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The intrinsic DNA sequence preferences and cell type–specific cooperative partners of transcription factors (TFs) are typ-

ically highly conserved. Hence, despite the rapid evolutionary turnover of individual TF binding sites, predictive sequence

models of cell type–specific genomic occupancy of a TF in one species should generalize to closely matched cell types in a

related species. To assess the viability of cross-species TF binding prediction, we train neural networks to discriminate ChIP-

seq peak locations from genomic background and evaluate their performance within and across species. Cross-species pre-

dictive performance is consistently worse than within-species performance, which we show is caused in part by species-spe-

cific repeats. To account for this domain shift, we use an augmented network architecture to automatically discourage

learning of training species–specific sequence features. This domain adaptation approach corrects for prediction errors

on species-specific repeats and improves overall cross-species model performance. Our results show that cross-species TF

binding prediction is feasible when models account for domain shifts driven by species-specific repeats.

[Supplemental material is available for this article.]

Characterizing where transcription factors (TFs) bind to the ge-
nome, and which genes they regulate, is key to understanding
the regulatory networks that establish and maintain cell identity.
A TF’s genomic occupancy depends not only on its intrinsic
DNA sequence preferences but also on several cell-specific factors,
including local TF concentration, chromatin state, and coopera-
tive binding schemes with other regulators (Siggers and Gordȃn
2014; Slattery et al. 2014; Srivastava and Mahony 2020).
Experimental assays such as ChIP-seq can profile a TF’s genome-
wide occupancy within a given cell type, but such experiments re-
main costly, rely on relatively large numbers of cells, and require
either high-quality TF-specific antibodies or epitope tagging strat-
egies (Park 2009; Savic et al. 2015). Accurate predictive models of
TF binding could circumvent the need to perform costly experi-
ments across all cell types and all species of interest.

Cross-species TF binding prediction is complicated by the rap-
id evolutionary turnover of individual TF binding sites across
mammalian genomes, even within cell types that have conserved
phenotypes. For example, only 12%–14% of binding sites for the
key liver regulators CEBPA and HNF4A are shared across ortholo-
gous genomic locations in mouse and human livers (Schmidt
et al. 2010). On the other hand, the general features of tissue-spe-
cific regulatory networks appear to be strongly conserved across
mammalian species. The amino acid sequences of TF proteins,
their DNA-binding domains, and intrinsic DNA sequence prefer-
ences are typically highly conserved (e.g., both CEBPA and
HNF4A have at least 93% whole-protein sequence identity be-
tween human and mouse). Further, the same cohorts of ortholo-
gous TFs appear to drive regulatory activities in homologous

tissues. Thus, although genome sequence conservation informa-
tion is not sufficient to accurately predict TF binding sites across
species, it may still be possible to develop predictive models that
learn the sequence determinants of cell type–specific TF binding
and generalize across species. Indeed, several recent studies have
shown the feasibility of cross-species prediction of regulatory pro-
files using machine learning approaches (Chen et al. 2018; Huh
et al. 2018; Kelley 2020; Schreiber et al. 2020).

Here, we evaluate different training strategies on the general-
izability of neural network models of cell type–specific TF occu-
pancy across species. We train our model using genome-wide TF
ChIP-seq data in a given cell type in one species and then assess
its performance in predicting genome-wide binding of the same
TF in a closely matched cell type in a different species.
Specifically, we focus on predicting binding of four TFs (CTCF,
CEBPA, HNF4A, and RXRA) in liver owing to the existence of
high-quality ChIP-seq data in both mouse and human. We pro-
ceed to investigate gaps in performance between within-species
and cross-species models, with the aim of identifying specific ge-
nomic patterns that are associated with systematic misprediction
specifically across species.

We further evaluate the model performance improvement
gained from integrating an unsupervised domain adaptation ap-
proach into model training. This domain adaptation strategy in-
volves a neural network architecture with two subnetworks that
share an underlying convolutional layer. We train the two subnet-
works in parallel on different tasks.One subnetwork is trainedwith
standard backpropagation to optimize classification of TF bound
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and unbound sequences in one species (the source domain). The
other subnetwork attempts to predict species labels from sequenc-
es drawn randomly from two species (the source and target
domain), but training is subject to a gradient reversal layer (GRL)
(Ganin et al. 2016). Althoughbackpropagation typically has the ef-
fect of giving higher weights to discriminative features, a GRL re-
verses this effect, and discriminative features are down-weighted.
Thus, our network aims to encourage features in the shared convo-
lutional layer that discriminate between bound and unbound
sites, while simultaneously discouraging features that are species
specific. Importantly, this approach does not use TF binding labels
from the target species at any stage in training.We conclude by as-
sessing the effectiveness of domain adaptation in terms of reduc-
ing systematic mispredictions.

Results

Conventionally trained neural network models of TF binding

show reduced predictive performance across species

First, we set out to evaluate the ability of neural networks to predict
TF binding in a previously unseen species. We chose neural net-
works owing to their ability to learn arbitrarily complex predictive
sequence patterns (Kelley et al. 2018; Fudenberg et al. 2020; Avsec
et al. 2021a,b; Koo et al. 2021). In particular, hybrid convolutional
and recurrent network architectures have successfully been ap-
plied to accurately predict TF binding in diverse applications
(Quang and Xie 2016; Quang and Xie 2019; Srivastava et al.
2021). The motivation behind these architectures is that convolu-
tional filters can encode binding site motifs and other contiguous
sequence features, whereas the recurrent layers canmodel flexible,
higher-order spatial organization of these features. Our baseline
neural network is designed in line with these state-of-the-art hy-
brid architectures (Fig. 1).

Using this architecture, named the “conventionalmodel,”we
trained the network to predict whether a given input sequence
contained a ChIP-seq peak or not, using training data from a single
source species, and then assessed the model’s predictive perfor-
mance on entire held-out chromosomes in both the source species

and a target (previously unseen) species. We chose mouse and hu-
man as our species of interest owing to the availability of high-
quality TF ChIP-seq data sets in liver from both species and the
high conservation of key regulator TFs present in both species.
For four different TFs, we trained two sets of models: one with
mouse as the source species, and the other with human as the
source species. To monitor reproducibility, model training was re-
peated five times for each TF and source species.

Asmodels trained for 15 epochs, wemonitored source-species
and target-species performance on held-out validation sets (Fig. 2).
Performance was measured using the area under the precision-re-
call curve (auPRC), which is sensitive to the extreme class imbal-
ance of labels in our TF binding prediction task. We observed
that over the course of model training, improvements in source-
species auPRC from epoch to epoch did not always translate to im-
proved auPRC in the target species. Generally, cross-species
auPRCs showed greater variability across epochs and model repli-
cates compared with source-species auPRCs. For HNF4A in partic-
ular, the mouse-trained models’ performance on the human
validation set appeared to split part way through training; based
on cross-species auPRC, some model replicates appeared to be-
come trapped in a suboptimal state relative to other models (see
divergence in red lines in left column of Fig. 2). Meanwhile, the
training-species auPRC did not show a similar trend. Evidently,
validation set performance in the source species is not an ideal sur-
rogate for validation set performance in the target species.

Nevertheless, the epochs in which models had highest
source-species auPRCs were often epochs in which models had
near-best cross-species auPRC. Thus, we selected models saved at
the point in training when source-species auPRC was maximized
for downstream analysis. We next evaluated performance on
held-out test data sets (distinct from the validation data sets)
from each species (Fig. 3).

We observe across all TFs that for a given target species, the
models trained in that species always outperformed or matched
the performance of the models trained in the other species. We re-
fer to this within-species versus cross-species auPRC difference as a
cross-species performance gap, while noting that models trained
in either species were still relatively effective at cross-species pre-

diction. Because we observe a wider
cross-species gap for mouse-trainedmod-
els predicting in human than for human-
trainedmodels predicting inmouse, sub-
sequent analysis focuses on addressing
the mouse-to-human gap.

To get a sense of how specific to our
model design or training strategy this
cross-species gap might be, we applied
multiple sufficiently different machine
learning approaches to the same problem
and data sets and assessed whether the
cross-species gappersists. First,we trained
gapped k-mer support vector machines
(gkSVMs) to classify a balanced sample
of bound versus unbound windows for
each TF and species (Ghandi et al. 2014;
Lee 2016).We then evaluated thosemod-
els on the set ofnonoverlappingwindows
in each test data set (Supplemental Fig.
S1). We observe that the cross-species
gap persists, although it shrinks in abso-
lute magnitude, presumably owing to

Figure 1. Conventional network architecture. Convolutional filters scan the 500-bp input DNA se-
quence for TF binding features. The convolutional layer is followed by a recurrent layer (LSTM) and
two fully connected layers. A final sigmoid-activated neuron predicts if a ChIP-seq peak falls within the
input window.
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the drastically lower auPRC values across the board. These auPRCs
also show that our neural network approach can indeed outper-
form related methods on this task.

Next, we sought to assess the cross-species performance of an-
other state-of-the-art deep learning model trained on a related TF
binding prediction task, distinct from our binary classification
setup.Weapplied aBPNet-like profilemodel,whichpredicts thedis-
tribution of the raw, base-resolution ChIP-seq read profile at a given
genomic window rather than a zero–one binary label, to both our
mouse and human data sets across our four TFs (Avsec et al.
2021b). The profile models were trained using a peak-enriched sub-
set of the training data used by the binarymodels, and performance
was evaluated on the same test data sets (see Methods).

First, we investigated how well individual profile predictions
transfer across species (Supplemental Fig. S2, bottom). We observe
that overall, within-species profile models are usually able to pre-
dict both the location and the shape of peaks accurately. Cross-spe-
cies profile models tend to predict the peak location nearly as well

as within-species models, but for some TFs, there is a clear discrep-
ancy between the predicted and true profile shape. Specifically,
there are apparent nonbiological differences in experimental pro-
tocol or quality between our matched data sets across species; this
can cause profile models that learned how reads typically distrib-
ute around binding sites from one experiment to appear to gener-
alize imperfectly to other data sets with different read distributions
about binding sites.

Next, we quantified the performance of the profile models,
using the predicted total number of reads across a genomic win-
dow as a proxy for binary label prediction (Supplemental Fig. S2,
top). We again observe cross-species performance gaps for most
data sets. We also note that the auPRC values attained by the pro-
file models are comparable to those attained by our conventional
model in most cases, so we decided to focus on understanding the
cross-species gap in the context of the conventional model in the
remainder of the study.

The mouse-to-human cross-species gap originates from

misprediction of both bound and unbound sites

Because the target-species model consistently outperforms the
source-species model (on target-species validation), there must
be some set of differentially predicted sites that the target-species
model predicts correctly, but the source-species model does not.
By comparing the distribution of source-model and target-model
predictions over all target-species genomic windows, we can po-
tentially identify trends of systematic errors unique to the
source-species model. Whether these differentially predicted sites
are primarily false positives (unbound sites incorrectly predicted
to be bound), false negatives (bound sites incorrectly predicted
as unbound), or a combination of both can provide useful
insight into the performance gap between the source and target
models.

Figure 2. Model performance over the course of training, evaluated
on held-out validation data from mouse (left) and human (right)
Chromosome 1. Five models were independently trained for each TF
and source species (mouse-trained models in blue, human-trained models
in red). Values at epoch 0 are evaluations of models after weight initializa-
tion but before training (akin to a random baseline). Note that auPRCs are
not directly comparable between different validation sets because ground
truth labels are derived from a different experiment for each data set; the
area under the precision-recall curve (auPRC)will depend on the fraction of
sites labeled as bound as well as model prediction correctness.

Figure 3. Model performance evaluated on held-out test data:
Chromosome 2 from human (top) and mouse (bottom). Five models
were independently trained for each TF and source species.
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For each TF, we generated predictions over the genomic win-
dows in the human test data set from both our mouse-trained and
human-trained models. Then, we plotted all of the human-ge-
nome test sites using the average mouse model prediction (over
five independent training runs) and the average humanmodel pre-
diction as the x- and y-axis, respectively (Fig. 4). Bound and un-
bound sites are segregated into separate plots for clarity.

For three of the four TFs, the unbound site plots show a large
set of windows given low scores by the human model but mid-
range to high scores by the mouse model; these are false positives
unique to cross-species prediction (Fig. 4, right column, bottom/
bottom-right region of eachplot). These sites are distinct from false
positives mistakenly predicted highly by both models, as those
common false positives would not contribute significantly to the
auPRC gap. Even for CTCF, the exception to the pattern, there is
an enrichment of unbound sites that can be characterized as mis-
predictions specific to mouse models. Additionally, in the bound
site plots of all TFs except CEBPA, we see some bound sites that
are scored high by the human model but are given mid-range to
low scores by the mouse model; these are cross-species-unique
false negatives (Fig. 4, left column, top left region of each plot).
Hence, our cross-species models are committing prediction errors
in both directions on separate sets of sites, although the errors in
the unbound sites appear more prevalent than the errors in the
bound sites.

Motif-like sequence features discriminate between true-positive

and false-negative mouse model predictions

Because the only input to our models is DNA sequence, sequence
features must be responsible for differential prediction of certain
sites across source and target models. Other potential culprits,
such as chromatin accessibility changes or cofactor binding, may
contribute to TF binding divergence across species without chang-
es to sequence; but without an association between those factors
and sequence, the human-trained model would not be able to
gain an advantage over themouse-trainedmodel by training on se-
quence input alone. Thus, we focused on genomic sequence to un-
derstand differential site prediction.

To begin, we searched for sequence features associated with
differential prediction of bound sites from the human genome;
specifically, we compared bound sequences that both the hu-
man-trained and mouse-trained models correctly predicted (true
positives) to bound sequences the human-trained model correct-
ly predicted but the mouse-trained model did not (mouse-specific
false negatives). We used SeqUnwinder, a tool for deconvolving
discriminative sequence features between sets of genomic se-
quences, to extract motifs that can discriminate between the
two groups of sequences and quantitatively assess how distin-
guishable the sequence groups are (Kakumanu et al. 2017).
SeqUnwinder was able to distinguish mouse-specific false nega-
tives from true positives and randomly selected background ge-
nomic sequences with area under the ROC curve (auROC) of
0.78, 0.79, 0.80, and 0.87 for CTCF, CEBPA, HNF4A, and
RXRA, respectively. Supplemental Figure S3 shows the break-
down of sequence features that are able to distinguish between
mouse-specific false negatives and true positives for each TF.
Thus, we were able to identify TF-specific motifs that were en-
riched (or depleted) at mouse-specific false negatives. However,
we did not observe systemic sequence features that unanimously
contributed to the performance gap across all TFs studied, be-
yond a poly(A)/poly(T) motif.

Primate-unique SINEs are a dominant source of the

mouse-to-human cross-species gap

One potential source of sequences that could confuse a cross-spe-
cies model are repeat elements found in the genome of the target
species but not the source species. Alu elements, a type of SINE,
cover a large portion (10%) of the human genome and are found
only in primates (Batzer andDeininger 2002). Several other factors
make Alus evenmore likely candidates for confoundingmouse-to-
human TF binding predictions: They are enriched in gene-rich,
GC-rich areas of the genome and contain 33% of the genome’s
CpG dinucleotides (a marker for promoter regions); they may
play a role in gene regulation; and in silico studies have previously
found putative TF binding sites within Alu sequences (Schmid
1998; Batzer and Deininger 2002; Polak and Domany 2006;
Ferrari et al. 2020).

Figure 5 shows only the unbound human-genome windows
that overlap annotated Alu elements. Table 1 provides correspond-
ing quantification of Alu enrichment. Note that although Alu ele-
ments are typically poorly mappable, and it is thus often difficult

Figure 4. Both bound and unbound sites from human Chromosome
2 show evidence of differential binding predictions by human-trained
(y-axis) versus mouse-trained (x-axis) models. For visual clarity, only
25% of bound sites and 5% of unbound sites are shown (sampled
systematically).
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to assign them as bound or unbound in ChIP-seq experiments, we
focus analyses here only on highly mappable Alu instances (see
Methods). Across all four TFs, we see that Alus are substantially en-
riched in the unbound windows mispredicted only by the mouse
model. On average, 89% of these false positives unique to the
mouse model overlap with an Alu element, compared with the av-
erage overlap rate of 21% for unbound sites overall, or 18% for un-
bound sites incorrectly predicted by bothmodels. In contrast,Alus
on average only overlap 6% of false negatives unique to the mouse
model, which is less than the overlap fraction for bound sites over-
all (15%) and for false negatives common to both models (11%).
We repeated this analysis using other repeat classes, including
LINEs and LTRs, and confirmed that no other major repeat family
shows an enrichment of comparable strength with either the
false positives or false negatives unique to the mouse model
(Supplemental Table S1). Investigating the enrichment of individ-
ual Alu subfamilies in mouse-model-unique false positives showed
that this phenomenon is not restricted to a single subtype of Alu
but that subfamilies are enriched at different levels in a manner
that is TF specific and varies particularly between the AluJ, AluS,
and AluY subfamily groupings (Supplemental Fig. S4).

Thus, the vast majority of the false positives from the human
genomemispredicted only bymousemodels can be directly attrib-
uted to one type of primate-unique repeat element.We did not ob-
serve any similar direct associations between primate-unique
elements and the false negatives unique to the mouse model, be-
sides the expected depletion of Alu elements.

Model interpretation reveals sequence features driving divergent

mouse and human model predictions

To understand why mouse and human models make divergent
predictions at some sites, we compared base-pair resolution impor-
tance scores from both models at selected example sites.
Specifically, we implemented a strategy similar to in silico muta-
genesis (ISM), where a base’s score was determined by the differen-
tial model output between the original sequence and the sequence
with 5 bp centered on that base replaced with bases from a dinu-
cleotide-shuffled reference (Alipanahi et al. 2015). We observed
that this strategy outperformed backpropagation-based scoring
methods, potentially by avoiding gradient instability.

First, we compared importance scores between themouse and
humanmodels at example bound sites that bothmodels predicted
correctly (Supplemental Fig. S5). If the two models learned to use
similar logic to make binding predictions, we would expect to
see similar sequence features highlighted in the importance scores.
Overall, we observe that the scores generated by themouse andhu-
man models are reasonably concordant, although the extent of
agreement varies noticeably across TFs. CTCF and CEBPA show
the greatest tendency for agreement in importance scores across
models. HNF4A showed a slightlyweaker trend of score agreement,
whereas RXRA importance scores were the most likely to disagree
acrossmodels, including instances inwhichmotifs are highlighted
by high scores from one model but given near-zero scores by the
othermodel. However, across all TFs, instances of the primary cog-
nate motif for the appropriate TF are common in the sequences
marked by higher importance scores from either model.

Next, we repeated the analysis on example unbound windows
classified asmouse-model-unique false positives (Supplemental Fig.
S6). At these sites, the mouse model’s prediction scores overshoot
those of the human model by at least 0.5. Importance scores in
this set of sites show much greater disagreement between the two
models. Commonly across all four TFs, we observed two trends:
First, the mouse models often assigned high importance to motif-
sized contiguous stretches of bases that were not similarly recog-
nized by the human models. These pseudomotifs can superficially
resemble approximate matches to the TF’s cognate motif. Second,
the human models commonly showed apparent sensitivity to spe-
cific, often sparse features that received negative scores of moderate
to highmagnitude. These observations imply that the humanmod-
el has learned to ignore certain sequence features that the mouse
model’s scores suggest are favorable for binding. Furthermore, the
human model may be adopting that strategy based on whether or
not there are nearby sequence contexts that indicate that the se-
quence is not a binding site.

Human models trained without SINE examples behave like

hybrid mouse–human models

To further characterize how Alu elements are influencing cross-spe-
cies model performance, we trained additional models on the hu-
man data set after removing all windows from the training data
set that overlap with any SINEs (Fig. 6).We filtered out all SINEs, in-
cluding the primate-specific FLAM and FRAM repeats as well asAlus,
to avoid keeping examples that shared anysequencehomologywith
Alus. The no-SINE models were evaluated on the same held-out
chromosome test data used previously (which includes SINEs). For
all TFs except CTCF, the no-SINE models perform substantially
worse thanmodels trained using the complete human training sets.

Table 1. Percentage of windows overlapping an Alu element, for
various categories of genomic windows from the held-out test set

TF Bound

FN
(both

models)

FN
(mouse-
only) Unbound

FP
(both

models)

FP
(mouse-
only)

CTCF 12.6% 12.8% 9.9% 21.3% 10.0% 78.6%
CEBPA 18.3% 11.1% 0.0% 21.3% 22.9% 84.8%
HNF4A 13.6% 10.4% 8.0% 21.3% 16.9% 95.1%
RXRA 13.7% 10.6% 5.5% 21.4% 20.3% 97.4%

Alu elements dominate the false positives unique to the mouse models.
(FPs) false positives; (FNs) false negatives. For more details on site cate-
gorization, see Methods.

Figure 5. Most unbound sites from the human genomemispredicted by
mouse-trained models (x-axis), but not by human-trained models (y-axis),
contain Alu repeats. For visual clarity, only 5% of windows are shown.
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Site-distribution plots show that, for unbound sites, no-SINE
human-trainedmodelsmakemispredictions in a pattern similar to
mouse-trainedmodels; there is a similarly sized subset of unbound
sites mispredicted by the no-SINE human-trained models but not
by the standard human-trained models (Fig. 7). Plotting only
the sites that overlap with Alus confirms that the false positives
unique to the no-SINEs model are predominantly Alu elements
(Supplemental Fig. S7). For bound sites, on the other hand, no-
SINE human-trainedmodelsmake predictions that generally agree
with predictions from standard human-trained models.

This suggests that theAlu false positives unique to themouse-
trainedmodel may simply be owing to the fact that mousemodels
are not exposed to Alus during training (i.e., Alu elements are “out
of distribution”). In addition, the reduction in model-unique false
negatives observed when the no-SINE human-trained model is
compared with the normal human-trained model suggests that
those mispredictions are unrelated to Alus.

Domain-adaptive mouse models can improve cross-species

performance

Having observed an apparent “domain shift” across species, par-
tially attributable to species-unique repeats, our next step is to
ask how we might bridge this gap and reduce the difference in
cross-species model performance. Our problem is analogous to
one encountered in some image classification tasks, in which the
test data are differently distributed from the training data to the ex-
tent that themodel performswell on training data butmuchworse
on test data (e.g., the training images were taken during the day,
but the test images were taken at sunset). In these situations, vari-
ous techniques for explicitly forcing the model to adapt across dif-
ferent image “domains”have been shown to improve performance
at test time (e.g., Long et al. 2015; Sun et al. 2016; Bousmalis et al.
2017).

One unsupervised domain adaptation method uses a GRL to
encourage the “feature generator” portion of a neural network to
be domain-generic (Ganin et al. 2016). The GRL’s effect is to back-
propagate a loss to the feature generator that prevents any domain-
unique features from being learned.We chose to test the effective-
ness of this version of domain adaptation for our cross-species TF
binding prediction problem because we have observed evidence
that domain-unique features (species-unique repeat elements)
were a major component of the cross-species domain shift.

We modified our existing model architecture to perform
training-integrated domain adaptation across species (Fig. 8). A

GRL was added in parallel with the LSTM, taking in the result
of the max-pooling step (after the convolutional layer) as input.
During standard feed-forward prediction, the GRL merely com-
putes the identity of its input, but as the loss gradient backpropa-
gates through the GRL, it is reversed. The output of the GRL then
passes through two fully connected layers before reaching a new,
secondary output neuron. This secondary output, a “species dis-
criminator,” is tasked with predicting whether the model’s input
genomic window is from the source or target species. The model
training process is modified so that the model is exposed to se-
quences from both species, but only the binding labels of the
source species (see Methods). Without the GRL, adding the spe-
cies discrimination task to the model would encourage the convo-
lutional filters to learn sequence features that best differentiate
between the two species—features like species-unique repeats—
but with the GRL included, the convolutional filters are
instead discouraged from learning these features. We hypothesize
that this domain-adaptive model will outperform our basic model
architecture by reducing mispredictions on species-unique
repeats.

Figure 6. Performance ofmodels that aremouse-trained (blue), human-
trained with SINE examples (red), and human-trained without SINE exam-
ples (yellow), evaluated on the held-out humanChromosome 2. Fivemod-
els were independently trained for each TF and training species.

Figure 7. Differential human Chromosome 2 site predictions between
models trained on human data with or without any examples of SINE win-
dows. (Human-NS) Models trained on human data with no SINE exam-
ples. Similar to mouse-trained models, no-SINE human-trained models
systematically mispredict some unbound sites.
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We trained domain-adaptive models using the same binding
training data sets as before and evaluated performance with the
same held-out data sets. We observe that the auPRC for our
domain-adaptive models on cross-species test data is moderately
higher than the auPRC for the basic mouse models for all TFs ex-
cept CTCF, where auPRCs are merely equal (Fig. 9, top, blue/left
vs. green/middle dots). The domain-adaptive models’ auPRCs on
mouse test data,meanwhile, are comparable to the auPRCs of basic
models (Fig. 9, bottom, blue/left vs. green/middle). Although the
auPRC improvement is promising, it is also modest in comparison
to the full cross-species gap; the domain-adaptive models still do
not achieve a level of performance comparable to same-species
models (Fig. 9, top, green/middle vs. red/right).

Domain-adaptive mouse models reduce overprediction

on Alu elements

Next, we repeated our site-distribution analysis to determine what
constituted the domain-adaptive models’ improved performance.
The unbound site plots in Figure 10 compare human genome pre-
dictions between domain-adaptive mousemodels and the original
human models. Alu elements are highlighted in Figure 11, with
quantification in Supplemental Table S2.

Compared with Figure 4, the mouse-model-specific false pos-
itives have diminished for all TFs. This suggests that the domain-
adaptive models are able to correct the problem of false-positive
predictions from Alus by scoring unbound sites overlapping Alus
lower than the basic model did. This effect is even present for
CTCF, even though there was no noticeable auPRC difference for
CTCF between domain-adaptive and basic mouse models, likely
because the initial Alu enrichment in CTCF mouse-model false
positives was lower than for other TFs.

In contrast, the site-distributionplots for bound sites showno
noticeable difference from the original plots for the basicmodel ar-
chitecture. We applied the same SeqUnwinder analysis to look for

sequence features that discriminate be-
tween mouse-model false negatives and
true positives and discovered similar,
but not identical, motif-like short se-
quence patterns as we did previously
(Supplemental Fig. S8). Thus, our
domain adaptation approach does not
appear to have any major influence on
bound site predictions.

Alus commonly drive mouse-model false

positives across diverse cell types

Finally, we asked whether the observed
overprediction of species-specific repeats
is a general issue of concern in cross-spe-
cies TF binding prediction, or whether it
is particular to the examined liver TFs.
We thus widened our analyses to 53
additional pairs of ChIP-seq data sets tar-
geting orthologous TFs across eight addi-
tional equivalent human and mouse cell
types (see Methods). One caveat is that
the expanded set of paired data sets typi-
cally focus on cell lines and cell types
that are more difficult to closely match
across species than liver samples. Thus,

the additional experiments examined here may not be as compa-
rable across species as the previously examined liver data sets.

Our expanded analyses confirm that the cross-species perfor-
mance gap is present inmost tested TFs and cell types (Supplemen-
tal Table S3). A large portion of mouse-to-human false-positive
predictions is attributable to Alu elements. In 43 of the 53
additional examined data sets, Alu elements overlap a third or
more of the mouse-model-unique false-positive predictions

Figure 8. Domain-adaptive network architecture. The top network output predicts TF binding, as be-
fore, whereas the bottom network output predicts the species of origin of the input sequence window.
The gradient reversal layer has the effect of discouraging the underlying convolutional filters from learn-
ing sequence features relevant to the species prediction task.

Figure 9. Performance of mouse-trained generic (blue), mouse-trained
domain-adaptive (green), and human-trained (red) models, evaluated
on human (top) andmouse (bottom) Chromosome 2. Fivemodels were in-
dependently trained and evaluated for each TF and training species.
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(Supplemental Table S4). Our domain adaptation procedure is suc-
cessful in reducing Alu-related false-positive predictions in 46 of
the 53 additional examined data sets (Fig. 12; Supplemental Table
S4). However, in megakaryocyte and hematopoietic progenitor
data sets, we generally see a smaller percentage of mouse-model-
unique false positives being attributable to Alus. The false-positive
predictions that do overlap Alus are also generally less likely to be
corrected by our domain adaptation approach in these cell types
(Fig. 12). Therefore, our observations may not apply uniformly
to all cell types.

Discussion

Enabling effective cross-species TF binding imputation strategies
would be transformative for studying mammalian regulatory sys-
tems. For instance, TF binding information could be transferred
from model organisms in cell types and developmental stages
that are difficult or unethical to assay in humans. Similarly, one
could annotate regulatory sites in nonmodel species of agricultural
or evolutionary interest by leveraging the substantial investment

that has been made to profile TF binding sites in human, mouse,
and other model organisms (The ENCODE Project Consortium
2012; Yue et al. 2014; Roadmap Epigenomics Consortium et al.
2015).

Our results suggest that cross-species TF binding imputation
is feasible, but we also find a pervasive performance gap between
within-species and cross-species prediction tasks. One set of cul-
prits for this cross-species performance gap are species-specific
transposable elements. For example, models trained using mouse
TF binding data have never seen an Alu SINE element during train-
ing and often falsely predict that these elements are bound by the
relevant TF. BecauseAlu elements appear at a high frequency in the
humangenome, theirmisprediction constitutes a large proportion
of the cross-species false-positive predictions and thereby substan-
tially affect the genome-wide performancemetrics of themodel. It
should be noted that Alus and other transposable elements can
serve as true regulatory elements (Bourque et al. 2008; Sundaram
et al. 2014), and thus, we do not assume that all transposable ele-
ments should be labeled as TF “unbound.” Indeed, we minimized
the potential mislabeling of truly bound transposable elements as
“unbound” by focusing all our analyses on regions of the genome
that have a high degree of mappability (and are thereby less likely
to be subject to mappability-related false-negative labeling issues
in the TF ChIP-seq data).

We showed that a simple domain adaptation approach is suf-
ficient to correct the systematic mispredictions of Alu elements as
TF bound. Training a parallel task (discriminating between species)
but with gradient reversal used during backpropagation has the ef-
fect of discouraging species-specific features being learned by the
shared convolutional layers of the network. This approach is
straightforward to implement and has the advantage that TF bind-
ing labels need only be known in the training species. Our ap-
proach accounts for domain shifts in the underlying genome
sequence composition, assuming that the general features of TF
binding sites are conserved within the same cell types across
species.

We note that the underlying assumption of cross-species TF
binding prediction, that is, that the overall features of cell-specific
TF binding sites are conserved, may not hold true in all cases. For
some TFs, concordant importance scores between mouse and

Figure 10. Differential predictions of human genome sites between hu-
man-trained and domain-adaptive mouse-trained models. Domain-adap-
tive mouse models, unlike the original mouse models, do not show
species-specific systematic misprediction of unbound sites.

Figure 11. Differential predictions of unbound sites containing Alu ele-
ments between domain-adaptive mouse-trained models and human-
trained models. Unlike the original mouse models, domain-adaptive
mouse models do not show systematic overprediction of Alu repeats.
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human models across true-positive bound sites suggests that both
models learned similar representations of the TF’s cognate motif.
However, for other TFs, the same analysis suggests that themodels’
representations of the sequences important for binding may not
completely agree. We also observe, particularly for those TFs
with less concordant importance scores across species, that there
are sequence features in bound sites that discriminate between cor-
rect and incorrect predictions specific to cross-species models.
Therefore, cross-species false-negative prediction errors could be
the result of differential TF activity across the two species. Such dif-
ferential activities could result from gain or loss of TF expression
patterns, nonconserved cooperative binding capabilities, or
evolved sequence preferences of the TF itself. Our sequence com-
position domain adaptation approach is unlikely to address situa-
tions in which TF binding logic is not fully conserved across
species.

Other recent work has also shown the feasibility of cross-
species regulatory imputation. For example, Chen et al. (2018)
assessed the abilities of support vector machines (SVMs) and
CNNs to predict potential enhancers (defined by combinations
of histonemarks) when trained and tested across species of varying
evolutionary distances (Chen et al. 2018). They observed that al-
though CNNs outperform SVMs in within-species enhancer pre-
diction tasks, they are worse at generalizing across species. Our
work suggests a possible reason for, and a solution to, this general-
ization gap. Two other recentmanuscripts have appliedmore com-
plex neural network architectures to impute TF binding and other
regulatory signals across species (Kelley 2020; Schreiber et al.
2020). Those studies focus onmodels that are trained jointly across
thousands of mouse and human regulatory genomic data sets.
They thus assume that substantial amounts of regulatory informa-
tion have already been characterized in the target species, which
may not be true in some desired cross-species imputation settings.
In general, however, joint modeling approaches are also likely to
benefit from domain adaptation strategies that account for spe-
cies-specific differences in sequence composition, and our results
are thus complementary to these recent reports.

In summary, our work suggests that cross-species TF binding
prediction approaches should beware of systematic differences be-
tween the compositions of training and test species genomes, in-
cluding species-specific repetitive elements. Our contribution
also suggests that domain adaptation is a promising strategy for ad-
dressing such differences and therebymaking cross-species predic-
tions more robust. Further work is needed to characterize
additional sources of the cross-species performance gap and to
generalize domain adaptation approaches to scenarios in which
training data are available from multiple species.

Methods

Data processing

Data sets were constructed by splitting the mouse (mm10) and
human (hg38) genomes, excluding sex chromosomes, into
500-bp windows, offset by 50 bp. Any windows overlapping
ENCODE blacklist regions were removed (Amemiya et al. 2019).
We then calculated the fraction of each window that was uniquely
mappable by 36-bp sequencing reads and retained only the win-
dows that were at least 80% uniquely mappable (Karimzadeh
et al. 2018). Mappability filtering was performed to remove poten-
tial peak-calling false negatives; otherwise, any genomic window
too unmappable for confident peak-calling would be a potential
false negative.

ChIP-seq experiments and corresponding controls
(where available) were collected from ENCODE, the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/),
and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). Database
accession IDs for all data used in this study are listed in
Supplemental Tables S5 through S7. We chose to focus our initial
analyses on the liver, as several previous studies have provided
matchedChIP-seq experiments characterizing orthologousTF bind-
ing across mammalian liver samples (Odom et al. 2007; Schmidt
et al. 2010). Our expanded analyses use erythroid, lymphoblast,
and ES cell line experiments that were previously compared across
species by Denas et al. (2015). We also analyzedmatched adipocyte
data sets that were performed on adipocyte cell lines within the
same laboratories (Mikkelsen et al. 2010; Schmidt et al. 2011).
Additional data sets were sourced by searching the literature for
ChIP-seq data targeting orthologous TFs in erythroid progenitor,
megakaryocyte, macrophage, and hematopoietic progenitor cell
types (Hu et al. 2011; Tijssen et al. 2011; Pham et al. 2012; Beck
et al. 2013; Kaikkonen et al. 2013; Pencovich et al. 2013; Yue
et al. 2014; Goode et al. 2016; Huang et al. 2016).

For cell types for which all data was sourced from the mouse
and human ENCODE projects (i.e., erythroid, lymphoblast, and ES
cell lines), we downloaded ChIP-seq narrow peak calls from the
ENCODE portal. For liver and all other cell types, we first aligned
the FASTQ files to the mm10 and hg38 reference genomes using
Bowtie (version 1.3.0) (Langmead and Salzberg 2012). We then
called ChIP-seq peaks using MultiGPS v0.74 with default parame-
ters, excluding ENCODE blacklist regions (Mahony et al. 2014;
Amemiya et al. 2019). Corresponding control experiments were
used during peak calling when available. Peak calls were converted
to binary labels for each window in a genome: “bound” (one) if
any peak center fell within the window; “unbound” (zero) other-
wise. Supplemental Table S5 shows the numbers of peaks called
for liver data sets, as well as the number of bound windows re-
tained after filtering and the fraction of all retained windows
that are bound; Supplemental Tables S6 and S7 show the same in-
formation for all other data sets. Candidate data sets were

Figure 12. The fraction of mouse-model-unique false positives that
overlap Alus when either the basic mouse model (x-axis) or the domain-
adaptive mouse model (y-axis) is compared against the human model,
across our additional paired data sets. The gray diagonal line shows y= x;
points below the line represent TFs where the fraction of Alus in mouse-
model-unique false positives decreased with our domain adaptation
strategy.
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discarded from the analysis if the numbers of called peaks was less
than 1000 in mouse or human.

Data set splits for training and testing

Chromosomes 1 and 2 of both species were held out from all train-
ing data sets. For computational efficiency, 1 million randomly se-
lected windows from Chromosome 1 were used as the validation
set for each species (for hyperparameter tuning). All windows
from Chromosome 2 were used as the test sets. Chromosomes X
and Y were not used to avoid confounding because our matched
data sets across species did not always match in sex.

TF binding task training data was constructed identically for
all model architectures. Because binary classifier neural networks
often perform best when the classes are balanced in the training
data, the binding task training data set consisted of all bound
examples and an equal number of randomly sampled (without re-
placement) unbound examples, excluding examples from Chro-
mosomes 1 and 2. To increase the diversity of examples seen by
the network across training, in each epoch a distinct random set
of unbound examples was used, with no repeated unbound exam-
ples across epochs.

Domain-adaptive models also require an additional “species-
background” training set fromboth species for the species discrim-
ination task. Species-background data consisted of randomly se-
lected (without replacement) examples from all chromosomes
except 1, 2, X, and Y. Binding labels were not used in the construc-
tion of these training sets. In each batch, the species-background
examples were balanced, with 50% human and 50%mouse exam-
ples, and labeled according to their species of origin (not by bind-
ing). The total number of species-background examples in each
batch was double the number of binding examples.

Basic model architecture

The network takes in a one-hot encoded 500-bp window of DNA
sequence and passes it through a convolutional layer with 240
20-bp filters, followed by a ReLU activation and max-pooling
(pool window and stride of 15 bp). After the convolutional layer
is an LSTMwith 32 internal nodes, followed by a 1024-neuron ful-
ly connected layer with ReLU activation, followed by a 50%
Dropout layer, and followed by a 512-neuron fully connected layer
with sigmoid activation. The final layer is a single sigmoid-activat-
ed neuron.

Domain-adaptive model architecture

The domain-adaptive network builds upon the basic model de-
scribed above by adding a new “species discriminator” task. The
network splits into two output halves followingmax-pooling after
the convolutional layer. Themax-pooling output feeds into aGRL;
the GRL merely outputs the identity of its input during the feed-
forward step of model training, but during backpropagation, it
multiplies the gradient of the loss by −1. The GRL is followed by
a Flatten layer, a ReLU-activated fully connected layer with 1024
neurons, a sigmoid-activated fully connected layer of 512 neurons,
and, finally, a single-neuron layer with sigmoid activation.

Model training

All models were trainedwith Keras v2.3.1 using the Adamoptimiz-
er with default parameters (Kingma and Ba 2014; https://keras.io).
Training ran for 15 epochs, with models saved after each epoch.
After training, we selected models for downstream analysis by
choosing the savedmodelwith highest auPRCon the training-spe-
cies validation set.

The basic models were trained by standard procedure with a
batch size of 400 (see above for training data set construction).
The domain-adaptive models, on the other hand, required a
more complex batching setup. Because domain-adaptive models
predict two tasks (binding and the species of origin of the input
sequence), they require two stages of data set input per batch.
The first stage is identical to a basic model training batch, but
with ⌊400/3⌋ = 133 binding examples from the source species.
The second stage uses ⌈400∗2/3⌉ = 267 examples each from
the source species’ and target species’ “species-background”
data sets.

Crucially, the stages differ in how task labels are masked. For
each stage, only one of the two output halves of the network trains
(the loss backpropagates from one output only). In the first stage,
we mask the species discriminator task, so that only the binding
task half of the model trains on binding examples from the train-
ing species. In the second stage, we mask the binding task, so only
the species discriminator task half trains. Thus, the binding task
only trains on examples from the source species, whereas the spe-
cies discriminator task does not see binding labels from either
species.

Meanwhile, the weights of the shared convolutional layer are
influenced by both tasks. Because these stages occur within a sin-
gle batch and not in alternating batches, they concurrently influ-
ence theweights of the convolutional filters; there is no oscillating
“back-and-forth” between the two tasks from batch to batch.

Model performance evaluations were computed with the sci-
kit-learn v0.23 implementation of the average_precision_score
function, which closely approximates the auPRC.

Differentially predicted site categorization

To quantify site enrichment within discrete categories such as
“false positives” and “false negatives,” it was necessary to define
the boundaries for these labels. In particular, when comparing pre-
diction distributions between models, we needed to define what
constitutes, for instance, a “false positive unique to model A.”
We constructed the following rules for site categorization: (1) un-
bound sitesmust have predictions above 0.5 to be labeled false pos-
itives, and bound sites must have predictions below 0.5 to be
labeled false negatives; (2) a site is considered to be differentially
predicted between two source species A and B if │PA–PB│>0.5,
where PA and PB are the predictions from models trained on data
from species A and species B, respectively; and (3) only sites
meeting this differential prediction threshold are labeled as a false
positive or negative unique to one model. Thus, if we are com-
paring models from species A and B and if a site is labeled a
false positive unique to model A, then PA>0.5 and PB<0.5. To re-
duce noise in these categorizations, rather than letting PA and PB
equal the predictions from single models, we trained five indepen-
dent replicate models for each TF and source species and then let
PA be the average prediction across the five replicatemodels trained
on data from species A for a given TF.

Bound site discriminative motif discovery

SeqUnwinder (v. 0.1.3) (Kakumanu et al. 2017) was used to find
motifs that discriminate between true-positive predictions and
mouse-model-specific false-negative predictions using the com-
mand-line settings “‐‐threads 10 ‐‐makerandregs ‐‐makerandregs
‐‐win 500 ‐‐mink 4 ‐‐maxk 5 ‐‐r 10 ‐‐x 3 ‐‐a 400 ‐‐hillsthresh 0.1
‐‐memesearchwin 16” and using MEME v. 5.1.0 (Machanick and
Bailey 2011) internally.
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Repeat analysis

All repeat analysis used the RepeatMasker track from the UCSC
Genome Browser (Smit et al. 1996–2010). Genome windows
were labeled as containing an Alu element if there was any overlap
(≥1 bp) with any Alu annotation. For Supplemental Table S1, re-
peat classes were excluded if fewer than 500 examples of that class
were annotated in the test chromosome (before mappability
filtering).

gkSVMs

The gkmtrain and gkmpredict utilities from the lsgkm package
were used for gkmSVMs gkm training and prediction generation,
respectively (Lee 2016). For training, 50,000 examples each were
selected randomly from the set of all bound windows and un-
bound windows in the original neural network model training
sets. Every 10th example from the original test set (in other words,
sampling windows such that all selected windows were nonover-
lapping) was considered in evaluation for computational efficien-
cy. All default parameters were used in running lsgkm (center-
weighted+ truncated l-mer kernel, word length 11, maximum
three mismatches).

Profile models

Our profilemodel consists of a dilated convolutional residualmod-
el architecture that closely resembles the BPNet architecture (Avsec
et al. 2021b), with the following modifications: (1) 21-bp-long fil-
ters in the first convolutional layer, rather than 25 bp; (2) eight di-
lated convolutional layers, rather than nine; (3) a learning rate of
0.001; and (4) 2114 bases of sequence input. The first three hyper-
parameters were selected by tuning on the source-species valida-
tion set loss; the sequence input length was chosen based on
what would produce a 1000-bp-long profile prediction given the
eight-layer architecture’s receptive field.

The profile models were trained using the same task and loss
scheme as that of Avsec et al. (2021b), with the loss function value
of λ set to 10. Training lasted 30 epochs, with early stopping used
to select the best model according to the source-species validation
set profile (multinomial) loss. The training data usedwere sampled
from regions in the training set used by the binary models:
Specifically, each epoch the profile model saw a 3:1 ratio of win-
dows centered on peaks from training set chromosomes, with up
to 200-bp jitter, and windows not overlapping peaks with a GC-
content distribution that matched the set of peak-centered
windows. Hyperparameter tuning was performed using a combi-
nation of the BPNet multinomial loss for the profile task, calculat-
ed on peaks from Chromosome 1, and auPRCs calculated using
the same validation set of 1 million random windows from
Chromosome 1 that the binary models used. Final model evalua-
tion was performed on the full original test sets from
Chromosome 2 used by the binary models.

Importance scoring

For a given 500-bp window and model, importance scores were
generated using a method similar to ISM, which measures the
change in model prediction when a given base and the region im-
mediately around it are ablated. First, 10 independent dinucleo-
tide-shuffled versions of the original sequence were generated to
serve as reference sequences unlikely to contain motifs. Next,
the 5-bp region centered at a particular base was replaced with
the corresponding 5-bp region from one of the 10 shuffled se-
quences, and the post-sigmoid difference in model output for
this ablated sequence was recorded. This was repeated for all 10

shuffled sequences, with the average model prediction differential
reported as the score for the base that the ablated region centered
on. This process was repeated for all bases in the sequence being
scored.

Software availability

Open source code (MIT license) is provided as Supplemental Code
and is also available from GitHub (https://github.com/seqcode/
cross-species-domain-adaptation).
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