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Abstract: Different breast cancer (BC) subtypes have unique gene expression patterns, but their
regulatory mechanisms have yet to be fully elucidated. We hypothesized that the top upregulated
(Yin) and downregulated (Yang) genes determine the fate of cancer cells. To reveal the regulatory
determinants of these Yin and Yang genes in different BC subtypes, we developed a lasso regression
model integrating DNA methylation (DM), copy number variation (CNV) and microRNA (miRNA)
expression of 391 BC patients, coupled with miRNA–target interactions and transcription factor (TF)
binding sites. A total of 25, 20, 15 and 24 key regulators were identified for luminal A, luminal B,
Her2-enriched, and triple negative (TN) subtypes, respectively. Many of the 24 TN regulators were
found to regulate the PPARA and FOXM1 pathways. The Yin Yang gene expression mean ratio (YMR)
and combined risk score (CRS) signatures built with either the targets of or the TN regulators were
associated with the BC patients’ survival. Previously, we identified FOXM1 and PPARA as the top
Yin and Yang pathways in TN, respectively. These two pathways and their regulators could be further
explored experimentally, whichmight help to identify potential therapeutic targets for TN.
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1. Introduction

Breast cancer (BC) is one of the most common cancers in the world [1]. In the US, approximately
one in eight women (about 12.4%) will develop invasive BC over the course of her lifetime [2]. Despite
an overall decline in incidence and mortality, BC remains the second leading cause of cancer-related
death among women worldwide [1]. BC can be categorized into four main molecular subtypes, luminal
A, luminal B, Her2-enriched and triple negative (TN), depending on the expression of the estrogen
receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (ERBB2, also known
as HER2) [3]. TN (also called basal-type) tumors are ER negative, PR negative and HER2 negative.
Although the TN subtype is only found in approximate 15% of BC diagnoses, it has been shown to be
aggressive, unresponsive to treatment, and ultimately indicative of a poor prognosis [4,5].

Changes in gene expression resulting from alterations in microRNA (miRNA) expression, DNA
methylation (DM) and DNA copy number have been implicated in breast carcinogenesis [6]. The role
of miRNAs is to regulate target mRNA translation and degradation by binding to the 3′ untranslated
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region (UTR) [7], and their deregulation is associated with BC initiation and progression [6]. In cancer,
DM is perturbed, leading to significant changes in gene expression. For example, aberrant CpG
hypermethylation has been reported in multiple genes associated with BC, typically leading to gene
silencing [6]. Genomic instability due to copy number variation (CNV) is also associated with altered
gene expression in breast carcinogenesis [8]. Transcription factors (TFs) are major regulators of gene
expression, and can serve either as transcriptional activators or repressors [9]. High-throughput
approaches allow us to investigate a tumor at multiple levels. For example, the Cancer Genome Atlas
(TCGA) database contains cancer-related omics profiles that are useful for systems-biology-based
investigations of BC. Therefore, research on the regulatory mechanisms of gene expression changes
should take the interaction of multiple factors into consideration.

Considering multiple factors regulating gene expression presents a challenge in terms of
combining data from different experiments to generate biologically meaningful and experimentally
testable models. Interaction-network-based approaches that analyze individual genes and their
interactions as well as upstream regulatory mechanisms are an effective approach to overcome this
challenge. For example, Xu et al. proposed a method, weighted similarity network fusion (WSNF),
to utilize the information in a miRNA-TF-mRNA regulatory network to successfully identify BC
subtypes [10]. In addition, this study showed that the top pathways involving the most differentially
expressed genes (DEGs) in each of the identified subtypes are different, but they did not further
explore the regulatory machinery behind the DEGs. A recent study identified hsa-miR-301a- and
SOX10-dependent miRNA-TF-mRNA regulatory circuits in BC by using previously performed
expression studies, but subtype information was not included in this study [11].

An integrative strategy using regression models to combine data at multiple levels can also
provide insight for gene expression deregulation in cancer. Setty et al. developed a regularized linear
regression model in a glioblastoma multiforme (GBM) study using data from the Cancer Genome Atlas
(TCGA) [12]. The model was fit to changes in mRNA expression in each GBM tumor sample as the
response variable, using a linear combination of the input variables including the CNV, DM, miRNA
sequence-based predictions, and TF-binding sites. The model successfully identified various key
miRNAs and TFs as either common or subtype-specific drivers of expression changes. The estimated
activities of these key regulators were predictive to GBM subtypes and patient survival. Their work
took global gene expression changes into account. These studies suggest that similar approaches may
be used to explore the regulatory mechanisms in the different subtypes of BC.

Comparing cancer tissue samples with normal tissue has been historically used for discovery
of DEGs in cancer; however, few studies have looked at them by way of two opposing groups of
genes, the interaction of which would affect cancer progression. In this study, we hypothesized that
two opposing effects in BC cancer cells, represented by Yin and Yang genes, determine the outcome
of BC [13,14]. Yang genes are expressed more highly in normal breast tissues, while Yin genes are
expressed more highly in breast tumors. Assuming that the changes in Yin and Yang gene expression
are influenced by variation in copy number, DNA methylation, TF deposition and miRNA–mRNA
interaction, we input these variables into a sample-specific lasso regularized linear regression model.
The aim of this study was to elucidate the predominant regulators of the Yin and Yang genes in
different BC subtypes. We focused our follow-up exploration on the TN subtype, and evaluated the
clinical relevance of key miRNA/TF regulators.

2. Results

2.1. Selection of Yin and Yang Genes

As shown in the study design (Figure 1), we focused on Yin and Yang gene expression changes
instead of global gene expression changes. Based on our Yin Yang hypothesis, “Yang” genes are
downregulated DEGs in BC but express more highly in normal breast tissues, while “Yin” genes
are upregulated DEGs that express more highly in breast tumors. 4227 of the 17,675 genes we
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studied were significantly (false discover rate (FDR) < 0.05) differentially expressed between BC
and normal tissue samples, with the absolute value of logFC (log2 fold change) not less than 1.
Among these DEGs, 1413 were Yin (upregulated) genes, while 2814 were Yang (downregulated)
genes. For the 1413 Yin genes, 255 gene ontology (GO) terms in biological process (BP) (GO-BP)
were obtained with an adjusted p-value < 0.05. The majority are involved in cell proliferation,
such as DNA replication (GO:0006260), chromosome segregation (GO:0007059), nuclear division
(GO:0000280), cell cycle checkpoint (GO:0000075) and cytokinesis (GO:0000910). The similarities among
the 255 GO-BP terms were calculated using the simplify function in the clusterProfiler package [15],
and highly similar terms (which have similarity higher than 0.7) were removed by keeping one
representative term. In the end, 239 terms were obtained. For the 2814 Yang genes, 1155 GO-BP terms
were overrepresented with adjusted p-value < 0.05. The simplify function was also applied to these
1155 terms, and 239 terms were kept in the end. The top two (with the smallest adjusted p-value)
were muscle system process (GO:0003012) and cell–cell adhesion via plasma membrane adhesion
molecules (GO:0098742). When the 239 terms were ordered according to the number of Yang genes
that were involved in the GO-BP terms (“Count”), nine terms included more than 100 Yang genes.
Muscle system process (GO:0003012) was the top one which included 127; positive regulation of cell
migration (GO:0030335) included 114; organic hydroxy compound metabolic process (GO:1901615)
included 110, and epithelial cell proliferation (GO:0050673) includes 101 of the 2814 Yang genes.
Figure 2 shows the top 30 most significant (according to the p-value) terms in the Yin and Yang gene
lists, respectively.

Figure 1. Study design. This study included three major parts. The first was to construct sample-specific
models. Key regulators in different breast cancer subtypes were then identified from the models. Finally,
we focused our follow-up exploration on the regulators in the TN subtype.
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Figure 2. Top 30 over-represented gene ontology (GO) terms in biological process (BP) (GO-BP) terms
in the Yin (a) and Yang (b) genes. “GeneRatio” in axis x is the ratio of the number of the identified Yin
or Yang genes included in the corresponding term (“Count”) over the total number of the identified
Yin or Yang genes. The y-axis is a description of GO-BP terms.

2.2. Curated Data Sets

To train sample-specific models, data sets from multiple platforms were curated and are
summarized in Table 1. The sequence-based predicted TF-binding profile matrix between 795 TFs and
2492 distinct genes were downloaded from TRRUST v2.0 [16]. We also curated ChIP-seq TF-binding
site data for 125 TFs from ReMap v1.2 [17]. Among the 125 TFs, 95 were derived from luminal
A cell lines (with the majority (78) being MCF-7), 6 were from luminal B cell lines, 8 were from
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Her2-enriched cell lines, and 16 were from TN cell lines. The miRNA-binding profile matrix between
15,168 target genes and 600 miRNAs (see details in Materials and Methods section) was obtained
from starBase v3.0 [18]. Based on the data from different platforms, we kept the common samples,
Yin and Yang genes, and miRNAs for which data were available across different platforms. In the end,
there were 391 common tumor samples with 3008 Yin/Yang genes, 795 TFs and 362 miRNAs (Table 1).
For the 391 breast tumors, the expression, CNV and DM of the 3008 genes, and the expression of the
362 miRNAs were available. The interaction data between the 795 TFs or the 362 miRNAs and the
3008 genes were also obtained. Among the 391 tumors, 239 were Luminal A, 74 were Luminal B,
21 were Her2-enriched, and 57 were TN.

Table 1. Multi-dimensional data used to build the models.

Type Platform/Category Database All Data Common Data

Subtype annotation IHC TCGA 694 tumors: 424 LumA, 121
LumB, 37 Her2+, 112 TN

391 tumors: 239 LumA, 74
LumB, 21 Her2+, 57 TN

mRNA expression 1 Illumina Hiseq 2000 TCGA 17675 genes × 1104 tumors 3008 genes × 391 tumors
miRNA expression 2 Illumina Hiseq 2000 TCGA 600 miRNAs × 756 tumors 362 miRNAs × 391 tumors

Copy number
variation (CNV) Affymetrix SNP 6.0 TCGA 24776 genes × 1080 tumors 3008 genes × 391 tumors

DNA methylation
(DM)

Illumina Infinium
HumanMethylation450 TCGA 26586 genes × 790 tumors 3008 genes × 391 tumors

TF-target Sequence-based TRRUST v2.0 2492 genes × 795 TFs 3008 genes × 795 TFs
miRNA-target Sequence-based starBase v3.0 15168 targets × 618 miRNAs 3008 genes × 362 miRNAs

1 114 normal samples were available for calculating Yin and Yang gene expression change; 2 76 normal samples
were available for calculating miRNA expression change

2.3. Construction of The Tumor-Specific Lasso Regression Models

The lasso regularized linear regression approach was applied to the 391 breast tumor profiles,
and a model was trained for each tumor independently. In the end, W = (WCN, WDM, WmiR, WTF)
was the vector of regression coefficients for each tumor. Combing the 391 tumor-specific models,
the following matrices were obtained for further analyses: {w}N×M , where N is the 391 tumors/models
and M is the 1159 features (CNV, DM, 795 TFs and 362 miRNAs).

To justify our model formalism, we compared models with different numbers of features in terms
of their abilities to explain expression changes of the Yin and Yang genes in BC. Figure 3a illustrates
the 10-fold cross validation (CV) results as a distribution of the correlation calculated across all 391
samples for each model. Unsurprisingly, the model with all features (red, right most in Figure 3a)
performed the best and significantly better (p-value < 2.2 × 10−16, Wilcoxon signed rank test) than all
the other alternatives, achieving a mean Spearman correlation of 0.273. Comparing the best model
with other models (where some regulatory factors were excluded), it is remarkable to observe that
a significant improvement in CV performance (p-value < 2.2 × 10−16, Wilcoxon signed rank test) is
attributable to the addition of DNA methylation.

We further compared two alternative models using CNV, DM and miRNA-binding site data,
but with different TF-binding site data from TRRUST (the model used in this study) and ReMap,
respectively. We then compared the two models in terms of the Spearman correlation between the
predicted and observed gene expression changes via 10-fold CV. We found that the second model
using ReMap performed significantly better than the first model (p-value < 2.2 × 10−16, Wilcoxon
signed rank test) (Figure 3b). Therefore, TF-target interaction data derived from the ChIP-seq method
conferred significantly higher explanatory power than the binding motif-based TRRUST database
for the Yin and Yang gene expression changes in BC. This is not surprising, because ReMap contains
experimentally determined TF binding sites whereas TRRUST predicts potential TF binding sites.
Nevertheless, we decided to use the TRRUST model because of the limited ChIP-seq TF-binding site
data that were available. In addition, the majority of the ChIP seq data in ReMap were derived from
MCF-7 and other luminal cell lines. Therefore, these data do not have representative cell lines from all
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of the BC types. Such overrepresentation of one BC type could bias any potential predictive capabilities
of our model.

Figure 3. Model comparison. (a) The boxplot shows Spearman correlations between predicted and
actual gene expression changes for all samples in models with different regulators. Using only
miRNA-binding sites as features was significantly better than random; adding TF-binding sites
significantly improved CV performance over using only miRNAs-binding sites; adding CNV
significantly improved CV performance over using only TF- and miRNA-binding sites, while the
model using TF/miRNA-binding sites, CNV and DM outperformed the others. (b) Boxplot shows
Spearman correlations for all samples in Model 1 and Model 2. Model 1 was trained using CNV, DM,
miRNA-binding sites and TF-binding sites from TRRUST, while Model 2 was trained using CNV, DM,
miRNA-binding sites and TF-binding sites from ReMap. **** p-value < 2.2 × 10−16 by Wilcoxon signed
rank test.
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2.4. Identification of Key Regulators in Subtypes

To determine the most predominant TF/miRNA regulators that regulate Yin and Yang gene
expression in different BC subtypes, we performed a feature selection procedure. With a threshold
corresponding to an FDR of 0.05 relative to regression models trained on randomized data,
we identified 25, 20, 15 and 24 key regulators for the luminal A, luminal B, Her2-enriched and
TN subtypes, respectively. Table 2 summarizes the key shared and subtype-specific regulators for the
four subtypes identified by our analysis. No significant regulators were found to be unique to the
Her2-enriched subtype alone. Regulators that are shared among all four subtypes are considered to be
common regulators, including 2 TFs (E2F1 and CITED2) and 7 miRNAs. E2F1, a member of the E2F
transcription factors, plays a crucial role in the control of cell cycle and action of tumor suppressor
proteins [19]. E2F1 was significantly upregulated in all four subtypes compared to normal samples in
the TCGA data set (p-value < 0.05, t-test). CITED2 is a part of the CBP/p300 transcription complex and
is known to increase PPARA transcription [20] and enhance ER mediated transcription [21]. It is known
to be a potent prognostic predictor associated with proliferation, migration and chemo-resistance in
breast carcinoma [22] and was significantly downregulated in BC compared to normal samples in the
TCGA data set (p-value < 0.05, t-test).

Table 2. Selected common and subtype-specific regulators.

Subtype Number of Regulators Regulator

Her2+, LumA, LumB, TN 9
E2F1, CITED2, hsa-miR-374b-5p, hsa-miR-32-5p,

hsa-miR-3150b-3p, hsa-miR-361-3p, hsa-miR-340-5p,
hsa-miR-664b-3p, hsa-miR-296-5p

Her2+, LumA, LumB 1 CEBPZ

LumA, LumB, TN 5 ATRX, PPARG, hsa-miR-374a-5p,
hsa-miR-92a-3p, hsa-miR-744-5p

Her2+, LumA, TN 3 PPARA, hsa-miR-889-3p, hsa-miR-423-5p
LumA, LumB 1 hsa-miR-429

LumA, TN 5 NFKBIA, hsa-miR-23a-3p, hsa-miR-378a-3p,
hsa-miR-129-5p, hsa-miR-28-5p

Her2+, LumB 1 hsa-miR-760
Her2+, TN 1 hsa-miR-708-5p

LumA 1 hsa-miR-181b-5p
LumB 3 hsa-miR-655-3p, hsa-miR-654-5p, hsa-miR-625-5p

TN 1 hsa-miR-9-3p

Among the 7 common miRNAs, 3 miRNAs (hsa-miR-340-5p, hsa-miR-32-5p and hsa-miR-3150b-3p)
were upregulated (p-value < 0.05, t-test), while 3 miRNAs (hsa-miR-374b-5p, hsa-miR-664b-3p and
hsa-miR-296-5p) were downregulated (p-value < 0.05, t-test) in each of the four subtypes compared to normal
samples. Only hsa-miR-361-3p showed no significant difference between each subtype and normal samples.
Targets of hsa-miR-340-5p include oncogenes such as KRAS and MET [23]. hsa-miR-32-5p was previously
reported to modulate vascular smooth muscle cell (VSMC) calcification progression by downregulating
PTEN, and thus activating PI3K signaling and increasing RUNX2 expression and phosphorylation in
mice [24]. High levels of hsa-miR-374b-5p have been observed to correlate with favorable outcomes in
TNBC [25]. hsa-miR-296-5p was shown to play a tumor-suppressive role by directly targeting Pin1 in
prostate cancer [26].

2.5. Identification of Key Regulators in TN Subtype

Since there are no effective targeted drug therapies available for the TN subtype, it is necessary
to investigate the key regulators in this subtype more closely. A total of 24 predominant regulators,
consisting of 6 TFs and 18 miRNAs, satisfied a 5% FDR cutoff for the TN subtype. Figure 4 shows
the results of the feature selection analysis for the TN subtype, with miRNAs and TFs sorted by the
increase in total square loss incurred by their individual removal from the model. Most regulators
were not chosen in any of the TN regression models and therefore led to zero change in loss,
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while only the 24 key regulators passed the FDR cutoff (red dots in Figure 4). To examine the
biological functions of these TN regulators, we performed a functional enrichment analysis using their
associated Yin and Yang targets. Based on enrichments for canonical pathways from the Molecular
signatures database (MSigDB) [27], we discovered several interesting functions related to the TN
regulators (FDR < 0.05, Table 3). For instance, 11 of the 24 selected regulators are engaged in
pathways in cancer (KEGG_PATHWAYS_IN_CANCER) whereas 7 of the 24 regulators are involved
in the cell-matrix adhesion pathway (KEGG_FOCAL_ADHESION) (see Table 3). Additionally,
has-miR-340-5p and E2F1 are part of the RB1 pathway (PID_RB_1PATHWAY) and P53 pathway
(PID_P53_DOWNSTREAM_PATHWAY).

In our previous study, we identified the top Yin (upregulated) FOXM1 and the top Yang
(downregulated) PPARA pathways [28]. Remarkably, in this study, we found that six TN regulators
(PPARG, PPARA, hsa-miR-9-3p, hsa-miR-664b-3p, hsa-miR-340-5p and hsa-miR-129-5p) regulate the
PPARA pathway (BIOCARTA_PPARA_PATHWAY), while two TN regulators (hsa-miR-340-5p and
E2F1) regulate the FOXM1 pathway (PID_FOXM1_PATHWAY). In addition, targets of PPARG, PPARA
and hsa-miR-340-5p are enriched in the PPAR pathway (KEGG_PPAR_SIGNALING_PATHWAY),
which has similar mechanisms to the PPARA pathway. This further supports the importance of the
PPARA and FOXM1 pathways and their regulators in TNBC.

Figure 4. Error changes caused by regulators of the TN subtype. The x-axis indicates the miRNA/TF
regulators, and the y-axis indicates increase in squared error across samples of the TN subtype after
excluding the regulator from regression models. All regulators are ranked based on increase in squared
error, and 24 key regulators (red dots) for the TN subtype were identified with FDR < 0.05.
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Table 3. Selected TN regulators.

Regulators FDR Expression 1 Targets 2 Enriched Pathways 3 Ratio 4 Enrichment
FDR 5

E2F1 0.00 Up 48 REACTOME_CELL_CYCLE 19/241 4.43 × 10–12

PID_FOXM1_PATHWAY 9/40 1.70 × 10–11

KEGG_PATHWAYS_IN_CANCER 9/328 2.09 × 10–5

CITED2 0.00 Down 2 REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 2/87 8.03 × 10–4

REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 2/29 1.74 × 10–4

NABA_ECM_REGULATORS 2/238 4.04 × 10–3

PPARA 0.00 Down 20 REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 11/478 8.87 × 10–8

BIOCARTA_PPARA_PATHWAY 4/58 2.08 × 10–4

KEGG_PATHWAYS_IN_CANCER 4/328 3.76 × 10–2

PPARG 0.02 Down 29 KEGG_PATHWAYS_IN_CANCER 9/328 5.73 × 10–5

REACTOME_HORMONE_SENSITIVE_LIPASE_HSL_MEDIATED_
TRIACYLGLYCEROL_HYDROLYSIS 3/13 5.48 × 10–4

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 8/478 3.77 × 10–3

BIOCARTA_PPARA_PATHWAY 3/58 1.92 × 10–2

REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 2/29 4.81 × 10–2

ATRX 0.05 Down 2 BIOCARTA_AHSP_PATHWAY 2/13 1.97 × 10–6

NFKBIA 0.05 Down 3 REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 3/29 9.65 × 10–7

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 3/87 1.40 × 10–5

KEGG_PATHWAYS_IN_CANCER 2/328 1.37 × 10–2

hsa-miR-374b-5p 0.00 Down 589 KEGG_PATHWAYS_IN_CANCER 28/328 4.84 × 10–2

hsa-miR-32-5p 0.00 Up 523 KEGG_FOCAL_ADHESION 19/201 4.45 × 10–2

NABA_CORE_MATRISOME 22/275 4.74 × 10–2

hsa-miR-361-3p 0.00 - 488 KEGG_FOCAL_ADHESION 23/201 8.25 × 10–5

KEGG_PATHWAYS_IN_CANCER 27/238 2.41 × 10–3

PID_AVB3_INTEGRIN_PATHWAY 11/75 6.61 × 10–3

hsa-miR-340-5p 0.00 Up 927 KEGG_PATHWAYS_IN_CANCER 54/328 5.10 × 10–9

PID_AVB3_INTEGRIN_PATHWAY 19/75 2.64 × 10−5

KEGG_FOCAL_ADHESION 31/201 1.47 × 10–4

BIOCARTA_PPARA_PATHWAY 15/58 1.47 × 10–4

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 13/87 4.14 × 10–2

PID_FOXM1_PATHWAY 8/40 4.41 × 10–2

hsa-miR-664b-3p 0.00 Down 431 KEGG_FOCAL_ADHESION 18/201 9.09 × 10–3

BIOCARTA_PPARA_PATHWAY 9/58 9.09 × 10–3

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 19/267 4.57 × 10–2

hsa-miR-296-5p 0.00 Down 353 KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 12/118 6.14 × 10–3

hsa-miR-423-5p 0.00 - 590 KEGG_PATHWAYS_IN_CANCER 30/328 1.43 × 10–3

PID_AVB3_INTEGRIN_PATHWAY 11/75 1.94 × 10–2

REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 6/24 3.31 × 10–2

hsa-miR-92a-3p 0.00 Down 524 KEGG_FOCAL_ADHESION 19/201 4.47 × 10–2

hsa-miR-129-5p 0.02 Down 775 KEGG_PATHWAYS_IN_CANCER 37/328 1.90 × 10–4

KEGG_FOCAL_ADHESION 26/201 5.83 × 10–4

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 13/87 1.41 × 10–2

PID_AVB3_INTEGRIN_PATHWAY 12/75 1.41 × 10–2

BIOCARTA_PPARA_PATHWAY 10/58 1.92 × 10–2

hsa-miR-744-5p 0.03 - 221 KEGG_PATHWAYS_IN_CANCER 15/328 1.26 × 10–2

KEGG_FOCAL_ADHESION 12/201 1.20 × 10–2

REACTOME_CELL_SURFACE_INTERACTIONS_
AT_THE_VASCULAR_WALL 7/91 2.57 × 10–2

hsa-miR-9-3p 0.04 - 236 KEGG_PATHWAYS_IN_CANCER 14/328 2.98 × 10–2

BIOCARTA_PPARA_PATHWAY 6/58 2.98 × 10–2

KEGG_MAPK_SIGNALING_PATHWAY 12/267 3.19 × 10–2

1 The miRNA/TF expression pattern in 112 TN patients when compared to the 113 adjacent normal breast tissue
samples (TCGA data set was used); 2 The number of predicted targets provided by TRRUST v2.0 or starBase v3.0
overlapped with Yin and Yang genes; 3 The enriched canonical pathways from MSigDB in the target Yin and Yang
genes of the corresponding regulator; 4 The number of the targets involved in a pathway and the total number
of genes involved in the pathway; 5 The BH method adjusted hypergeometric test p-value for the corresponding
enriched pathway.

2.6. Regulatory Network Involving The TN Regulators

To visualize the regulatory relationships between the TN regulators and their target Yin and
Yang genes involved in the PPARA, PPAR and FOXM1 pathways, the interactions between 23 TN
regulators and 51 Yin/Yang genes were imported into Cytoscape v3.5.1 [29] to construct a network.
In Figure 5a, the resulting regulatory network is densely connected, implying that the TN regulators
we identified shared many common Yin and Yang target genes involved in the PPARA, PPAR and
FOXM1 pathways. We examined the hierarchical organization of the select subnetwork of PPARA and
PPARG regulators. A two-layer network architecture formed with PPARA and PPARG, their targets,
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and the regulators that regulate their expression (Figure 5b). Specifically, 9 miRNAs and E2F1 form
the top layer (master regulators), and PPARA and PPARG from the bottom layer (regulators that
are regulated by the master regulators above it and regulate other Yin and Yang targets below it).
Remarkably, the fact that 9 miRNAs regulate PPARA and PPARG and a large cohort of the PPARA,
PPAR and FOXM1 pathway-related Yin and Yang genes either directly via base-pairing or indirectly
via PPARA and PPARG provides further support of the important role of these 9 miRNAs as master
regulators of the PPARA, PPAR and FOXM1 pathways in TNBC.

Figure 5. TF-target and miRNA-target regulatory networks. (a) The network comprises 23 selected
regulators (21 blue diamonds and 2 red diamonds) with nonzero predicted interactions with
PPAR/FOXM1 pathway-related genes (circles) obtained from MSigDB. The red and purple circles
indicate Yin (upregulated) and Yang (downregulated) genes, respectively. The color of edges ranging
from grey to black corresponds to an order of increasing number of hits. (b) A subnetwork contains
PPARA and PPARG, their targets, and regulators that regulate them. A 2-layer hierarchical structure
forms with 10 upstream regulators, including 9 miRNAs and E2F1 on the top layer, and two
downstream regulators PPARA and PPARG arranged at the bottom layer.

2.7. Clinical Relevance of The TN Regulators

To determine if Yin and Yang genes selected from the PPARA, PPAR and FOXM1 pathways
were clinically relevant, we tested if they can be used to develop multigene signatures for TNBC
prognosis. Yin (17) and Yang (34) genes from the pathways were then used to calculate the Yin Yang



Cancers 2019, 11, 507 11 of 21

gene expression mean ratio (YMR) signature, which was developed previously [14]. The 51 gene YMR
signature stratified the 112 TCGA TN samples into high- or low-risk groups with significant accuracy
evaluated by both five-year overall survival (OS) (p-value = 5.0 × 10−2, log-rank test) (Figure 6a) and
disease-specific survival (DSS) (p-value = 4.2 × 10−2, log-rank test) (Figure 6b). We further tested the
YMR using the Breast Cancer International Consortium (METABRIC) TNBC dataset [30]. As shown in
Figure 6c,d, the YMR signature significantly stratified the 127 TN patients into high- and low- risk OS
(p-value = 2.1 × 10−2, log-rank test) and DSS groups (p-value = 4.3 × 10−3, log-rank test).

Figure 6. Survival analysis of the 31 gene YMR signature. TN patients were divided into high-risk
(“High,” red line) and low-risk (“Low,” blue line) groups according their YMR signature scores. Survival
fractions as a function of survival time (years) were then plotted for the two groups and the significant
separation of the two curves were assessed by log-rank test. The YMR signature was tested using TNBC
samples of TCGA and METABRIC datasets separately by the R package survcomp. The YMR signature
can significantly stratify the 112 TCGA TNBC samples into high- and low-risk groups by both overall
survival (OS) (a) and disease specific survival (DSS) (b). The YMR signature can also significantly stratify
the 127 METABRIC TNBC samples into high- and low-risk groups by both OS (c) and DSS (d).

We next examined the implication of the expression of the above identified 24 regulators. We first
evaluated the prognostic value of each regulator. Eight regulators showed a significant stratification in
survival outcomes for TCGA TNBC patients (Supplementary file: Figure S1), and 11 regulators could
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significantly stratify TCGA BC patients (Supplementary file: Figure S2-1 and S2-2). 4 regulators (ATRX,
NFKB1A, hsa-miR-23a-3p and hsa-miR-708-5p) could be a prognostic marker for both BC and TNBC
patients. Combined risk score (CRS) models were then built using different TN regulators. The CRS
computed from the 6 TFs could assign TN patients into high- and low-risk groups. The two groups
showed a significant difference in OS time in both TCGA (p-value = 3.6× 10−2, log-rank test) (Figure 7a)
and METABRIC (p-value = 1.3 × 10−2, log-rank test) (Figure 7b) data sets. In addition, the CRS with
all 24 regulators showed high-risk and low-risk group stratification significantly in terms of both OS
(p-value = 5.2 × 10−2, log-rank test) (Figure 7c) and DSS (p-value = 4.4 × 10−2, log-rank test) (Figure 7d).
However, we did not further validate the 24 regulator CRS signature due to the fact that we could not
obtain gene and miRNA expression data for the 24 regulators for TN cases from other data sets.

Figure 7. Kaplan–Meier survival analysis of the combined risk score. TN patients were divided into
high-risk (“High,” red line) and low-risk (“Low,” blue line) groups according the 6 TF or 24 regulator
combined risk scores. Survival fractions as a function of survival time (years) were then plotted for the
two groups, and the significant separation of the two curves was assessed by log-rank test using the R
package survcomp. The 6 TF combined risk score significantly stratified the TNBC samples from TCGA
(a) and METABRIC (b) into high- and low-risk OS groups, respectively. The 24-regulator combined
risk score significantly stratified the 112 TCGA TNBC samples into high- and low-risk groups in terms
of OS (c) and DSS (d).
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3. Discussion

In this study, instead of building gene-specific models as done in most other studies [31], we built
a sample-specific model to identify the key common and BC subtype-specific regulators for Yin and
Yang genes with opposing effects. Remarkably, most of the identified regulators had been previously
identified as being involved in breast carcinogenesis in the published literature. Among the TN regulators,
PPARA and PPARG are two members of peroxisome proliferator-activated receptors (PPARs) that belong
to the nuclear hormone receptor (HR) superfamily, which includes ERs and PRs [32]. PPARs affect
the expression of target genes involved in cell proliferation, cell differentiation, and in immune and
inflammation responses [33]. A genetic variant of PPARA has been linked to BC risk [34]. NFKBIA inhibits
the oncogene nuclear factor-kappaB (NFkB). NFkB is constitutively activated in ER−negative and TN
breast tumors, mediates adaptive resistance to ionizing radiation and chemotherapy, and is required for
epithelial–mesenchymal transition (EMT) associated with metastatic progression of BC. NFKBIA deletions,
leading to a haploinsufficient effect on NFKBIA expression and thus the transactivation of several NFkB
target genes with important roles in TN breast carcinogenesis, are significantly associated with TN
patients [35]. hsa-miR-423-5p has been observed to be upregulated in drug-resistant BC cells from the
parental MDA-MB-231 cell line [36]. Downregulation of hsa-miR-92a-3p is associated with aggressive BC
features and increased tumor macrophage infiltration [37]. hsa-miR-129-5p was reportedly downregulated
in BC cells, in part because of promoter H3K27 methylation and also because it regulates EMT and
multi-drug resistance [38]. One of the hsa-miR-129-5p target genes is CBX4, which is up-regulated
in BC tissues and thus promotes cell proliferation [39]. The TN-specific regulator hsa-miR-9-3p has
been observed as a novel tumor suppressor in gastric cancer [40]. In vitro, hsa-miR-9-3p has also been
identified as a tumor-suppressor miRNA targeting β1 integrin in claudin-low TNBC cells, resulting in
the sensitization of MDA-MB-231 cells to MEK inhibition [41]. There are seven TN miRNA regulators
(hsa-miR-378a-5p, hsa-miR-708-5p, hsa-miR-889-3p, hsa-miR-3150b-3p, hsa-miR-374a-5p, hsa-miR-23a-3p
and hsa-miR-28-5p), the targets of which are not enriched in canonical pathways. Many of them are also
engaged in breast tumorigenesis. hsa-miR-378a-5p is believed to be a switch regulating the Warburg effect
in BC [42]. Studies in BC have shown that hsa-miR-708-5p is a tumor suppressor through repression of
invasion, proliferation, and potentially immune modulation [43]. hsa-miR-374a-5p could constitutively
activate Wnt/β-catenin signaling to promote BC metastasis, and thus may serve as an anti-metastasis
therapeutic target in BC [44]. hsa-miR-23a-3p was shown to be up-regulated in a variety of human cancers
including BC and to exert an oncogenic function in human tumorigenesis [45].

When comparing models with different features, a significant improvement in CV performance
was observed when DNA methylation was added to the models. DNA methylation for early detection
and prognosis of breast cancer has been a recent topic of study. Fackler et al. found that promoter
methylation of 4 genes (RASSF1A, CCND2, TWIST and HIN1) was more frequently detected in breast
tumors than in normal tissue [46]. In another study, 10 hyper-methylated genes (APC, BIN1, BMP6,
BRCA1, CST6, ESR-b, GSTP1, CDKN2A, P21 and TIMP3) were identified to distinguish between BC
and normal tissues [47]. In our study, we identified CCND2, TWIST, BIN1, BMP6 and TIMP3 as Yang
genes, underscoring the fact that DNA methylation is an important factor for explaining the Yin and
Yang gene expression changes in BC.

It is noteworthy that many of the TN regulators were found to regulate the FOXM1 and PPARA
pathways, which were identified as the top Yin (upregulated) and the top Yang (downregulated)
pathways, respectively, in TNBC in our pervious study [28]. Stimulation of the PPARA pathway
increases the volume and number for peroxisomes, which are responsible for, among other things,
lipid metabolism. This pathway can also induce tumor cell apoptosis and includes 58 genes, such as
the tumor suppressors RB1 and PIK3R1, oncogenes MYC and JUN, as well as TFs CITED2 and PPARA.
Two TNBC TFs, PPARA and PPARG, were found to regulate the PPARA pathway. PPARA and PPARG
ligands, known as peroxisome proliferators, have been shown to induce cell cycle arrest at the G1 phase
of the cell cycle to prompt the differentiation of liposarcoma, colon, prostate and BC cells, conferring
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a less malignant phenotype to the cells [28]. PPARA and PPARG are also involved in the regulation of
cholesterol metabolism [48], which was shown to regulate cell adhesion in breast cancer cell lines [49].

The FOXM1 pathway involves both the cell cycle and DNA damage repair ultimately promoting
tumor cell proliferation. Forty genes are engaged in this pathway, including tumor suppressors (such
as BRCA2, CDKN2A, CHEK2 and RB1), oncogene MYC, cyclins (CCNA2, CCNB1, CCNB2, CCND1
and CCNE1), cyclin-dependent kinases (CDK1, CDK2 and CDK4), ESR1, FOXM1 as well as NEK2.
NEK2, a cell cycle dependent serine-threonine kinase, was also identified as a Yin gene in this study,
and is regulated by 4 of the 24 TN regulators. NEK2 has been shown to be upregulated in cancers
such as lymphoma, cholangiocarcinoma, breast, prostate and cervical [50]. NEK2 functions in the
regulation of mitotic spindle formation, chromosome segregation, cell division, carcinogenesis and
the tumorigenic growth of breast cancer [51,52]. FOXM1 is one of the most important oncogenic
transcription factors overexpressed in various human cancers [53]. It regulates all hallmarks of cancer,
including proliferation, mitosis, EMT, invasion and metastasis [54]. FOXM1 has been found to be
overexpressed in 85% of TNBCs [53], and has been identified as the key transcriptional driver in the
differentially expressed gene signature of TNBCs [55]. FOXM1 could promote TNBC proliferation,
invasion and tumorigenesis by directly binding to and transcriptionally regulating expression of
eukaryotic elongation factor 2 kinase (eEF2K) [53]. FOXM1 also plays a role in autophagy by
transcriptionally regulating the Beclin-1 and LC3 genes in TNBCs [56]. Therefore, inhibition of FOXM1
transcription factor function is a potential strategy for overcoming TNBC progression.

A limitation of this study is the use of the motif-based TF binding data. Studies have shown that
the ChIP-seq TF binding data conferred significantly higher explanatory power than the motif-based
TF binding data for mRNA expression levels [31]. We observed the same phenomenon, finding
that experimentally derived ChIP seq data from ReMap resulted in a significantly higher spearman
correlation than the motif based TRRUST (Figure 3b). Unfortunately, the ChIP-seq data from ReMap
were available for only a subset of the TFs in a limited number of BC cell lines that did not have
representatives from each BC subtype. In fact, the majority were from MCF-7 cell lines. Therefore,
a reasonable alternative for us was to use the motif-based TF-target interaction data, since it is not
representative of any particular BC cell subtype.

4. Materials and Methods

4.1. TCGA Data Collection

The TCGA multi-omics Level 3 processed data including mRNA/miRNA expression profiles, DM and
CNV data, were retrieved for breast tumor samples from the UCSC Xena browser (http://xena.ucsc.edu/).
Only mRNA/miRNA expression data were downloaded for normal samples. Expression data for mRNA
were transformed in RNA-seq by Expectation-Maximization (RSEM) values from the Illumina HiSeq 2000
RNA Sequencing platform were transformed to log2(RSEM+1) to estimate the gene-level transcription.
We included miRNA mature strand expression data by RNA-seq (IlluminaHiseq 2000). For each sample,
all isoform expression in reads per million miRNAs mapped (RPM) values for the same miRNA mature
strand were added together and the log2(total_RPM+1) transformation was applied to estimate the miRNA
expression level. The miRNA IDs from miRBase Release 22.1 were used [57]. The mRNA and miRNAs with
missing values in more than 50% of the tumor and normal samples were removed. For DM data, we used
the Illumina methylation450 data and beta values as the methylation scores. When multiple scores were
available for the same gene, we took the average. For CNV data, we used the whole genome microarray
data, which were estimated at the gene level using the GISTIC2 method. In addition, clinical data for BC
patients were downloaded from the Firehose TCGA data portal (http://firebrowse.org/). Patients with
information on their immunohistochemistry (IHC) status of three receptors (ER, PR, HER2) available were
categorized into four molecular subtypes: (1) luminal A (ER+ and/or PR+ and HER2−); (2) luminal B (ER+
and/or PR+ and HER2+); (3) Her2-enriched (ER− and PR− and HER2+); (4) triple-negative (ER− and
PR− and HER2−).

http://xena.ucsc.edu/
http://firebrowse.org/


Cancers 2019, 11, 507 15 of 21

4.2. Target Prediction for miRNAs and TFs

To get the highest number of publicly available miRNA-target pairs into the regression models,
we used the StarBase v3.0 database, which contains the amalgamation of miRNA–mRNA interactions
predicted by seven algorithms (PITA, RNA22, miRmap, microT, miRanda, PicTar, TargetScan) [18].
In our study, among the miRNA–target gene pairs, those predicted by at least one algorithm were
selected. Binding site predictions for human sequence-specific TFs based on motif hits were used and
downloaded from TRRUST v2.0 [16].

We also curated ChIP-seq-derived TF binding data from ReMap v1.2 [17]. ReMap contains a catalog
of regulatory regions by compiling the genomic localization of 485 different transcriptional regulators
(TRs) across 346 different human cell lines and tissue types. This database is based on the latest
1066 Encyclopedia of DNA Elements (ENCODE) ChIP-seq datasets [58], as well as 1763 non-ENCODE
datasets selected from Gene Expression Omnibus [59] and ArrayExpress [60]. In total, ChIP-seq data
were obtained for 125 TFs across 13 diverse untreated BC cell lines. We defined the promoter region
for each gene as 2000 bp upstream to 200 bp downstream from the transcription start site (TSS), based
on Homo sapiens (GRCh38/hg38) annotation. We then annotated the peaks within promoters for each
TF using the R package ChIPpeakAnno [61], and averaged the TF binding scores for multiple peaks to
represent a single binding site per TF–gene pair.

4.3. Identification of Yin and Yang Genes

DEGs were determined using the R package limma [62] with the gene expression values for the
tumor (n = 1104) and normal breast tissue (n = 114) samples from TCGA. DEGs with FDR < 0.05 and
an absolute value of logFC not less than 1 were considered to be Yin and Yang genes and were selected
for further analysis.

4.4. Tumor-Specific Lasso Regression Models

We trained linear regression models separately for each tumor sample to explain log gene
expression fold changes (tumor versus normal tissue), using CNV, TF binding site counts in the
gene’s promoter, and miRNA binding site counts in the gene’s 3′UTR as covariates in the models.
Tumor-specific miRNA expression fold changes (tumor versus normal tissue) were used to restrict the
miRNAs that can be used as explanatory variables. Specifically, suppose there are N tumor samples,
G Yin and Yang genes (g), M miRNAs and T TFs. For each sample n, we observed the log expression
fold change in the tumor (relative normal tissue), CNV and DM value for gene g, as well as the log
expression fold change in the tumor (compared to normal tissue) for all the M miRNAs (together
provided by TCGA). The binding site count for TFs or miRNAs in the gene’s promoter or 3′UTR,
however, were not available for each sample, but rather were estimated by sequence-derived methods
using the TRRUST v2.0 [16] and starBase v3.0 [18], respectively. In this study, N = 391, G = 3008,
M = 362 and T = 795.

To avoid overfitting in the presence of noisy expression data and a large number of explanatory
variables, regularized regression via a lasso constraint [63] was used to identify a small number
of TFs and miRNAs that best explain changes in gene expression on a sample-by-sample basis.
The lasso constraint enforces sparsity in the learned parameters, with the result that most of the
regression coefficients are zero. This reduces the number of features included in the model, leading
to better prediction accuracy and more interpretable results. The sample-by-sample approach trains
a regression model for each tumor sample independently, and does not use information about the
tumor’s assignment to previously defined transcriptomic subtypes. The regularization parameter λ
controls the degree of sparsity in the trained model was determined by 10-fold CV.

The regression coefficient of each regulator (TF, miRNA) establishes the importance of the
corresponding regulatory element for the prediction of gene expression changes, while the sign
of the coefficient can be interpreted as the predicted direction of regulation. This can be formulated as



Cancers 2019, 11, 507 16 of 21

a regression model with equation (1), where yg is the log expression fold change in the tumor (relative
normal tissue) for gene g; Cg and Dg are the gene’s CNV and DM values, respectively; Ng,TF and
Ng, miR are the number of binding sites for TF or miRNA in the gene’s promoter or 3′UTR, respectively;
and W = (WCN, WDM, WmiR, WTF) is the model vector of regression coefficients.

yg = WCNCg + WDMDg + ∑
TF ∈{1, ..., T}

WTFNg,TF + ∑
miR ∈ {1, ..., M}

WmiRNg,miR (1)

We further compared the performance of models trained with different numbers of features.
The sample-specific models were first built with only miRNAs-binding sites as features. The other
features, TFs-binding sites, CNV and DM, were added to the models one by one. For each modeling
method and each sample, the Spearman correlation was computed using 10-fold CV on held-out
genes. Specifically, for each tumor, we performed a 10-fold CV by training a model with given features
on 90% of the genes and testing its predictions on the remaining 10% of genes. After each CV run,
we obtained the Spearman rank correlation between the predicted and the observed Yin and Yang gene
expression changes for the model in the tumor. In this way, the mean CV Spearman rank correlation
was obtained for each model in each tumor. By contrast, we randomized the output gene expression
changes, then trained sample-specific regression models.

4.5. Feature Selection to Identify the Key Regulators

Similar to the definition in reference [12], a feature selection procedure was performed using
a scoring technique. Specifically, for a given subtype S, the regression coefficient of each single regulator
r (TF or miRNA) was set to zero for all samples belonging to this subtype S, and the change in total
squared loss L over all genes was computed in these samples as score(r, S). The formula is as follows:

score(r, S) = ∑
g ∈{1, ..., G}

score(r, S, g) = ∑
g ∈ {1, ..., G}

∑
k ∈ S

{
L
{

yg,k, Wr→0
k ·Xg,k

}
− L

{
yg,k, Wk·Xg,k

}}
(2)

where k indexes the tumor samples and g indexes the Yin and Yang genes, yg, k is the expression
change of gene g in sample k, Xg, k is the vector of TF and miRNA binding site counts for gene g
and the CNV and DM of gene g in sample k, and S ranges over the set of the four subtypes. L is
squared loss and Wr→0

k denotes the model vector obtained from Wk by setting the coefficient Wr
k to

0. This score measures the degree of influence of the regulator in predicting the changes in gene
expression. The high-scoring regulators, the removal of which caused large increases in loss over the
samples in each BC subtype, were considered key regulators.

To further assess the statistical significance of the feature scores, we derived the randomized
data by permuting the motif hit over the genes independently for each TF/miRNA. We carried out
the tumor-specific lasso training procedure on randomized data 5000 times, and then computed the
resulting random score distribution for each regulator and each subtype. The empirical p-value for
each regulator and subtype was calculated based on these distributions and adjusted for multiple
testing over the TF/miRNA regulators using the Benjamini–Hochberg (BH) method to produce FDR.
Subtype-specific key regulators were finally selected with FDR < 0.05.

4.6. Network Construction

To construct the network, the TF/miRNA–gene pairs involving nonzero binding hits between the
24 TN regulators and all the identified Yin and Yang genes were first compiled. We then extracted the gene
sets of the three pathways (BIOCARTA_PPARA_PATHWAY, KEGG_PPAR_SIGNALING_PATHWAY
and PID_FOXM1_PATHWAY) from MSigDB [27] and filtered the regulator–gene pairs by gene sets of
the three pathways. A matrix (262 rows by 3 columns), containing 262 interactions between 23 TN
regulators and 51 Yin/Yang genes, was thus generated. In the matrix, the first column is the selected
TN regulators, used as the source node for the network; the second column is the corresponding
targets, which are members of at least one of the three pathways and used as the target nodes for the
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network; the third column is the number of hits between the regulator–target pairs and used as the
interaction for the network. Finally, the matrix was imported into Cytoscape v3.5.1 [29] to generate
the network.

4.7. Gene Annotation

Gene ontology (GO) annotation was performed on the selected Yin and Yang genes using the
R package clusterProfiler [15], with respect to the GO terms in Biological process (BP) (GO-BP) as the
reference gene sets. The hypergeometric method was used to find the over-represented GO-BP terms
in the identified Yin and Yang genes. The maximum gene set size was 500, while the minimum gene
set size was 10. The resulting p-values were adjusted for multiple testing with the BH method. GO-BP
terms with an adjusted p-value smaller than 0.05 were considered to be significantly over-represented
in the Yin or Yang genes.

We also performed a functional enrichment analysis using targets of the selected TN regulators.
Specifically, we extracted the predicted targets with nonzero binding sites provided by TRRUST v2.0
(starBase v3.0) for each of the selected TFs (miRNAs). For each regulator, the target list was intersected
with the identified Yin and Yang genes, and only targets that were also Yin/Yang genes were kept for
the regulator. We then downloaded canonical pathways from MSigDB (c2.cp.v6.2.entrez.gmt) [27].
For each target list, we assessed their enrichment for each canonical pathway with a hypergeometric
test using clusterProfiler [15]. The maximum gene set size was 500, while the minimum gene set size
was 2. The multiple test p-value was adjusted by the BH method to produce FDR, and we identified
pathways related to the selected regulators with enrichment where FDR < 0.01.

4.8. Potential Clinical Outcome Association Analysis

Datasets from the TCGA [55] and METABRIC [30] databases were used to analyze clinical
outcome associations. For TCGA BC patients, curated clinical TCGA data from a study [64] were
downloaded from UCSC Xena. The study highlighted four types of carefully curated survival
endpoints, and recommended the use of the endpoints of overall survival (OS), disease-specific
survival (DSS), progression-free interval (PFI) and disease-free interval (DFI) for each TCGA cancer
type. For METABRIC, the discovery set was used. The normalized gene expression levels were obtained
from the European Genome-Phenome Archive (https://ega-archive.org/dacs/EGAC00001000484),
and the curated clinical data were downloaded from a previous study [30]. TN cases (127 out of
997 breast cancer cases) with survival data (OS and DSS) and normalized gene expression profiles
were selected for the following survival analysis.

To examine whether each of the 24 TNBC regulators alone could be a prognostic marker for BC
patients, we performed survival analysis for each regulator in the TNBC and BC cohorts from TCGA.
The mean expression level of a given regulator was used as the cutoff to stratify patients into two groups.
Kaplan–Meier (KM) survival analysis with different endpoints (OS, DSS, PFI, DFI) was performed, using
the R package survcomp [65] to examine the survival differences between the two groups.

To build the YMR signature [14], 17 Yin and 34 Yang genes that were members of at least one of the
three pathways (PPARA, PPAR and FOXM1) and were targets of at least one of the 24 TN regulators
were selected. The YMR was built using the 112 TCGA TN samples. Specifically, the YMR signature
score was computed for each case independently by using the ratio of the mean of the 17 Yin genes to
the mean of the 34 Yang genes. The TN samples were then stratified into high-risk and low-risk groups
using the mean of the YMR scores as the cutoff. Cases with a YMR score above the cutoff were assigned
to the high-risk group, while cases below the cutoff were grouped into low-risk group. We performed
KM survival analysis to examine the prognostic power of the YMR signature. We further evaluated the
reproducibility of the 31 gene YMR signature by testing the statistical association of the YMR scores
with the clinical outcome in the 127 TNBC samples of METABRIC discovery set.

Additionally, we built the CRS signature using the 6 TFs of the 24 regulators. For each TF, the association
between its expression and the patient’s OS outcome was determined using the univariate Cox proportional

https://ega-archive.org/dacs/EGAC00001000484
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hazards (Cox) model [66] in the 112 TCGA TN samples, and the coefficient was extracted from the Cox
model. With the expression (xi) and the corresponding coefficient (coefi) of the 6 TFs, we calculated the
CRS as sum (xi× coefi). TN patients with CRSs were binarized into high-risk and low-risk groups using
the xtile function in the R package statar with a probability parameter set to 0.65. The survival differences
between the high- and low- risk groups were assessed by KM curves. We further tested the prognostic
power of the 6-TF CRS signature in METABRIC TNBC data. In the same way, the CRS was computed using
all 24 regulators for TN samples in TCGA data set.

5. Conclusions

Using the lasso regularized linear regression approach, we identified the subtype-specific as well
as common TFs/miRNAs in BC. Many of the regulators identified in TNBC were found to regulate
the FOXM1, PPARA and PPAR pathways. Therefore, further exploring these pathways and their
regulators potentially could provide novel drug targets that may yield new treatment options for
TNBC patients. The Yin and Yang genes from the three pathways can also be used to build a multigene
YMR signature to stratify TNBC further for prognosis. The resulting TNBC groups exhibit different
clinical outcomes, which supports the utility of our approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/4/507/s1,
Figure S1: Survival analysis of the TNBC regulators in TNBCs. Based on gene expression levels of a given regulator,
TN patients from TCGA were divided into over-expressed (“high-exp”, red line) and down-expressed (“low-exp”,
blue line) groups. Survival analysis with different endpoints (OS, DSS, PFI, DFI) was performed for each regulator.
Only significant results were shown. 8 regulators alone could be a prognostic marker for TNBC patients: (a) ATRX,
(b) NFKBIA, (c) hsa-miR-23a-3p, (d) hsa-miR-664b-3p, (e) hsa-miR-708-5p, and (f) hsa-miR-889-3p. OS, overall
survival; DSS, disease-specific survival; PFI: progression-free interval; DFI, disease-free interval, Figure S2-1:
Survival analysis of the TNBC regulators in BCs. Based on gene expression levels of a given regulator, BC
patients from TCGA were divided into over-expressed (“high-exp”, red line) and down-expressed (“low-exp”,
blue line) groups. Survival analysis with different endpoints (OS, DSS, PFI, DFI) was performed for each regulator.
Only significant results were shown. 11 regulators alone could be a prognostic marker for BC patients (six
were shown here): (a) ATRX, (b) NFKBIA, (c) PPARG, (d) CITED2, (e) hsa-miR-378a-3p, and (f) hsa-miR-32-5p.
OS, overall survival; DSS, disease-specific survival; PFI: progression-free interval; DFI, disease-free interval,
Figure S2-2: Survival analysis of the TNBC regulators in BCs. Based on gene expression levels of a given
regulator, BC patients from TCGA were divided into over-expressed (“high-exp”, red line) and down-expressed
(“low-exp”, blue line) groups. Survival analysis with different endpoints (OS, DSS, PFI, DFI) was performed for
each regulator. Only significant results were shown. 11 regulators alone could be a prognostic marker for BC
patients (five were shown here): (g) hsa-miR-3150b-3p, (h) hsa-miR-23a-3p, (i) hsa-miR-708-5p, (j) hsa-miR-129-5p,
and (k) hsa-miR-92a-3p. OS, overall survival; DSS, disease-specific survival; PFI: progression-free interval; DFI,
disease-free interval.
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