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Abstract: We investigated whether isoleucilactucin, an active constituent of Ixeridium dentatum,
reduces inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-
inflammatory effects of isoleucilactucin were assessed by measuring the concentration of nitric oxide
(NO) and the expression of pro-inflammatory mediators in MH-S cells exposed to CFA-induced
inflammation. We found that isoleucilactucin reduced CFA-induced NO generation dose-dependently
in MH-S cells. Moreover, isoleucilactucin suppressed CFA-activated proinflammatory mediators,
including cyclooxygenase-2 (COX2) and inducible NO synthase (iNOS), and the proinflammatory
cytokines such as interleukin-(IL)-1β, IL-6, and tumor necrosis factor (TNF-α). The inhibiting
properties of isoleucilactucin on the nuclear translocation of phosphorylated nuclear factor-kappa B
(p-NF-κB) were observed. The effects of isoleucilactucin on the NF-κB and mitogen-activated protein
kinase (MAPK) pathways were also measured in CFA-stimulated MH-S cells. These results indicate
that isoleucilactucin suppressed CFA-stimulated inflammation in MH-S cells by inhibiting the NF-κB
and MAPK pathways, which suggest it might exert anti-inflammatory properties in the lung.

Keywords: lung macrophages; isoleucilactucin; anti-inflammatory properties; NF-κB pathway;
AMPK pathway

1. Introduction

Inflammation is a critical aspect of the immune response against cell damage and
pathogens, which also provides a defense mechanism to remove harmful stimuli [1–3].
Increased movement of plasma and leukocytes from the blood into wounded regions
causes acute inflammation, which is an initial response of the organism to damaging
stimuli. When it becomes chronic, inflammation causes a gradual shift in the cell types
present at the site of inflammation and can result in a destruction or regeneration of tissues,
depending on the context [4]. Dysregulated inflammation is associated with various
chronic diseases [2,5]. Macrophages play a crucial role in inflammatory processes, primarily
by producing proinflammatory mediators that include nitric oxide (NO), inducible NO
synthase (iNOS), cyclooxygenase-2 (COX-2), as well as the cytokines interleukin (IL)-1β,
IL-6, and tumor necrosis factor-α (TNF-α) [6,7]. Therefore, inhibiting proinflammatory
macrophage transformation is considered a critical strategy in the treatment of numerous
inflammatory disorders.

In the last few decades, environmental contaminants were shown to cause immuno-
logic dysfunction in chronic respiratory inflammatory disorders: asthma, chronic respira-
tory diseases, chronic obstructive pulmonary disease (COPD), and various types of lung
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cancer [1,6,8–10]. COPD is the world’s third leading cause of death, with 3 million individ-
uals dying from the disease in 2016 [11]. In modern industrial countries, particulate matter
(PM) represents the most dangerous air contaminant [12]. The main sources of PM include
outdoor pollutants from gasoline fuel burning in automobiles and industries, as well as
indoor pollutants from cigarette smoke and culinary exhausts [6,13]. According to previous
research, exposure to PM has been linked to worsening of asthma symptoms, as well as
increased hospitalization and mortality in individuals with COPD [14,15]. Exposure to
PM could induce alveolar macrophages to produce excessive amounts of proinflammatory
mediators, such as iNOS, COX2, TNF-α, IL-1β, and IL-6, which determine a wide range of
pathological and clinical symptoms [9,16].

The pharmaceutical industry’s interest in natural drugs has grown, thus including
natural resources in drug development [3,17,18]; indeed, over 100 medications derived
from natural products are now being tested in clinical trials [3,19]. Isoleucilactucin, one
of the major active constituents of Ixeridium dentatum, has been reported to have amylase
secretion activity after treatment with high glucose in human salivary gland cells [20].
Coal fly ash (CFA) is made up of a variety of liquid and solid PM, including asbestos,
coal, and combustion particles of various sizes and origins [1,6,21]. However, the effect
of isoleucilactucin in the CFA-stimulated inflammatory cascade on alveolar macrophages
(MH-S) remains elusive. The goal of this study is to determine whether isoleucilactucin has
anti-inflammatory activities upon CFA-induced inflammatory stimulation of MH-S cells.

2. Results
2.1. Isoleucilactucin Protected against CFA-Induced Nitric Oxide Production and Cell Death in
Alveolar Macrophage (MH-S) Cells

Nitric oxide (NO) is a vital regulator in the inflammatory process, while excess NO
contributes to the development of numerous inflammatory disorders [22–24]. In our study,
the NO levels in murine MH-S cells in response to CFA stimulation were assessed using the
Griess reaction. Isoleucilactucin decreased NO induction potently and dose-dependently
(Figure 1A).
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Figure 1. Effect of isoleucilactucin on coal fly ash (CFA)-induced nitric oxide (NO) generation and
viability in MH-S cells. (A) Cells were categorized into six groups: basal (control), CFA (2.5 µg/mL),
and four concentrations of CFA with isoleucilactucin (12.5, 25, 50, and 100 µM). Cells were treated
with the different isoleucilactucin concentrations for 30 min before CFA treatment and incubated for
18 h. The Griess reagent method was used to determine the NO level. (B) The MTT reagent method
was used to perform a cell viability experiment. A 24-well plate was used to seed the cells. Values
from three independent experiments were expressed as the mean ± SEM (n = 3). Compared with the
basal group, ns: not significant, # p < 0.001; compared with the CFA group, * p < 0.05, ** p < 0.01, and
*** p < 0.001.
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The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was
used to demonstrate cell viability, and the data showed that isoleucilactucin had no effect
on cell toxicity at the different concentrations examined in comparison to the control group
(Figure 1B). Our findings together indicate that isoleucilactucin suppressed NO generation
dose-dependently and at noncytotoxic levels.

2.2. Suppressive Effect of Isoleucilactucin on CFA-Induced Proinflammatory Cytokines in
MH-S Cells

To evaluate the anti-inflammatory effect of isoleucilactucin on CFA-activated inflam-
mation in the MH-S cells, reverse transcription polymerase chain reaction (RT-PCR) was
assessed. After 30 min of pretreatment with isoleucilactucin, the levels of CFA-induced
proinflammatory factors were decreased in MH-S cells. mRNA levels of proinflammatory
mediators, such as iNOS and COX-2, as well as proinflammatory cytokines, such as IL-1β,
IL-6, and TNF-α, were measured by RT-PCR to explore the anti-inflammatory effects of
isoleucilactucin (Figure 2A). At the mRNA level, proinflammatory factors were found to
be dose-dependently decreased (Figure 2B–F). RT-PCR results showed that isoleucilactucin
prevented CFA-induced inflammatory cytokine production and reduced the expression
levels of proinflammatory factors.
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Figure 2. Effect of isoleucilactucin on CFA-induced proinflammatory mediators and cytokines in MH-S cells analyzed using
reverse transcription polymerase chain reaction (RT-PCR). (A) RT-PCR analysis was performed to evaluate the mRNA
levels of proinflammatory mediators, such as cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), as well
as proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, and GAPDH. (B–F)
ImageJ was used to perform quantitative analysis of the relative mRNA expression levels. Isoleucilactucin dosages of 12.5,
25, 50, and 100 µM were used to seed the cells in a 6-well plate. Values from three independent experiments were expressed
as the mean ± SEM (n = 3). Compared with the basal group, ns: not significant, # p < 0.001; compared with the CFA group,
* p < 0.05, ** p < 0.01, and *** p < 0.001.

2.3. Isoleucilactucin Ameliorated CFA-Induced mRNA Expression of Proinflammatory Cytokines
in MH-S Cells

To validate the RT-PCR results in MH-S cells, proinflammatory mediators mRNA
expression was next investigated. Following isoleucilactucin (12.5, 25, 50, and 100 µM) ad-
ministration, the mRNA expression levels of the proinflammatory mediators were markedly
and dose-dependently inhibited (Figure 3A–E). The real-time PCR results demonstrated
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that isoleucilactucin significantly lowered the proinflammatory factors in a concentration-
dependent manner (Figure 3A–E).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 13 
 

 

2.3. Isoleucilactucin Ameliorated CFA-Induced mRNA Expression of Proinflammatory 
Cytokines in MH-S Cells 

To validate the RT-PCR results in MH-S cells, proinflammatory mediators mRNA 
expression was next investigated. Following isoleucilactucin (12.5, 25, 50, and 100 μM) 
administration, the mRNA expression levels of the proinflammatory mediators were 
markedly and dose-dependently inhibited (Figure 3A–E). The real-time PCR results 
demonstrated that isoleucilactucin significantly lowered the proinflammatory factors in a 
concentration-dependent manner (Figure 3A–E). 

 

Figure 3. Effect of isoleucilactucin on CFA-induced mRNA expression in MH-S cells measured using real-time polymerase 
chain reaction (PCR). (A–E) The mRNA levels of COX2, iNOS, IL-1β, IL-6, and TNF-α were analyzed by PCR after 18 h of 
incubation with CFA. Isoleucilactucin dosages of 12.5, 25, 50, and 100 μM were used. GAPDH was used as a housekeeping 
gene. Values from the three independent experiments were expressed as the mean +/− SEM (n = 3). Compared with the 
basal group, # p < 0.001; compared with the CFA group, ns: not significant, * p < 0.05, ** p < 0.01, and *** p < 0.001. 

2.4. Isoleucilactucin Inhibited the Translocation of Nuclear Factor-Kappa B in CFA-Treated MH-
S Cells 

An immunofluorescence (IF) analysis was used to examine the translocation of acti-
vated nuclear factor (NF)-κB from the cytoplasm to the nucleus, to determine whether the 
anti-inflammatory actions of isoleucilactucin could be mediated by the NF-κB signaling 
pathway in CFA-stimulated alveolar macrophages. In activated MH-S cells, treatment 
with CFA increased NF-κB translocation from the cytoplasm to the nucleus, but treatment 
with the maximum dose of isoleucilactucin (100 μM) inhibited phosphorylated (p)-NF-κB 
nuclear translocation (Figure 4). Here, we used Bay-11 as an NF-κB inhibitor. Our IF ex-
periment reveals that the anti-inflammatory effects of isoleucilactucin may result from 
partly inhibiting phosphorylation of the NF-κB signaling cascade. 

Figure 3. Effect of isoleucilactucin on CFA-induced mRNA expression in MH-S cells measured using real-time polymerase
chain reaction (PCR). (A–E) The mRNA levels of COX2, iNOS, IL-1β, IL-6, and TNF-α were analyzed by PCR after 18 h of
incubation with CFA. Isoleucilactucin dosages of 12.5, 25, 50, and 100 µM were used. GAPDH was used as a housekeeping
gene. Values from the three independent experiments were expressed as the mean ± SEM (n = 3). Compared with the basal
group, # p < 0.001; compared with the CFA group, ns: not significant, * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.4. Isoleucilactucin Inhibited the Translocation of Nuclear Factor-Kappa B in CFA-Treated
MH-S Cells

An immunofluorescence (IF) analysis was used to examine the translocation of acti-
vated nuclear factor (NF)-κB from the cytoplasm to the nucleus, to determine whether the
anti-inflammatory actions of isoleucilactucin could be mediated by the NF-κB signaling
pathway in CFA-stimulated alveolar macrophages. In activated MH-S cells, treatment
with CFA increased NF-κB translocation from the cytoplasm to the nucleus, but treatment
with the maximum dose of isoleucilactucin (100 µM) inhibited phosphorylated (p)-NF-κB
nuclear translocation (Figure 4). Here, we used Bay-11 as an NF-κB inhibitor. Our IF
experiment reveals that the anti-inflammatory effects of isoleucilactucin may result from
partly inhibiting phosphorylation of the NF-κB signaling cascade.
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Figure 4. Effect of isoleucilactucin on CFA-induced nuclear factor-kappa B (NF-κB) translocation in
MH-S cells examined by immunofluorescence (IF) assay. In a 6-well plate, cells were seeded on a
coated cover slip and divided into four groups: basal, CFA, CFA with isoleucilactucin (100 µM), and
CFA with Bay-11 (p-NF-κB inhibitor). Before treatment with CFA (2.5 µg/mL), cells were treated
for 30 min with isoleucilactucin and Bay-11 (10 µM) and incubated for 18 h. IF staining was used
to examine the p-NF-κB nuclear translocation. To observe the nuclei, the samples were mounted
using a ProLong Gold Antifade Reagent containing DAPI (blue). Confocal microscopy at 1000×
magnification was used to examine the stained cells.

2.5. Isoleucilactucin Inhibits the Activation of Nuclear Factor-Kappa B and Mitogen-Activated
Protein Kinase Signaling Pathways in CFA-Treated MH-S Cells

To explore the molecular pathways underlying the protective effects of isoleucilactucin
in our in vitro CFA-induced inflammation model, we performed Western blot analysis.
CFA activates the inflammatory pathway, and the NF-κB and MAPK signaling pathways
are important in inflammatory processes [25–27]. Pretreatment with isoleucilactucin greatly
decreased the phosphorylation (p) of inhibitor of kappa B (IκB) and NF-κB in MH-S cells,
whereas treatment with CFA significantly enhanced the p-IκB and p-NF-κB in alveolar
macrophages (Figure 5A–C). Furthermore, as compared to treatment with CFA alone, the
MAPK pathways, including phosphorylated extracellular signal-regulated kinase (p-ERK),
phosphorylated c-Jun N-terminal kinase (p-JNK), and p-P38, were dose-dependently re-
duced (Figure 5D–G). Collectively, these findings indicate that the CFA-induced activation
of p-NF-κB, p-IκB, p-ERK, p-JNK, and p-P38 in MH-S cells was significantly reduced by
pretreatment with isoleucilactucin.
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Figure 5. Effect of isoleucilactucin on CFA-induced NF-κB and mitogen-activated protein kinase (MAPK) pathways in MH-S
cells measured by Western blotting. (A) Western blot analysis was done to evaluate the protein levels of the phosphorylated
(p)-IκB and p-NF-κB pathways. (B,C) ImageJ was used to perform densitometric analysis of the protein expression levels.
(D) Western blotting was used to investigate the MAPK pathways, which includes ERK, JNK, and p38. (E–G) ImageJ
was used to perform densitometric analysis of the protein expression levels. As a loading control, β-actin was used.
Isoleucilactucin dosages of 12.5, 25, 50, and 100 µM were used on cells seeded in a 6-well plate. Values from the three
independent experiments were expressed as the mean± SEM (n = 3). Compared with the basal group, # p < 0.001; compared
with the CFA group, ns: not significant, * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Discussion

The inflammatory process involves an abnormally high production of NO caused by
iNOS synthesis [28,29]. In the pathophysiology of inflammatory disorders, iNOS plays a
crucial role in the release of NO [30,31]. Furthermore, inflammatory stimuli increase COX-2
during the inflammatory process [32,33]. In the current study, only the CFA-activated
group produced more NO compared to the control group, whereas pretreatment with
isoleucilactucin inhibited NO generation.

Throughout the inflammation process, endotoxins and cytokines cause rapid changes
in NO gene expression, resulting in de novo recruitment of the iNOS and COX-2 path-
ways [34,35]. In the current study, the CFA-treated group displayed elevated mRNA levels
of proinflammatory factors, iNOS, COX2, TNF-α, IL-1β, and IL-6. In addition, treatment
with isoleucilactucin decreased the mRNA levels of the proinflammatory mediators, includ-
ing cytokines. These findings indicate that isoleucilactucin might have anti-inflammatory
properties. Our results support previous observations that the COX-2 and iNOS mRNA
expression levels were elevated following CFA stimulation [1,6,8].

According to our IF staining data, CFA elevated p-NF-κB translocation into the nu-
cleus, contrary to isoleucilactucin (100 µM) and Bay-11 (10 µM), which significantly reduced
the translocation. In an earlier investigation, we discovered a similar outcome [6]. Bay-11
was also previously shown to have anti-inflammatory properties through inhibiting the
phosphorylation of IκB [36–38].

The NF-κB and MAPK signaling cascades were identified as key players in the inflam-
matory process [39–42]. NF-κB, an important transcription factor, plays a critical role in the
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inflammatory response [43–45] and the MAPK signaling cascade is also important for the
inflammatory process [27,46]. As a result, we investigated anti-inflammatory mechanisms
mediated by isoleucilactucin in a macrophage cell line (MH-S). Western blotting was used
to evaluate the levels of protein expression of p-IκB, p-NF-κB, p-ERK, T-ERK, p-JNK,
T-JNK, p-P38, and T-P38. CFA treatment increased the activity of the NF-κB and MAPK
signaling pathways in the MH-S cell line, but isoleucilactucin administration dramat-
ically inhibited the NF-κB and MAPK signaling. Based on these results, we predicted
that isoleucilactucin would reduce the IκB and NF-κB phosphorylation, resulting in a
proinflammatory factor suppressive action. Our data show that isoleucilactucin reduced
CFA-activated inflammation by lowering the NF-κB and MAPK signaling pathway activity
levels (Figure 6).
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4. Materials and Methods
4.1. Reagents

Roswell Park Memorial Institute medium (RPMI-1640) for culturing macrophage,
penicillin–streptomycin, fetal bovine serum, and phosphate-buffered saline were acquired
from Welgene (Gyeongsan-si, Korea). Oligo-dT and primer sequences, including COX-2,
iNOS, IL-1β, IL-6, and TNF-α, were obtained from Bioneer (Daejeon, Republic of Korea).
Other reagents were purchased from Invitrogen, Sigma-Aldrich, and Thermo Fisher.

4.2. Plant Material Collection

The leaves of Ixeridium dentatum collected in the area of Jeonju-si, Jeonbuk, Korea,
in May 2017, and were certified by Professor Sang-Won Lee of the National Institute
of Horticultural and Herbal Science, South Korea. A voucher specimen is kept in the
Herbarium of the College of Pharmacy, Yonsei University, Incheon, Korea (ID201705).

4.3. Plan Material Extraction and Isolation

The plant extraction and isolation were conducted as previously described [20,47].
In brief, dried leaves of I. dentatum (5.0 kg) were extracted with MeOH (3 × 10 L, 50 ◦C)
and sonicated for 4 h after solvent evaporation, producing 290.0 g extract. The extract
was suspended in H2O and partitioned with n-hexane and EtOAc to obtain n-hexane
(ID1, 91.0 g), EtOAc (ID2, 15.1 g), and H2O (ID3, 178.0 g) extracts after the solvents were
removed in vacuo. In a Diaion HP-20 column, the H2O fraction was chromatographed with
increasing MeOH concentrations (25, 50, and 75%) to acquire three sub-fractions: ID3A
(14.5 g), ID3B (13.3 g), and ID3C (23.2 g). To obtain isoleucilactucin, the ID3C fraction was
chromatographed on an RP-18 CC and eluted with MeOH:H2O (1:2, v/v) (5.2 mg). The
resulting isoleucilactucin was a white amorphous powder. The HR-ESI-MS (Agilent 6530)
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[M–H2O]+ ion at m/z 389.1825 identified its molecular formula as C21H29NO7 (calculated
for C21H27NO6, 389.1838).

4.4. Cell Culture and Treatment

According to a previously published method [6], murine alveolar macrophage cell line
(MH-S) was grown in RPMI supplemented with heat-inactivated 10% FBS, 100-unit/mL
penicillin, and 100-g/mL streptomycin (1% antibiotics). Cells were then cultured and
incubated in a humidified incubator at 37 ◦C with 5% CO2.

4.5. Nitric Oxide Assay

In accordance with our earlier investigation [48], Griess reagent A and B were used
to assess the NO concentration. MH-S were seeded and cultivated for 18 h in a 24-well
plate with or without CFA (2.5 µg/mL) for the basal group (control), only CFA-treated
group, and CFA with isoleucilactucin (12.5, 25, 50, and 100 µM) groups at the indicated
concentrations. In total, 100 µL of the Griess reagents were mixed with 100 µL of cell
culture supernatants and incubated at room temperature for 10 min. On a microplate
reader (Versamax, Molecular Devices, San Jose, CA, USA), the absorbance was measured
at 540 nm.

4.6. Cell Viability Assay

To investigate cytotoxicity, an experiment of cell viability was done as previously
described [6,48], using a 10% MTT reagent at 900 µL/well in the culture media. The
supernatants were removed after 3 h of incubation at 37 ◦C in 5% CO2. Wells were
filled with 100% of DMSO (500 µL/well) and incubated for 10 min with shaking at room
temperature. Finally, the absorbance was measured at 560 nm using a microplate reader
(Versamax, Molecular Devices, CA, USA).

4.7. PCR Analysis

Using previously published methods, PCR analysis was performed [2,6,48]. The MH-S
cells were nontreated or treated with isoleucilactucin (12.5, 25, 50, and 100 µM) for 30 min
at the indicated doses and received CFA stimulation for 18 h. A TRIzol reagent was used
to extract RNA from the cells. In total, 2 µg of total RNA were annealed for 10 min at
70 ◦C with oligo-dT, then cooled for 5 min on ice before reverse transcription (RT) in 20 µL
of reaction mixture at 42.5 ◦C on a thermocycler for 90 min. To inactivate the reverse
transcriptase, reaction was stopped at 95 ◦C for 5 min. cDNA from an RT reaction was
used in a PCR premix to perform RT-PCR (Bioneer). On a 1% agarose gel stained with
ethidium bromide (0.006%), the PCR products were also electrophoresed. To visualize
the band, ImageQuant LAS 500 was used. The band density intensity was standardized
using glyceraldehyde-3-phosphate dehydrogenase (GAPDH). SYBR green was used in the
real-time PCR. Table 1 shows the primer sequences (Bioneer, Daejeon, Republic of Korea)
for RT-PCR and real-time PCR.

4.8. Immunofluorescence Analysis

The immunofluorescence (IF) experiment was carried out as described previously [2,6].
Cells were washed in PBS before being fixed in paraformaldehyde (4 %) for 10 min. Cells
were then permeabilized with triton X-100 (0.2 %) in TBS (TBST) for 10 min before being
rinsed three times with TBST for 5 min each time. Using 2% BSA, cells were blocked for 1 h
at room temperature before being incubated overnight at 4◦C with the primary antibody
rabbit anti-p-NF-κB (Cat. no: #3033). The cells were washed with TBST three times for
5 min each time. Samples were then incubated with secondary antibody, IgG Fab2 (Cat.
no: #4413), for 1 h in the dark at room temperature, and washed three times with TBST
before being mounted with a ProLong Gold Antifade Reagent with DAPI to visualize the
cell nuclei, with confocal microscopy used to examine the samples (LSM700, Carl Zeiss,
Jena, Germany).
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Table 1. Primers used for reverse transcription polymerase chain reaction (RT-PCR) and real-time
PCR analysis in this study.

H Primer Sequence

GAPDH * F: 5′-CACTCACGGCAAATTCAACGGCAC-3′

R: 5′-GACTCCACGACATACTCAGCAC-3′

iNOS * F: 5′-CCCTTCCGAAGTTTCTGGCAGCAGC-3′

R: 5′-GGCTGTCAGAGCCTCGTGGCTTTGG-3′

COX-2 * F: 5′-CACTACATCCTGACCCACTT-3′

R: 5′-ATGCTCCTGCTTGAGTATGT-3′

TNF-α * F: 5′-TTGACCTCAGCGCTGAGTTG-3′

R: 5′-CCTGTAGCCCACGTCGTAGC-3′

IL-1β * F: 5′-CTGTGGAGAAGCTGTGGCAG-3′

R: 5′-GGGATCCACACTCTCCAGCT-3′

IL-6 * F: 5′-GTACTCCAGAAGACCAGAGG-3′

R: 5’-TGCTGGTGACAACCACGGCC-3′

GAPDH ** F: 5′-CACTCACGGCAAATTCAACGGCAC-3′

R: 5′-GACTCCACGACATACTCAGCAC-3′

iNOS ** F: 5′-GGCAGCCTGTGAGACCTTTG-3′

R: 5′-GCATTGGAAGTGAAGCGTTTC-3′

COX-2 ** F: 5′-GGGTGTCCCTTCACTTCTTTCA-3′

R: 5′-TGGGAGGCACTTGCATTGA-3′

TNF-α ** F: 5′-TGCCTATGTCTCAGCCTCTTC-3′

R: 5′-GAGGCCATTTGGGAACTTCT-3′

IL-1β ** F: 5′-CAACCAACAAGTGATATTCTCCATG-3′

R: 5′-GATCCACACTCTCCAGCTGCA-3′

IL-6 ** F: 5′-TCCAGTTGCCTTCTTGGGAC-3′

R: 5′-GTGTAATTAAGCCTCCGACTTG-3′

* Primer sequence for RT-PCR; ** Primer sequence for Real-Time PCR.

4.9. Western Blot Analysis

Western blot analysis was done as previously described [2,6,48]. Proteins from cells
were isolated, concentrations were determined, and samples were heated in sodium do-
decyl sulfate for 5 min. Proteins samples were separated using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis. Proteins were deposited on poly (vinylidene fluoride)
membranes and then blocked for 1 h with 5% skim milk at room temperature. Membranes
were washed 3 times with TBST (washing buffer) for 10 min each time before being incu-
bated overnight at 4 ◦C with primary antibodies (1:1000) against phosphorylated (p)-IκB
(Cat. no: #2859), p-NF-κB, p-ERK (Cat. no: #9101S), total (T)-ERK (Cat. no: #9102S), p-JNK
(Cat. no: #9251S), T-JNK (Cat. no: #9252), p-p38 (Cat. no: #9211), T-p38 (Cat. no: #9212),
and β-actin ((Cat. no: #4967). The membranes were washed three times with TBST for
10 min each time and incubated with secondary antibody (1:3000) (Cat. no: #7074) for
1 h before being rinsed three times with TBST for 10 min each time. Protein bands were
identified using enhanced chemiluminescence solutions (1:1 ratio) in an Imager ALS 500.

4.10. Statistical Analysis

Data are presented as the means ± standard error of the mean (SEM) (n = 3). One-way
analysis of variance was used to establish statistical significance. The data was analyzed
with GraphPad Prism 8.4.3 (GraphPad Software, LLC., San Diego, CA, USA). Probability
values were considered significant at * p < 0.05, ** p < 0.01, and *** p < 0.001 in comparison
to the CFA group, and at # p < 0.001 in comparison to the control.

5. Conclusions

Our study showed that isoleucilactucin has anti-inflammatory activities in CFA-
induced MH-S cells. These findings add to our understanding of CFA-induced inflamma-
tory responses and reveal that isoleucilactucin may decrease proinflammatory mediators
and cytokines expression in murine alveolar macrophages, which is known as MH-S cells.
Our results indicate that isoleucilactucin possesses an anti-inflammatory potential for
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inflammation management across a variety of inflammatory illnesses. Based on our results,
the effects of isoleucilactucin on NF-κB and mitogen-activated protein kinase (MAPK)
signaling have been linked to inflammation. More research is required to identify the
exact molecular pathways in animal models that cause inflammation and determine how
isoleucilactucin could be used as an herbal treatment to prevent inflammation.
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CFA coal fly ash
MH-S alveolar macrophages
NO nitric oxide
PCR polymerase chain reaction
COX2 cyclooxygenase-2
iNOS inducible NO synthase
IL-6 interleukin-6
IL-1β interleukin-1 beta
TNF-α tumor necrosis factor-alpha
IκB inhibitor of kappa B
p-NF-κB phosphorylated nuclear factor-kappa B
MAPK mitogen-activated protein kinase
JNK c-Jun N-terminal kinase
ERK extracellular signal-regulated kinase
COPD chronic obstructive pulmonary disease
DMSO dimethyl sulfoxide
RPMI roswell park memorial institute medium
FBS fetal bovine serum
IF immunofluorescence
DAPI 4, 6-diamidino-2-phenylindole
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