATAACGACGGGTTGTTGTGAAAGAATGCCAGTC
GGCATTCTTTCACATTAAGGAGTCGTTATGAAAAAAATAACAG
CTGTTATTTTTTTCATAACGACTCCTTAATGTGAAAGAATGCC

In vitro transcription

pSPT18-SP6

pSPT18Rev
Real-time PCR

LysE7RTFor

LysE7RTRev

csrBRTFor
csrBRTRev
csrtCRTFor
csrtCRTRev
rrnHRTFor
rrnHRTRev
lacZRTFor
lacZRTRev

CTGACCATTTCCGGGTG
CTCACTATAGGGAGACCG

TCGTTATGAAAAAAATAACAGGGA
ACGACGGTGATACTGT
ACACTTCTGCAGGACACACCAG
TGACCCACCGAATCATCCTGAC
ATAGAGCGAGGACGCTAACAG
ACACACCCTGTTTTTCCTTTAGC
AGTCGAACGGTAACAGGAAGA
GCAATATTCCCCACTGCTG
CACCCGAGTGTGATCATCTG
GATACAGCGCGTCGTGATTA

The underlined letters indicate the restriction sites used in the relevant primers.
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-97
GAGACGATAGCCCCGAAGGGATTGTCAAGGAAATTAAAGAATGGCGAGCTGCTAACGGTA

AGCCAGGATTTAAACAGGGCTGAAATATGAATGCCGGTTGTTTAAGGATGAATGACTGGC
+1

— |
ATTCTTTCACAACAAGGAGTCGTTATGAAAAAAATAACAGGGATTATTTTATTGCTTCTT
SD [M K K I T G T T L L L L]

+43

GCAGCCATTATTCTTGCTGCATGTCAGGCAAACTATATCCGTGATGTTCAGGGCGGGACA
[A A T IT L A A]J]C Q A N Y I R D V Q G G T

GTATCACCGTCGTCAACTGCTGAACTGACCGGAGTGGAAACGCAGTAACCTGCAATCCTC

Vv S P S S
BS1

v

QPPIOOOOOCCOCCdr O
QACAFQOOCONOCEFOC Q-

e o o
“"‘hm<
0=
N -
]
uv)
()]
N

5’'—GGCUGAAAUAU U
A G= -24 .4 kcal/mole

U-2

T A E L T

AAAAAUA - 3’

G VvV E T Q *
C
E. coli CsrB consensus CA-GGAUG
E. coli glgC (Shine-Dalgarno) AAAGGAGU
E. coli cstA UAUGGACA
E. coli hfg (Shine-Dalgarno) UAAGGAAA
E. coli pgaA (Shine-Dalgarno) CAUGGAGU
B. subtilis hag CAAGGACG
E. coli cel (T1 stem loop) UAAGGAUG
E. coli cel (Shine-Dalgarno) CAAGGAGU

Figure 1. (A) Nucleotide sequence of the cei—cel intercistronic region and cel gene. The deduced amino acid sequence of LysE7 is shown below the
DNA sequence. The cei stop codon is in boldface and boxed in gray. The two horizontal inverted arrows indicate the T1 transcriptional terminator.
The Shine-Dalgarno (SD) sequence and the ATG start codon for the cel coding region are shown in boldface and underlined. The signal peptide of
LysE7 is enclosed in box. (B) Computer-predicted stable secondary structure of the T1 transcriptional terminator. The Tl mRNA secondary
structure and free energy value were determined with the mfold program (version 3.2; Zuker, 2003). The base pairing between U and G is
denoted by a dot in the structure. The Shine-Dalgarno sequence (SD) and the start codon of ce/ gene are shown in boldface. The two GGA
motifs involved in CsrA binding and mutated to study the interaction of CsrA with the cel transcript are marked with arrowheads. (C) Sequence
comparison of putative CsrA binding sites. Two putative CsrA binding sites in the ce/ transcript are shown at the bottom and compared with the
CsrB RNA consensus, some of the known binding sites in the glgC, cstA, hfqg and pgaA transcripts, as well as with a binding site that was identified
in B. subtilis (2,8,11,12,22,31). The highly conserved GGA binding motif is underlined.

glgC coding region (+46 to +179 relative to the start of
transcription) cloned into the HindIII-EcoRI sites of the
pSPT18 polylinker (Roche). The glgC gene was amplified
from E. coli MG1655 genomic DNA by using the primer
pairs glgCFor/glgCRev to generate plasmid pYM9820.
For construction of pYM9821, the 112-nt fragment (+1
to +111 relative to the start of #rp operon transcription)
from the #rp leader region in Bacillus subtilis was amplified
using primers trpLFor and trpLRev, and then cloned into
the HindIII-EcoRI sites of the pSPTI18. Plasmid
pYMO9865 containing portions of the ce/ leader and the
cel SD sequence (97 to +43 sequence, +1 being the
A nucleotide of the initiation codon of cel gene,
Figure 1A) was generated by amplifying the 140-nt PCR
fragment from the pColE7-K317 using primers celFor/
celRev, and subsequently cloned into the HindIII-EcoRI
sites of the pSPT18. Plasmids pYM9820, pYM9821 and
pYMO9865 were used to generate run-off transcripts for
in vitro transcription and RNA gel mobility shift assay.

Site-directed mutagenesis

To engineer the mutated ce/ transcripts for gel mobility
shift assays, plasmid pYMO9865 was subjected to
site-directed mutagenesis using the QuikChange II kit
(Stratagene) following the manufacturer’s instructions.
Derivatives of pYMO9865 carrying mutations, either in
the loop region of the T1 stem-loop structure or in the
cel SD region (Figure 1B), were constructed using the
primer pairs BSImutFor/BSImutRev or BS2mutFor/
BS2mutRev, respectively, to create plasmids pYM9866
and pYMO9867. Plasmid pYM9866 was used as the
template for the PCR with the mutagenic primers
BS2mutFor/BS2mutRev, generating plasmid pYM9868.
The GGA motifs in the loop region of T1 stem—loop struc-
ture and the ce/ SD sequence on pYMO9868 were both
replaced by CCC. Plasmids pYM9866, pYM9867 and
pYMO868 were used to generate the mutant cel transcripts
used for our in vitro studies. To generate substitutions in
the putative CsrA regulatory binding site of the cel gene,
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2-nt mutagenesis in the cel/ leader just upstream of
the SD sequence were introduced into pColE7-K317
using the primer pairs CelmutFor/CelmutRev and
the QuikChange II protocol (Stratagene), resulting in
plasmid pTY003.

Western blotting analysis

Escherichia coli cells were grown under the conditions as
previously described until they reached an ODgq of 0.6;
then MMC was added to a final concentration of 0.5 g/
ml to induce the ColE7 operon. At 0.5, 1 and 1.5h after
MMC induction, volumes equivalent to 0.36 ODgqo units
were harvested by centrifugation at 4°C and 13 500 r.p.m.
for 8 min. The cell pellets were resuspended in sample
buffer (62.5mM Tris—HCI at pH 6.8, 10% glycerol, 2%
SDS, 5% B-mercaptoethanol, 0.02% bromophenol blue)
and heated at 100°C for 10min. Lysates equivalent
to 0.045 ODyggy units were subjected to a 15% Tricine-
sodium dodecyl sulfate (SDS)-polyacrylamide gel electro-
phoresis (PAGE) and then transferred to a polyvinylidene
difluoride (PVDF) membrane by electroblotting.
Rabbit polyclonal antibody against the LysE7 protein
was produced in this study. The antigen used to raise
the anti-LysE7 serum was a peptide corresponding
to amino acid residues 2047 of the LysE7 protein
(Figure 1A). The membranes were probed with a 1:4000
dilution of rabbit anti-LysE7 or a 1:5000 dilution of rabbit
anti-His (SC-803; Santa Cruz Biotechnology) primary
antibody. For detection of LexA and RecA proteins,
blots were probed with a 1:1000 dilution of goat poly-
clonal LexA-specific antibody (SC-1725; Santa Cruz
Biotechnology) and with goat polyclonal RecA-specific
antibody at a dilution of 1:2000 (SC-30382; Santa Cruz
Biotechnology). For detection of CsrA proteins, blots
were probed with a 1:5000 dilution of rabbit antiserum
raised against purified CsrA-CsrB complex (50).
Immunodetection of GroEL was performed with a
1:80000 dilution of rabbit anti-GroEL HRP-conjugated
antibody (Sigma). The band densities were quantified
with ImageQuant software.

Purification of histidine-tagged CsrA (CsrA-Hisg)

Culture of E. coli BL21 (DE3) harboring pYM?24 was the
same as described above. The cell pellet was suspended in
lysis buffer containing 20 mM Tris—HCI (pH 7.9), 500 mM
NaCl and 5mM imidazole (Sml of buffer per gram
of cells). Cells were lysed by French press, followed by
centrifugation at 24000r.p.m. for 20min at 4°C. The
resulting supernatant was collected and mixed with
pre-equilibrated 1.5ml of Ni-IDA resin (Novagen) for
2.5h at 4°C. The mixture was then loaded into a column
and washed with 50 ml of buffer A (20 mM Tris—HCI, pH
7.9, 500mM NaCl, 100 mM imidazole). CsrA-His, was
eluted with 9ml of buffer B (20mM Tris-HCI, pH 7.9,
500mM NaCl, 1M imidazole). Column fractions were
analyzed by 15% SDS-PAGE and Coomassie Blue
staining. The CsrA-Hisg containing fractions were
combined and dialyzed against 50 mM NaH,PO, (pH
7.0) and 10% glycerol. The dialysate was loaded onto
the SP FF column (GE Healthcare) that was

pre-equilibrated with 50mM NaH,PO, (pH 7.0) and
CsrA-Hisg was eluted from the column between 350 and
700mM NaCl. The protein-containing fractions were
combined and dialyzed against 10mM Tris—HCl, pH
7.0, 100mM KCl, 10mM MgCl, and 25% glycerol. The
CsrA-Hiss concentration was estimated using Bio-Rad
protein assay and BSA (PIERCE) as the standard.

RNA gel mobility shift assay

The glgC, trpL, lys and mutant /ys runoff transcripts were
synthesized from PCR products using SP6 RNA polymer-
ase. Plasmids pYM9820, pYM9821 and pYMOI865 to
pYMOI868 were used as templates for PCR with primers
pSPT18-SP6 and pSPT18Rev. The PCR products were
gel-purified and used as templates for in vitro transcription
using Ambion MEGAscript kit. RNA was dephosphor-
ylated with calf intestinal alkaline phosphatase (NEB)
and subsequently 5-end-labeled using [y->’P]-ATP and
T4 polynucleotide kinase (Promega) following the manu-
facturer’s instructions. The labeled RNAs and unlabelled
competitor RNAs were purified using MEGAclear Kit
(Ambion), heated to 85°C and then slowly cooled to
room temperature. Binding reaction mixtures (10 pl) con-
tained 10mM Tris-HCI (pH 7.5), 100mM KCI, 10 mM
MgCl,, 32.5ng of yeast RNA, 20 mM dithiothreitol, 10%
glycerol, 4U of RNase inhibitor (Ambion), 0.1 mgml™'
xylene cyanol, 0.lmgml~' bromophenol blue,
5’-end-labeled RNA probes and various concentrations
of purified CsrA-Hisq (see figure legends for details).
CsrA-Hisg was added last to the binding reaction contain-
ing various unlabelled RNA competitors (see figure
legends for details) in competition assay. Reaction
mixtures were incubated at 37°C for 30min to allow
complex formation. Samples were then fractionated on
5% native polyacrylamide gel and radioactive bands
were visualized with a phosphorimager (Molecular
Dynamics) after drying the gels.

RNA isolation and cDNA synthesis

For total RNA preparation, cells from 500 pl of culture
were harvested and frozen in liquid nitrogen. Total RNA
was isolated using the illustra RNAspin Mini Isolation Kit
(GE Healthcare) and treated with on-column DNase I
digestion according to the manufacturer’s instructions.
The eluted RNA samples were stored at —80°C. Equal
amount of total RNA (0.1 pg) was used for cDNA syn-
thesis using SuperScript IIT First-Strand Synthesis System
for RT-PCR (Invitrogen). The reverse transcription mix
(10pl) containing 0.1 pg of total RNA, 50ng of the
random hexamer, 1ul of dNTP mix (10mM), and
DEPC-treated water was incubated at 65°C for 5min,
and then placed on ice for Smin. To continue the RT
reaction, the cDNA synthesis mix (Invitrogen) was
added and incubated at 25°C for 10min, followed by
50°C for 50min and a 5-min inactivation step at 85°C.
To remove RNA from ¢cDNA, 1ul of E. coli RNaseH
(2U/ul) was added and incubated at 37°C for 30 min.
To ensure that the RNA preparations were free from
DNA contamination, RT reaction was performed with
or without reverse transcriptase.



Real-time RT-PCR analysis of steady-state levels of cel
mRNA and measurement of RNA half-life

Preparation of cell culture, total RNA purification and
reverse transcription were the same as described above.
The primer pairs cstBRTFor/cstBRTRev, cstCRTFor/
cstCRTReyv, LysE7RTFor/LysE7RTRev and
lacZRTFor/lacZRTRev were used for PCR amplification
of the ¢srB, ¢srC, cel and lacZ RT products, respectively.
The detailed procedure and precaution of Real-time
RT-PCR were carried out using LightCycler Faststart
DNA Master”™ SYBR Green I kit (Roche) and per-
formed by the LightCycler Carousel-Based System
(Roche) as described by the instruction of the manufac-
turer (Roche). A negative control, replacing cDNA with
PCR-grade water, was also included in each PCR run. For
normalization of lacZ, cel, c¢srB and csrC RNA levels,
real-time RT-PCR were conducted with each sample for
16S rRNA quantification using the primer pairs
rrnHRTFor and rrnHRTRev. The data were analyzed
using the 2722CT method to determine the relative
changes in gene expression from real-time PCR experi-
ments (51). The fold change of the target gene
(cel mRNA), normalized to 16S rRNA and relative to
the calibrator (wild-type strain MG1655) was calculated
for each time point using 2724¢T. The mean and SD
values of three independent experiments were determined
at each time point.

For cel mRNA half-life studies, c¢srdA wild-type
(MG1655) and mutant TRI1-5 strains both harboring
pColE7-K317 were grown as described above. After
MMC induction of expression of the ColE7 operon for
30 min, bacterial cultures were treated with rifampicin at a
final concentration of 250 pgml ™" to inhibit transcription.
Cells were harvested at 0, 5, 10, 15, 20 and 30 min follow-
ing rifampicin addition. Total RNA was purified, and the
amount of ce/ mRNA in each sample was determined
using real-time RT-PCR as described above. The percent-
age of RNA remaining at each time-course was
determined by calculating the difference in cycle threshold
(ACt) compared to the 0-min time point.

Glycogen staining and B-galactosidase assay

Glycogen accumulation was examined by staining
colonies with iodine vapor (52). B-Galactosidase activity
was measured using the Miller protocol (53).

Sequence alignment

Selected cei—cel sequences from several E group Col
plasmids were aligned using the program DNAMAN.
We aligned the corresponding regions comprising the T1
stem—loop structure and the ce/ SD element (97 to +43
sequence, +1 being the A nucleotide of the initiation
codon of cel gene) between several types of ColE
plasmids. The following GenBank accession numbers
were obtained from the NCBI database for the sequences
of plasmid Colicin E2 operon (M29885), plasmid Colicin
E3 operon (JO1574), plasmid Colicin E6 operon (X15856),
cei and cel gene of plasmid Colicin E7 (X63620), plasmid
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Colicin E8 operon (X06119) and plasmid Colicin E9
operon (FJ573246).

RESULTS

Two putative CsrA binding sites within the leader
sequence of the cel gene

Previous study has defined a conserved high affinity
binding sequence for CsrA, RUACARGGAUGU
(R =A or G), within which the GGA motif is 100%
conserved and is located within the loop of variable
short stems (54). In the present study, we analyzed the
5 leader region of ce/ mRNA and found two potential
binding sites in this region, one in the loop region of the
T1 stem—loop (binding site 1, BS1, Figure 1B), and the
other one overlapping the SD sequence of cel (binding
site 2, BS2, Figure 1B). The sequence alignment with
the previously known CsrA binding sites is shown in
Figure 1C. The high sequence similarity of these two
sites with known CsrA binding sequences and their
location at the translation initiation region suggested
that they might participate in regulating the expression
of the cel gene.

CsrA regulates cel gene expression

To investigate the effect of CsrA on the expression of ce/
gene, growth curves for both csr4 wild-type strains
MG1655 and their isogenic c¢srA mutant TR1-SMG1655
harboring pColE7-K317 were performed after MMC
induction (Figure 2A). We observed that the wild-type
strains began to lyze at 1.5h after MMC induction,
while the c¢srA mutant began to lyze 0.5h earlier than
the wild-type strains. The decline in culture turbidity
from TRI1-SMGI1655(pColE7-K317) was more severe
compared to that of the MGI1655(pColE7-K317) cells.
Furthermore, the distinct degree of quasi-lysis did not
result from a growth defect of the csr4 mutant, as there
was no significant difference between the growth rates of
the wild type and the mutant strains carrying no ColE7
plasmid after MMC induction (data not shown). To
further validate the expression of cel gene in both bacterial
strains, Western blotting analysis with LysE7-specific anti-
serum was conducted to quantify the intracellular level of
lysis protein in the wild-type and the csr4 mutant strains
(Figure 2B). As expected from the lysis patterns, the csr4
mutant strain expressed substantially elevated levels of
lysis protein as compared to the wild-type strain. Taken
together, these results suggested that CsrA may be a
negative regulator of the expression of Lys protein.

To further examine the effect of CsrA on the expression
of Lys protein, complementation of the csr4 mutation
was accomplished by introducing the low-copy-number
vector pACYCI184 containing the csr4 gene into the
TRI1-5MG1655(pColE7-K317)  strain.  Interestingly,
quasi-lysis did not occur in the complemented csr4
mutant strain (Figure 2C). Moreover, we observed a con-
tinuous rise in culture turbidity of the complemented
mutant even at 2h after MMC induction (Figure 2C).
Apparently, ectopic expression of ¢srA from a multicopy
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Figure 2. Effects of ¢sr4 disruption (A and B) and complementation (C and D) on expression of LysE7 protein. (A) Growth curves of MG1655 and
csrA mutant strain TR1-5MG1655. Cultures of strains harboring pColE7-K317 were grown in LB medium to an ODgq of 0.6, and induced with
MMC (0.5 pg/ml) at zero time. The ODgq of the cultures was measured at various times after induction. Sample symbols: closed circles, MG1655
(wild-type/pColE7-K317); closed squares, TR1-SMG1655 (csrA.:kan/pColE7-K317). (B) Western blotting analysis of c¢srA4 effect on LysE7. Strains
MG1655(pColE7-K317) and TR1-5MG1655(pColE7-K317) were harvested at the indicated times after MMC (0.5 pg/ml) induction and assayed for
intracellular level of LysE7 by Western blotting. Western detection of GroEL served as a control for sample loading. L-PREC, lipid-modified
precursor of LysE7; PRE-LysE7, unmodified precursor of LysE7; M-LysE7, mature form of LysE7. (C) Growth curve of complemented ¢sr4 mutant
strain. Cultures of strains harboring pColE7-K317 were grown in LB medium to an ODgq of 0.6, and induced with MMC (0.5 pg/ml) at zero time.
The ODgqo of the cultures was measured at various times after induction. Strains MG1655 and TRI1-SMG1655 containing pACYC184 were the
empty vector controls. Sample symbols: closed circles, MG1655 (wild-type/pColE7-K317); open circles, MG1655 (wild-type/pColE7-K317/
pACYCI184); closed squares, TRI-5MGI1655 (csrA::kan/pColE7-K317); open squares, TR1-5MG1655 (csrA::kan/pColE7-K317/pACYC184);
closed triangles, TR1-5MG1655 (csrA::kan/pColE7-K317/pACYC184-CsrA). (D) In trans complementation with pACYC184-CsrA resulted in a
significant reduction of LysE7 expression. Cells were harvested at the indicated times after MMC (0.5 pg/ml) induction and assayed for intracellular
level of LysE7 by Western blotting using anti-LysE7 and recombinant CsrA-Hiss was detected with anti-His antibody. GroEL was employed as

sample loading control.

pACYC184-CsrA plasmid caused severe repression of the
lysis protein synthesis, making the complemented mutant
relatively unresponsive to MMC induction. Western
blotting analysis further revealed that the lysis protein
was essentially undetectable in the complemented mutant
as compared with the csr4 wild-type and mutant strains
containing only the vector pACYC184 (Figure 2D).

CsrA binds directly and specifically to ce/ RNA

The cel transcript contains a 61-nt untranslated
RNA segment within the cei-cel intercistronic region.

To examine the interaction of CsrA with ce/ RNA, gel
mobility shift assays were performed with a transcript con-
taining the T1 stem—loop and the SD element of ce/ (nu-
cleotides —97 to +43 relative to the initiation codon of cel,
Figure 1A). As there were no significant differences in the
RNA-binding properties of the native CsrA protein
and a C-terminally His-tagged CsrA (CsrA-Hisg) (31),
the CsrA-Hisq protein was used for these studies. Two
distinct shifted complexes were observed. Essentially, the
entire amount of starting RNA used was shifted to the
first complex when the concentration of CsrA reached
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Figure 3. Gel mobility shift analysis of CsrA—ce/ RNA interaction. Gel
shift assays were performed in the absence or presence of unlabelled
competitor RNA. The positions of bound (B) and free (F) RNA are
shown at the left of each panel. (A) Detection of CsrA-ce/ RNA inter-
action. 5-end-labeled ce/ RNA (0.5nM) was incubated with the various
concentrations of CsrA indicated at the bottom of each lane. (B)
Competition assay for CsrA-ce/ RNA complex formation to verify
the binding specificity. Competition reactions used specific (cel, glgC)
and non-specific (zrp leader from B. subtilis) unlabelled competitor
RNAs at the concentrations shown.

82nM (Figure 3A). Moreover, further binding of CsrA to
cel RNA was also observed as the second distinct shifted
complexes at 124-185nM. Interestingly, we observed that
the increase of CsrA concentration to 278 nM resulted in
the disappearance of the first complex species at §2nM
and the appearance of the new shifted species (Figure
3A). These gel mobility shift assays raised the possibility
that more than one CsrA binding site might be located on
the cel transcript. In combination with the results of
Western blotting, they also suggested that ce/ gene expres-
sion is directly regulated by CsrA binding.

To examine the specificity of CsrA-cel RNA interaction,
competition experiments were conducted with the specific
(glgC RNA and cel RNA) and non-specific (B. subtilis trp
leader RNA) unlabelled RNA competitors (Figure 3B).
Both cel and glgC transcripts served as effective competi-
tors, while the B. subtilis trp leader RNA did not compete
with the CsrA—cel complex formation. Taken together,
these results established that CsrA binds specifically
to the cel transcript, which may contain two putative
CsrA binding sequences that are located within the T1
stem—loop and cel SD sequence.

T1 stem—loop and the cel SD sequence are required
for CsrA binding

We suspected that the CsrA binding site that overlaps the
SD sequence of cel should be particularly important for
regulation of translation. To define the regions required
for CsrA binding, transcripts were constructed that con-
tained base substitutions in the T1 stem—loop (BSI1), ce/
SD sequence (BS2) and at both sites (BS1-BS2). The im-
portance of a conserved GGA motif for CsrA binding has
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Figure 4. Effect of site-directed mutations of putative CsrA binding
sites on CsrA-ce/ RNA interactions. Gel mobility shift assays were
performed using wild-type (WT) or mutant (BS1, BS2 and BS1-BS2)
5'-end-labeled ce/ RNA (0.5nM). The concentration of CsrA was
indicated at the bottom of each lane. The positions of bound (B) and
free (F) RNA are shown. BSI1, ce/ transcript containing the mutations
in the loop region of T1 stem—loop; BS2, ce/ transcript containing the
mutations in the Shine-Dalgarno sequence; BS1-BS2, cel/ transcript
containing the mutations in both GGA motifs.

been previously reported (9,54,55), hence the GGA motifs
in BS1 and BS2 were replaced with CCC. Noticeably,
computer modeling using MFOLD (56) did not predict
any significant unintended structural rearrangements in
any of these mutant transcripts. Gel shift patterns of the
mutant transcripts were clearly distinct from that of
wild-type RNA, and revealed that replacement of the
GGA motif with CCC led to an observable reduction of
CsrA affinity in every case (Figure 4). CsrA binding to
wild-type transcripts was detected as two distinct shifted
complexes between 50 and 200nM CsrA. The complete
shift of first complex was observed at 100nM CsrA, and
essentially all of the wild-type RNA was present in the
second shifted complex when the concentration of CsrA
reached 200 nM. In contrast, under the same conditions,
50nM CsrA failed to shift the transcripts containing mu-
tations in either BS1 or BS2. Moreover, complete shifting
of the first complex was not observed until the CsrA con-
centration reached 200 nM in BS1 mutant RNA. The gel
shift pattern in BS2 mutant was similar to that of the BS1
mutant transcript, resulting in the formation of a single
complex. These results indicated that BS1 or the BS2 mu-
tations caused a similar reduction in CsrA affinity.
Apparently, substitutions in either T1 stem-loop or the
cel SD sequence alone left the other site intact and avail-
able for interaction with CsrA. Combining these two sets
of substitutions in the T1 stem—loop and ce/ SD sequence
(BS1-BS2) resulted in a complete loss of CsrA binding
(Figure 4), implying that both the loop region of the T1
hairpin and the ce/ SD sequence serve as binding sites for
CsrA.

Effects of CsrA on steady-state levels and stability of
the ce/ mRNA

To determine whether the elevated LysE7 protein levels in
the c¢sr4 mutant are due to an increase in ce/ mRNA
levels, as previously reported for other proteins (6,8,12),
we examined the steady-state level of ce/ mRNA in the
wild-type and csr4 mutant strains at 0.5 and 1h after
MMC induction using real-time RT-PCR. Our results
clearly indicated that the expression levels of cel transcript
were not substantially different between the wild-type and
mutant strains, as the relative abundance of ce/ mRNA in
the TR1-5 ¢srA mutant strain was 1.6-fold and 0.8-fold
with respect to the wild-type strain at 0.5 and 1h after
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Figure 5. Disruption of csr4 greatly affects protein levels but not mRNA levels of cel. (A) Graph represents densitometric quantification after
Western blot analysis (Figure 2B). The amount of LysE7 protein in each sample was quantified by densitometry, normalized against the level of
GroEL, and used to calculate expression of LysE7 in TR1-5MG1655 (csrA::kan) relative to isogenic wild-type MG1655 cells. Error bars represent
mean + SD. The experiment was repeated three times with reproducible results. (B) Cells were harvested at 0.5 and 1h after MMC (0.5 pg/ml)
induction. The steady-state level of ce/ RNA was quantified by real-time RT-PCR and expressed as % of that of MG1655 cells. Relative amounts of
cel mRNA in each sample normalized to rrnH mRNA are presented as the mean + SD. All results were confirmed in three independent experiments.
(C) Analysis of ce/ mRNA stability in ¢sr4 wild-type and mutant strains. Parallel cultures of MG1655 and TR1-5MG1655, both containing
pColE7-K317, were grown at 37°C in LB medium to an ODggo of 0.6, at which time MMC (0.5 pg/ml) was added to induce the expression of
ColE7 operon for 30 min followed by rifampicin (250 pg/ml) treatment. At time intervals after transcription inhibition with rifampicin, total cellular
RNA was isolated from the cultures. The relative levels of ce/ mRNA remaining at the indicated time points were quantified using real-time RT-PCR
and normalized to 16S rRNA levels (see ‘Materials and Methods’ section). The amount of ce/ mRNA in each strain at O min with respect to

rifampicin addition was set to 100%. The mRNA (%) remaining thereafter was plotted versus time in semi-logarithmic diagrams.

MMC induction, respectively (Figure 5B). Thus, the
steady-state level of ce/ mRNA was not concomitant
with the ~5-fold increase in the LysE7 protein observed
in csr4 mutant strain (Figure 5A), suggesting that
CsrA-dependent repression of cel occurs mainly or entirely
at the level of translation. Calculation of the translational
efficiency in MG1655 and TRI1-5 strains by dividing the
level of LysE7 protein by the ce/ mRNA level for each
strain revealed that inactivation of csr4 caused a ~4- to
5-fold increase in cel translational efficiency (Table 3).

Chemical half-life determinations revealed that the
cel mRNA decayed slowly in both wild-type and csr4
mutant cells, with indistinguishable half-live of 18 £ 1.5
and 19.1 £ 1.9min, respectively (Figure 5C). Thus, we
conclude that CsrA had no significant effect on the stabil-
ity of the cel transcript. Thus, all of our results on the ce/
mRNA and protein imply that CsrA negatively regulates
cel at the level of translation.

Mutations in the cel leader region reduce CsrA-dependent
repression

We presumed that the CsrA binding site overlapping the
SD element of ce/ (Figure 1B) should be particularly im-
portant for translational repression, as binding of CsrA

at this site should interfere with ribosome binding.
Thus, substitution mutations were introduced at the
CsrA binding site overlapping the SD element of ce/ in
pColE7-K317. Noticeably, the ACA and GGA motifs
are the most highly conserved nucleotides of the CsrA
binding sequence RUACARGGAUG (6,54), and the
critical GGA motif in this binding site is a component
of the cel SD sequence (Figure 1B). In order to avoid
any complication, a two-base substitution was only
introduced to replace AC in ACAAGGAGT with TT,
just upstream from the ce/ SD element (pTYO003, Figure
6A), leaving the GGA residues of the SD sequence intact.
Then, LysE7 production in csrA wild-type cells containing
either the parental pColE7-K317 or the pTY003 with
MMC treatment was determined by Western blotting.
The expression of LysE7 after MMC treatment was
significantly increased by the AC—TT substitution in
MG1655(pTY003) cells (Figure 6B), suggestive of the
relief from CsrA-mediated repression in this construct.
To determine whether the AC—TT alteration itself
affects translation efficiency of cel, the expression of
LysE7 was monitored in the c¢sr4 mutant strain containing
either the pTYO003 or the pColE7-K317. The Western
blotting analysis revealed that the LysE7 expression in




Table 3. Calculation of the translational efficiency of LysE7

Strain (time after Relative fold  Relative cel Translation

induction) of LysE7 mRNA level”  efficiency®
protein”

MG1655 (0.5h) 1.0 1.0 1.0

TRI1-5MG1655 (0.5h) 6.7 £ 0.07 1.6 £ 0.08 4.1+£0.18

MG1655 (1h) 1.0 1.0 1.0

TRI1-5MG1655 (1h) 4.0 = 0.62 0.8 £0.05 5.0 £0.87

Protein and RNA data originate from at least three independent
experiments.

The values of MG1655 were given an arbitrary value of 1.0.

“The relative LysE7 protein level for MGI655 and TRI-5 was
determined by Western blotting analysis and densitometric
quantification.

"The level of ce/ mRNA was determined by real-time RT-PCR for each
strain.

“Translation efficiency was calculated by dividing the relative LysE7
protein level by the level of ce/ mRNA.

TRI1-SMG1655(pTY003) was unaltered with respect to
that of TR1-5SMG1655(pColE7-K317) (data not shown),
indicating that the substitution did not affect basal trans-
lation efficiency. Hence, AC to TT substitution at the
putative CsrA binding site (ACAAGGAGT) overlapping
the cel/ SD caused relief of the CsrA-dependent repression
of cel expression in vivo.

CsrB and CsrC RNA levels are drastically reduced
during the SOS response

In E. coli, CsrA activity is antagonized by the CsrB and
CsrC small RNAs (2,3,50). Expression of the ColE7
operon is regulated by the SOS response (35). In order
to investigate whether the SOS response network and
Csr global regulatory circuits are interrelated, we
examined the CsrA protein level of MG1655
(pColE7-K317) cells treated with or without MMC. In
agreement with previous study (50), the Western blot
analysis indicated that CsrA levels exhibited modest
increase during the culture growth. Nevertheless, the
amount of CsrA at all three time points was not signifi-
cantly altered by MMC induction (Figure 7A). Expression
of CsrB and CsrC RNA levels were increased ~3.3-fold
and ~2.8-fold, respectively without MMC treatment over
time. In contrast, levels of both CsrB and CsrC dropped
substantially to <20% relative to the non-treated cells at
time zero, within 30 min of MMC treatment (Figure 7B).
In addition, the Western blotting analysis revealed that the
RecA and LexA, two major governors of SOS response
(57), were activated and reduced, respectively, in
MMC-treated cells. These results confirmed that the
SOS response was activated by MMC treatment
(Figure 7A). These experimental results strongly suggested
that ¢srB and c¢srC respond negatively to SOS induction
via unknown factor(s).

To further determine if the SOS response might contrib-
ute to the reduced synthesis of CsrB and CsrC RNA,
expression from chromosomal csrB-lacZ or csrC-lacZ
transcriptional fusions was examined in MMC-treated
and non-treated cells. Induction of the SOS response
does not affect the native lacZ expression in MG1655
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Figure 6. Effect of site-directed mutagenesis of ce/ leader region on
expression of LysE7. (A) The CsrA binding consensus sequence is
shown above the predicted binding segment in ce/ mRNA; vertical
lines identify the nucleotides that match those in the consensus. The
highly conserved ACA and GGA binding motifs are underlined. The
pColE7-K317 contains the parental sequence. The lower sequence
shows the mutated bases in plasmid pTY003. The ce/ ATG translation-
al start codon and its SD element are shown in boldface italic letters.
Vertical arrows denote nucleotide substitution introduced into the
potential CsrA binding site. (B) Western blotting analysis of E. coli
MG1655 cells harboring plasmids pColE7-K317 or mutant plasmid
pTY003. Whole-cell samples were harvested at 0.5 and 1h after
MMC (0.5pg/ml) induction and the LysE7 protein levels were
determined by Western blotting analysis. GroEL was employed as a
loading control. The results were confirmed in three independent
experiments.

(pColE7-K317) cells (data not shown). Thus, any
observed effect on the expression of lacZ reporter driven
by c¢srB-lacZ|csrC-lacZ under SOS conditions should be
attributable to transcriptional regulation of csrB/csrC.
The specific B-galactosidase activity from csrB-lacZ
fusion exhibited a 3-fold increase during the 60-min incu-
bation period, whereas the treatment of MMC resulted in
a moderate reduction of csrB-lacZ expression (Figure 7C).
The c¢srB-lacZ directed B-galactosidase activity in the
MMC-treated cells was 1.4-, 1.9- and 2.5-fold lower
compared with that in non-treated cells at 30, 45 and
60min post-treatment, respectively (Figure 7C). As
shown in Figure 7C, the specific B-galactosidase activity
from csrC-lacZ fusion exhibited a 2.8-fold increase in
non-treated GS1114 cells during 60 min of incubation
period. The effect of SOS response on csrC-lacZ expres-
sion was similar to those observed in KSB837(csrB-lacZ)
cells. As a result, the csrC-lacZ directed B-galactosidase
activity in MMC-incubated cultures was inhibited 1.4-,
1.8- and 2.9-fold relative to the expression in non-treated
cells at 30, 45 and 60min post-treatment, respectively
(Figure 7C). It is worth noting that if the synthesized
B-galactosidase protein is stable in KSB837(csrB-lacZ)
and GS1114(csrC-lacZ) cells, its activity level may not
decrease during downregulation of csrB/C expression
during SOS conditions. To test this concern, the results
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of the reporter assay (Figure 7C) were confirmed by
determining the specific csrB-lacZ and csrC-lacZ tran-
scripts using real-time RT-PCR. In agreement with our
prediction and the regulatory pattern obtained by
reporter assay (Figure 7C), the lacZ mRNA levels in

compared with non-treated cells (Figure 7D). Under
culture conditions in the presence of MMC, the level of
csrB-lacZ transcripts was 3.4-fold and 13.2-fold lower
than that in the non-treated cells at 20 and 30min
post-treatment, respectively (Figure 7D). We found that

KSB837(csrB-lacZ) and GS1114(csrC-lacZ) cells were the expression of c¢srC-lacZ transcripts was also
drastically reduced under the stress of SOS response downregulated during the SOS response, since the
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Figure 7. Effect of mitomycin C on expression of carbon storage regulatory system. (A) Western blotting analysis of mitomycin C effect on CsrA
expression. MG1655(pColE7-K317) cells were treated with or without MMC (0.5 pg/ml) and harvested at various intervals. The CsrA protein levels
were determined by Western blotting analysis. GroEL was employed as loading control. The experiments were conducted in triplicate with essentially
the same results. (B) Changes in expression of ¢srB and c¢srC RNAs level in MG1655(pColE7-K317) cells treated with mitomycin C, as measured by
real-time RT-PCR. The signals obtained for csrB and c¢srC RNAs by real-time RT-PCR were normalized to those of 16S rRNA. In each panel, the
mean value of MMC non-treated control cells at time 0 was set to 1. Data are the mean + SD of measurements from two independent time course
experiments performed in triplicate. (C) Effect of mitomycin C on expression of chromosomally encoded csrB-lacZ and c¢srC-lacZ transcriptional
fusions. Strains containing csrB-lacZ and csrC-lacZ were KSB837 and GS1114, respectively. KSB837(pColE7-K317) and GS1114(pColE7-K317) cells
were incubated in LB medium with shaking, and MMC was added to the culture at a final concentration of 0.5 pg/ml when ODgq reached 0.6 (zero
time). Cells were harvested at various intervals and assayed for B-galactosidase activity, which is shown as squares. The filled squares represent
untreated cultures and open squares indicate the MMC-treated cultures. In each panel, growth curves of the MMC-treated or non-treated cells are
depicted by open or filled triangles. B-Galactosidase activities are presented as the mean + SD from three repeated experiments. (D) Effect of
mitomycin C on ¢srB and ¢srC transcription. KSB837(pColE7-K317) and GS1114(pColE7-K317) cells were incubated in LB medium with
shaking, and MMC was added to the culture at a final concentration of 0.5 pg/ml when ODyg reached 0.6 as the zero time. Cells were harvested
at various intervals and the /lacZ mRNA level was measured by real-time RT-PCR. In each panel, the mean value of MMC non-treated control cells
at time 0 was set to 1. Data are the mean + SD of measurements from two independent time course experiments performed in triplicate.
(E) Treatment with mitomycin C decreases glycogen levels in MGI1655, but not in its isogenic csr4 mutant (TRI1-5MG1655). To measure
glycogen biosynthesis, cultures of MG1655 and isogenic TRI1-SMGI1655 (csrAd::kan) were streaked onto Kornberg agar containing 0.5pg/ml
MMC (right) or without MMC (left). The plates were incubated overnight and intracellular glycogen was stained with iodine vapor. The plates
with and without MMC were treated with an identical procedure and stained for 45s.
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relative level of csrC-lacZ mRNAs in MMC-incubated
cultures was markedly inhibited, 2.5-fold and 13.7-fold,
relative to that in non-treated cells at 20 and 30min
post-treatment, respectively (Figure 7D). Taken together,
these results suggested that the transcription of c¢srB/csrC
was drastically reduced during the SOS response.

The notable reduction of CsrB and CsrC RNA levels, in
the absence of detectable changes in CsrA levels, during
the SOS response should decrease sequestration of CsrA,
which in turn should enhance translational repression of
the Lys protein. CsrA negatively regulates the expression
of glycogen biosynthetic genes, including gl/gC (8), and
overexpression of csr4 strongly inhibits the synthesis of
intracellular glycogen, which can be demonstrated by
staining colonies with iodine vapor (5). To obtain
further evidence that the SOS response may affect CsrA
activity, we examined its effect on glycogen levels. The
wild-type MG1655 cells streaked onto Kornberg agar ex-
hibited a medium brown color upon iodine staining
(Figure 7E, left bottom panel). When streaked onto
MMC-containing agar, however, MG1655 cells yielded
colonies that stained a light brown (Figure 7E, right
bottom panel). These phenotypes strongly suggested that
glycogen synthesis was reduced in MG1655 cells upon
SOS response, consistent with a CsrA excess phenotype
(5). In a csrA mutant background (TRI-5MG1655)
colonies exhibited more intense iodine staining, which
was unaltered by the addition of MMC to Kornberg
agar (Figure 7E). These finding are consistent with the
idea that effects of SOS on glycogen levels are mediated
through CsrA, and provide additional support for the

TR1-5 TR1-5
(csrA::kan)|(csrA::kan)
MG1655 | MG1655
(wild-type)| (wild-type),

conclusion that intracellular CsrA activity (but not CsrA
protein levels) are elevated during the SOS response,
which was implied by the CsrA Western blotting and
esrB and cesrC gene expression studies.

DISCUSSION

RNA-binding proteins of the CsrA/RsmA family, which
act by modulating translation initiation (6,30,55,58), rep-
resent an important post-transcriptional regulatory mech-
anism of prokaryotes. Orthologs of the CsrA family are
found in many eubacterial species, in which they control a
wide variety of physiological characteristics and cellular
processes (59-62). To our knowledge, the present investi-
gation of the involvement of CsrA in the expression of the
ColE7 operon represents the first extrachromosomal regu-
latory role of CsrA to be established in any species.
Genetic evidence and complementation analyses con-
firmed that the CsrA protein is indeed a negative regulator
of the lysis protein (Figure 2B and D). Several previous
studies noted that CsrA controls gene expression in a 1.5-
to 10- fold range (5,7,11,12,31), rather than functions as
an absolute on-off switch. Of note, we found that
CsrA-mediated repression of ce/ expression was ~5-fold
(Figure 5A), suggesting that CsrA functions as a modula-
tor to prevent excess synthesis of lysis protein, instead of
completely repressing lysis protein. Thus, CsrA may
function to calibrate lysis protein levels to accommodate
the need for colicin release. The direct involvement of
CsrA in modulating the expression of lysis protein was
implied by in vitro gel mobility shift assay with the CsrA
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protein and the cel transcripts (Figure 3A and B).
Increasing concentrations of CsrA resulted in the sequen-
tial appearance of two distinct RNA—protein complexes.
While we have not monitored binding stoichiometry of
these complexes, this result suggests that two CsrA
dimers were bound to each ce/ transcript at the higher
protein concentrations. Furthermore, the cel transcript
used in this study contained two putative CsrA binding
sites, located in the loop region of T1 stem—loop structure
(BS1) and the cel SD sequence (BS2). Both the BS1 and
BS2 mutant transcripts gave a single CsrA-RNA complex,
which was absent from the BS1-BS2 double-mutant tran-
script, strongly suggesting that these two RINA sequences
serve as CsrA binding sites (Figure 4). Previous studies
reported that g/gC and pgad contain two and six CsrA
binding sites, respectively, and that CsrA represses trans-
lation initiation in both cases (8,12). Similarly, substitu-
tions designed to disrupt the potential CsrA-BS2 binding
site, which overlapped the ce/ SD, relieved CsrA-mediated
repression of cel gene expression in vivo (Figure 6B).
Because CsrA did not substantially affect cel transcript
stability or levels (Figures 5B and C) this implies that
binding of CsrA to the ce/ mRNA in the vicinity of the
cel SD represses translation of the cel gene.

The systematic evolution of ligands by exponential en-
richment (SELEX) analysis defined a high-affinity consen-
sus binding sequence for CsrA, RUACARGGAUGU,
with the underlined residues being 100% conserved (54).
The location of conserved primary sequence within the
loop of a short hairpin increases the affinity of the
CsrA-RNA interaction (30,54), such as in the PA0082
mRNA of Pseudomonas aeruginosa (63), in the hag tran-
script of B. subtilis (22) and in the pgaA transcript of
E. coli (12). However, CsrA has a lower affinity for cstA,
in which the GGA motif are not present in stem-loops
(11,54). Interestingly, the sequence signature of BS1 and
BS2 in the cel mRNA showed high similarity to the con-
sensus sequence, as they match the SELEX-derived con-
sensus binding sequence at nine and seven positions,
respectively. Furthermore, computer modeling using
MFOLD (56) predicted that the GGA motifs of BSI
and BS2 in the cel transcript are both situated in the
loops of hairpins (Figure 1B). Thus, the presence of
GGA residues in the predicted hairpin loop may help to
mediate the observed high-affinity interactions between
CsrA and the ce/ mRNA.

The csr4 mutation did not influence the stability of the
cel transcript (Figure 5C), but led to a 4- to 5-fold increase
in cel translational efficiency (Table 3). In most cases,
CsrA downregulates its mRNA target levels by binding
to the leader region, which blocks translation and also
promotes mRNA decay (6,8,11,12). In contrast, CsrA re-
pressed translational efficiency of the cel gene without a
corresponding alteration in mRNA stability, as observed
previously for Afg gene expression (31). Because no prior
examples such as ce/ have been studied, in which CsrA
regulates via an internal mRNA segment, as opposed to
the 5'-leader, it is not clear whether decoupled translation
control and mRNA stability represents a major theme for
this type of regulatory mechanism.

It is notable that the half-life of ce/ transcript (~18 min)
is much longer than that of the majority of E. coli mRNA,
with an average lifetime of 2—4 min (64,65). Perhaps the T2
transcriptional hairpin terminator at 3'terminus of ce/
gene functions as a protective barrier against
3’exonucleolytic attack (66,67). Our unpublished data
revealed that mutations which destabilize the T1 stem—
loop structure were sufficient to target ce/ mRNA for
rapid degradation. Furthermore, these results suggest
that the 5RNA secondary structure must also impede
endonucleolytic cleavage, typically considered to be the
rate-limiting step in mRINA decay, and stabilize the down-
stream transcript (68—70). Thus, we propose that both the
T1 and T2 secondary structures, proximal and distal to the
cel gene respectively, provide some degree of protection
from nucleolytic attack, resulting in the unusual longevity
of the cel mRNA.

CsrA indirectly activates the transcription of csrB and
cesrC o via the BarA/UvrY two-component system,
constituting an autoregulatory circuit for CsrA, CsrB
and CsrC (3,50,71). Although the key players and
cascade of Csr regulatory circuitry are now understood,
how Csr system is connected with other global regulatory
networks and how it responds to varied environmental
stimuli are relatively unexplored. In accordance with the
function of CsrB and CsrC in antagonism of CsrA
activity, the ratio of CsrA:CsrB/CsrC is important for
the regulation of CsrA activity. Here, we reveal the first
evidence of a biologically significant interconnected
between the SOS response network and the Csr system.
Both CsrB and CsrC RNA levels were drastically
decreased under the stress of SOS response (Figure 7B).
In contrast, the amount of CsrA was not changed (Figure
7A), indicating that the intracellular CsrA activity should
be elevated during the SOS response. The results of
reporter assays and determination of c¢srB-lacZ and
esrC-lacZ transcripts level revealed that transcription of
csrBJesrC was reduced during SOS induction (Figure 7C
and D). Furthermore, the effect of SOS response on csrB/
csrC transcription apparently is mediated indirectly, as no
LexA box was found in the upstream promoter region of
esrB or esrC. One possible explanation consistent with our
data is that BarA may be the regulatory target of SOS
response that affects CsrB/CsrC levels, since barA4 expres-
sion was reported to be downregulated by UV damage
(72). Further characterization of the regulatory mechan-
ism involved the SOS induction and the transcription
factor for csrB/csrC is subject of our future investigations.

The sequence alignment of the cei—cel intercistronic
regions of the E group colicins (E2, E3 and E6 to E9)
exhibited a high degree of similarity, almost exceeding
99% (Figure S1). Thus, we hypothesize that the CsrA
protein is likely to serve as a regulator of lysis protein
expression of the E-group colicins.

Expression of the ColE7 operon must be tightly
controlled to safeguard the colicin-producing cells from
committing suicide. How the colicinogenic cells achieve
the coordinative expression of the polycistronic colicin
cluster genes is largely unknown. The overlapping
reading frames suggest that translational coupling
between the bacteriocin and immunity genes is important
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for the stoichiometric expression of Col-Im complex and
safeguard of colicinogenic cells (73,74). Our present
studies, together with previous reports (49,75), clearly
indicate that the cel gene of ColE7 is downregulated at
both the transcriptional and the translational levels, and
raise the possibility that the expression of ce/ gene may be
fine-tuned in response to environmental signals. Previous
studies have reported that under the SOS responsive
stress, T1 stem—loop structure of the ColE7 operon
serves as a transcriptional terminator to reduce read-
through from the SOS responsive promoter upstream of
the operon (35,42,75). The present study demonstrates
that the transcription of csrB and ¢srC is decreased re-
markably in response to SOS induction via unknown
factor(s). Thus, reduction of these two sRNAs should
enhance the availability of CsrA to repress translation of
the Lys protein (Figure 8). This may help to ensure that
the cel gene product does not exceed the lethal threshold
level (75) and safeguard the colicinogenic cells from
suicide incurred by the overexpression of Lys during
SOS response. Clearly, additional studies are needed to

T, sequestering or inhibitory effect; )X, aborted translation;

, phosphorylation; , DNA damage induction; ?, an

provide a detailed understanding of the interrelationship
between the Csr regulatory network and the global SOS
response system, including the Col operons.
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