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Abstract

Antibiotic-resistant infections are a growing threat to human health, but basic features of the

eco-evolutionary dynamics remain unexplained. Most prominently, there is no clear mecha-

nism for the long-term coexistence of both drug-sensitive and resistant strains at intermedi-

ate levels, a ubiquitous pattern seen in surveillance data. Here we show that accounting for

structured or spatially-heterogeneous host populations and variability in antibiotic consump-

tion can lead to persistent coexistence over a wide range of treatment coverages, drug effi-

cacies, costs of resistance, and mixing patterns. Moreover, this mechanism can explain

other puzzling spatiotemporal features of drug-resistance epidemiology that have received

less attention, such as large differences in the prevalence of resistance between geographi-

cal regions with similar antibiotic consumption or that neighbor one another. We find that the

same amount of antibiotic use can lead to very different levels of resistance depending on

how treatment is distributed in a transmission network. We also identify parameter regimes

in which population structure alone cannot support coexistence, suggesting the need for

other mechanisms to explain the epidemiology of antibiotic resistance. Our analysis identi-

fies key features of host population structure that can be used to assess resistance risk and

highlights the need to include spatial or demographic heterogeneity in models to guide resis-

tance management.

Author summary

The burden of drug-resistant bacterial infections is rising, and the fear that we are nearing

a “post-antibiotic” era has seeped into the public consciousness. Scientists and public

health officials often rely on mathematical models to predict changes in resistance levels

over time and the effects of hypothetical interventions. However, most models struggle to

reproduce common trends seen in real-world data, limiting their practical use. Here we

propose a simple model to account for variations in the likelihood of taking antibiotics if

infected, which arise within and between regions due to factors like drug-prescribing
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practices, healthcare access or care-seeking behavior, or the co-occurrence of other dis-

eases. This model extension robustly reproduces trends seen in data, such as sustained

coexistence of both drug-resistant and drug-sensitive strains of bacteria, and differences

in resistance levels between similar or adjacent regions.

Introduction

Antibiotic resistance is a major threat to our ability to treat bacterial infections. Over the

past century, resistance to each new class of drugs has appeared soon after clinical use began.

Today, drug-resistant infections are estimated to cost perhaps $20 billion annually [1]. Individ-

ual bacteria that are resistant to multiple classes of antibiotics are now common in species such

as Streptococcus pneumoniae, Pseudomonas aeruginosa, and Clostridium difficile [2], and nearly

untreatable strains of Neisseria gonorrheae [3], Klebsiella pneumoniae [4], and Acinetobacter
baumannii [5] have recently been identified. These trends have led to speculations about a

“post-antibiotic future”, in which routine medical procedures such as surgeries, childbirth,

and dental work might become as high-risk as they were in the pre-WWII era due to a lack of

effective antibiotic prophylaxis and treatment [6, 7].

Beyond sensational headlines, there is widespread interest among experts in predicting the

future morbidity, mortality, and economic impact of drug-resistant infections, so that appro-

priate investments to counter these trends can be encouraged from government and industry.

Mathematical modeling has traditionally played a key role in predicting the dynamics of infec-

tious diseases [8], and has a long history of application to antibiotic-resistant infections [9].

Despite this, there are several recurrent trends in the spatiotemporal dynamics of drug-resis-

tant bacteria that are difficult to explain. Firstly, for many bug-drug pairs, resistant strains

have not completely displaced drug-sensitive ones, but instead coexist stably at intermediate

levels, in contrast to predictions of standard infection dynamics and the ecological principle of

competitive exclusion (Fig 1i). Secondly, regions which prescribe similar levels of antibiotic

can have very different levels of resistance, and these differences persist over time (Fig 1ii).

Finally, even neighboring regions can have large and persistent differences in resistance fre-

quencies, at the scale of neighborhoods all the way up to countries (Fig 1iii). Since models

must, at minimum, be able to explain current trends before being trusted for forecasting, these

fundamental disagreements with data have either discouraged efforts to make predictions or

led to widespread suspicion of existing predictions (e.g. the Review on Antimicrobial Resis-

tance [10, 11]).

In this paper we propose a mechanism to explain these perplexing spatiotemporal trends in

antibiotic resistance levels that have eluded standard infection models. We consider that host

populations may be structured, with heterogeneities in mixing patterns within and between

regions, as well as in the distribution of antibiotic use. Spatial differences in treatment rates

could arise, for example, from local differences in prescribing guidelines or norms, availability

of care, or care-seeking behavior; from the presence of hospitals or other facilities with higher

rates of antibiotic usage, or, an increased use of antibiotics following spatially-localized viral

epidemics. We find that in contrast to well-mixed populations, structured populations often

support long-term coexistence of drug-resistant strains at intermediate levels. We observe that

the predicted prevalence of resistance depends not only on the frequency of antibiotic use, but

also on how drug use is distributed and details of the transmission network. This mechanism

can also reproduce the observation of sharp gradients in resistance levels between neighboring

regions, even when infections can spread directly between them. We discuss how these ideas
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can be used to better understand factors promoting or hindering antibiotic resistance and to

construct more realistic models to evaluate antibiotic stewardship policies.

Results

Observed spatiotemporal trends in antibiotic resistance

I) Frequencies of resistance over time seem to defy competitive exclusion. For a very

large number of bacteria-antibiotic combinations, the prevalence of resistant strains has not

reached 100% in the population, but has rather appeared to saturate at an intermediate fre-

quency (Fig 1i). Prominent examples include Escherichia coli and aminopenicillins in Europe

over the past decade [14, 20], methicillin-resistant Staphylococcus aureus in the United States

[2], and penicillin resistance in S. pneumoniae in Spain from the 1980’s to 1990’s [18, 19] as

well as in other locations/timeframes [21, 22]. This long-term coexistence of drug-sensitive

and drug-resistant strains is difficult to explain. Resistant strains are clearly selected for in

treated individuals, but generally carry a fitness cost such that sensitive strains do better in

untreated individuals [23–25]. Mathematical models of infection dynamics under treatment

predict that in most conditions the population will move towards an equilibrium where only a

Fig 1. A selection of data illustrating spatiotemporal patterns of antibiotic resistance that common mathematical models have difficulty

explaining. I) Percentage of S. pneumoniae isolates in Spain which are resistant to erythromycin (a macrolide), over time. After an initial increase,

drug-sensitive and drug-resistant strains have appeared to coexist stably for� 15 years. [12]. II) The same amount of antibiotic use can lead to very

different levels of resistance in different regions. Percentage of S. pneumoniae isolates from 2016 that were resistant to macrolides versus the number of

daily doses of macrolides administered per capita, for each country participating in the European Centres for Disease Prevention and Control [13–16].

III) Neighboring regions can have vastly different rates of resistance which persist for long time periods. Time-averaged percent of K. pneumoniae
isolates resistant to carbapenems in Austria, Belgium, Croatia, France, Germany, Italy, Luxembourg, and Slovenia from 2013-2016 and Switzerland

from 2015-2016 [14, 17] (blue/yellow), along with S. pneumoniae isolates resistant to penicillin in six provinces of Spain from 1990-1998 (green/red)

[18, 19]. The year-to-year deviation from this average is less than 3% (see S1 Fig). Each country is labeled with the resistance level (%). Note that for S.
pneumoniae and macrolides or penicillin, “% resistant” includes isolates classified as “non-susceptible”.

https://doi.org/10.1371/journal.pcbi.1008010.g001
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single strain persists, with drug-resistant strains reaching fixation when treatment is common

enough and costs of resistance are low enough, and drug-sensitive strains dominating other-

wise [26]. More generally, long-term coexistence of two strains would seem to defy the ecologi-

cal principle of competitive exclusion [27–29], which dictates that when two species compete

for a single resource (here, the susceptible population), only one may survive.

Dozens of previous mathematical models have been constructed in an attempt to explain

this coexistence. While many studies have focused in particular on S. pneumoniae, these and

others have attempted to be as general as possible so the conclusions can be extended to other

bacterial species. Studies have repeatedly found that well-mixed populations in which individ-

uals can only be infected with one strain (either sensitive or resistant) at a time do not generally

support coexistence [26, 30–32]. Models that include more details of within-host infection

dynamics have suggested some potential mechanisms of coexistence. Drug resistant and sensi-

tive strains can coexist if dual infection of individuals with both is possible, but only for a very

narrow range of values for both the treatment coverage level and the cost of resistance [26, 30,

31]. If de novo generation of one strain in an individual infected with the other can occur (pre-

sumably via point mutation or horizontal gene transfer from non-pathogenic co-colonizers),

then coexistence is again possible [26], but such a process is likely to lead to low-level muta-

tion-selection balance, not coexistence at near intermediate levels. Recently, Davies et al. [32]

have suggested that co-colonization of hosts with subsequent within-host competition results

in a type of frequency-dependent selection that helps maintain coexistence. This occurs

because resistant strains have an advantage when they are rare, because they will mostly co-col-

onize drug-sensitive hosts who, when treated, will be rid of competitors. This mechanism is

quite robust to parameter values, but only relevant to commensal bacteria for which co-coloni-

zation is common.

Another set of mechanisms shown to promote coexistence is host population structure. If

there are two completely isolated sub-populations [26], or if treated and untreated individuals

interact extremely rarely [30], then sensitive and resistant strains can both persist, but this is

unlikely to apply to any realistic scenario. Blanquart et al. [33] recently extended this idea to

populations consisting of an arbitrary number of completely interconnected sub-populations,

and similarly found that coexistence could occur in some regions of parameter space but only

when transmission between the sub-populations was weak. A study simulating transmission

in a population in which both contact patterns and the probability of being treated are age-

dependent and informed by data for S. pneumoniae also reveals more opportunity for coexis-

tence [31]. However, this explanation is still far from general, since coexistence only occurs for

costs of resistance<8%, does not display the full range of resistance prevalence levels—and

their dependence on antibiotic use—observed in data, and is somewhat reliant on the division

of the bacterial population into discrete serotypes which each support different resistance

levels.

There are also ecological effects known to promote coexistence of species more generally

[34], but their relevance to bacterial resistance to antibiotics remains unclear. For example,

coexistence can occur when species compete more strongly among themselves than with other

species [30]. The obvious candidate for such a mechanism in the context of infectious diseases

is strain-specific immunity [35], with the effect that hosts are less susceptible to re-infection by

a strain with which they have previously been infected. Strain-specific immunity leads to bal-

ancing selection, since low frequency strains have an advantage. However, there is generally

not expected to be a connection between the resistance status of a strain and its immunogenic-

ity (e.g. serotype). Lehtinen et al. [36] have recently shown that such a connection may not be

necessary, as linkage between a locus under balancing selection and a polymorphic locus that

influences the relative fitness of resistant and sensitive strains (such as duration of carriage for
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S. pneumoniae) can promote coexistence. The relevance of these mechanisms to most antibi-

otic resistant bacteria remains uncertain.

Overall, despite some progress in explaining the long-term coexistence of drug-sensitive

and drug-resistant strains, many proposed mechanisms only reproduce coexistence for small

regions of parameter space or species-specific scenarios, and the ultimate set of causes for real-

world coexistence is far from fully understood.

II) Different frequencies of resistance are seen in regions with similar rates of drug pre-

scription. Another puzzling trend in spatiotemporal antibiotic resistance data is the appear-

ance of very different levels of resistance in regions that seem to have the same levels of drug

usage. While overall, there is a strong correlation between the amount of antibiotics consumed

in a region and the prevalence of drug resistant strains [37, 38], there are many cases that

diverge from this trend. For instance, comparing countries participating in the European Cen-

tre for Disease Prevention and Control (ECDC), the rate of resistance can vary by as much as

30% even between countries that have equivalent rates of outpatient prescription of penicillin,

such as Spain and Poland [13–16] (Fig 1ii). Other examples can be found at smaller spatial

scales, for instance between cities in the American South [39] and provinces in Spain [19].

While surveillance practices can differ in across regions and nations, the fact that these trends

are seen in both ECDC data (where there is significant but not complete standardization) as

well as in the smaller-scale studies conducted by single research teams with unified protocols

over long time periods, solidifies that they are not artifacts of recording practices.

While this finding has not yet been specifically examined in the context of theoretical mod-

els, all of the models mentioned in the previous section [26, 30–33, 36] admit only one stable

equilibrium for a given set of parameters, including antibiotic consumption level. Therefore, if

each region is considered to be an isolated and well-mixed population, extra mechanisms are

needed to explain different resistance levels for the same overall antibiotic use. It could be that

one or both of the regions in question had not yet reached a steady-state prevalence of resis-

tance by the time of sampling, though when longitudinal surveys of these same resistant strains

are available, they generally suggest that levels have approximately equilibrated (e.g. ECDC

data [14]). Another possibility is that the cost of resistance varies between regions, for example

due to different mechanisms of resistance or different genetic backgrounds (e.g. spa types in S.
aureus [40] or serotypes in S. pneumoniae [41]), but experimental evidence to support or refute

this idea is lacking so far. Finally, the discrete regions considered during resistance surveillance

are in reality neither completely isolated nor well-mixed. Movement of individuals and

microbes between regions leads to interdependence of resistance dynamics. Within a region,

there could be heterogeneous distributions of treatment and infections which impacts the

overall resistance level. Consequently, models that attempt to explain this trend must consider

the connected nature of regions across spatial scales.

III) Neighboring regions can show very different frequencies of resistance. Another

confounding element of antibiotic resistance epidemiology is the high degree of heterogeneity

in resistance levels between neighboring populations at many differing scales. This is slightly

different from the preceding point (II): not only do we find two regions with the same levels of

antibiotic use but with different levels of resistance, we find that these regions can be bordering

each other. Neighboring regions are likely to exchange infected individuals frequently, which

would be expected to ameliorate differences in resistance levels over time, just like the predic-

tions of well-mixed models. In contrast, they can actually sustain sharp gradients in the fre-

quency of resistance seemingly indefinitely.

The scales at which this phenomenon is observed range from the size of nations down to

neighborhoods of a city (Fig 1iii). For instance, in Europe, the frequency of carbapenems resis-

tance in K. pneumoniae has been much much higher in Italy than in neighboring states for
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many years [14]. Similar trends have led to differences in the frequency of certain resistant

strains across the United States [42, 43]. At a smaller scale, in the long-term study of S. pneu-
moniae strains in Spain revealed a large difference in frequency between penicillin resistance

in Aragon and its neighboring regions [12, 18, 19, 44]. Among municipalities around Copen-

hagen, Denmark, the prevalence of resistance to trimethoprim and other antibiotics used to

treat urinary tract infections in E. coli isolates varied by 3-fold [45]. At an even smaller scale,

recent (2015) data on the United States revealed that in three neighborhoods in Greater

Miami, rates of ciprofloxacin resistance in Proteus mirabilis differed by a staggering 62% over-

all, with rates of 13% (Fort Lauderdale, 172 cases), 41% (Miami, 264 cases), and 75% (Pem-

broke Pines, 8,979 cases) [39]. The fact that these large differences in resistance levels appear

frequently in data at different spatial scales and between neighbors that disburse similar

amounts of drug therefore require a unifying explanation.

A general model for the evolution of drug resistance in a structured

population

To better understand the mechanisms that could be responsible for the spatiotemporal motifs

seen in drug resistance data, we developed a simple model for competition between strains of

an infection in a structured population. We assume that the total population is divided up into

multiple subpopulations (also known as ‘demes’ [46, 47]) (Fig 2). These demes could represent

any subdivision of a human population of interest, such as different countries, regions within a

nation, neighborhoods within a city, demographic groups, households, and so forth. Within

this population we consider the concurrent spread of drug-sensitive and drug-resistant strains

of an infection. Infected individuals spread the disease to uninfected individuals at rate κ if

they are in the same deme (‘within-deme’ transmission rate) and rate β if they are in different

but connected demes (‘between-deme’ transmission rate), with κ� β. We do not allow for any

super-infection or co-infection: only susceptible individuals can be infected. Infected individu-

als recover and become susceptible again at rate g.

Fig 2. A structured population model for the spread of drug-resistant and drug-sensitive strains of an infection. A) An example population,

divided into six equal subpopulations (“demes”, black squares) of five individuals (circles). Infection can spread within demes, and also between demes

that are connected (black lines). Individuals are categorized based on their infection status (uninfected: open circle, infected with drug-sensitive strain:

green circle, infected with drug-resistant strain: red circle). The deme where an individual is located may determine whether or not they will receive

drug treatment (blue shading), or more generally, their probability of receiving treatment. B) Untreated deme: The wild-type strain (green) is

transmitted at rate κ within a deme (bottom) and rate β between demes (top). Individuals infected with any strain recover with a rate g. The resistant

strain (red) pays a cost c in its transmission rate with or without drug. C) Drug-treated deme: Transmission of the resistant strain is unaffected by

whether the source individual is receiving treatment, but transmission of the wild-type strain (green) both within (bottom) and between (top) demes is

reduced by a factor (1 − �) if the source individual is treated, where � is the drug efficacy.

https://doi.org/10.1371/journal.pcbi.1008010.g002
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Each individual has some probability of receiving drug treatment dependent on the deme

they belong to. For individuals infected with the drug-sensitive strain, treatment reduces the

rate at which they transmit the infection to others (in the same or connected demes) by a factor

(1 − �), where � is the efficacy of the drug, 0< � < 1. We assume that the resistant strain is per-

fectly resistant to the drug, so that transmission rates of individuals infected with it are unaf-

fected by the presence of treatment. However, the drug-resistant strain incurs a fitness cost c,
which results in lower transmission rates relative to the wild-type strain with or without treat-

ment: κ! κ(1 − c), β! β(1 − c). Another possibility for the effect of treatment is that it accel-

erates disease recovery, and we consider this possibility in S1 Text.

The “infected” status in our model could represent a symptomatic disease state caused by a

pathogenic microbe, or an asymptomatic “colonized” state due to a commensal organism. Like

others [26, 30–33, 36], we do not explicitly model virulence or mortality. Our model is also

agnostic as to whether treatment is received only in response to infection (e.g. if a symptomatic

infection triggers administration of antibiotics) or independently of infection status (e.g a

commensal colonizer is subject to bystander selection from antibiotics administered for

another condition [48, 49]), since we assume treatment does not impact susceptibility to catch-

ing an infection.

Our model is an extension of the classic Susceptible-Infected Susceptible (SIS) model for

disease transmission [50] to a case with two disease strains (sometimes called an SI1I2Smodel

[51]). We assume that each deme is large enough that the dynamics can be considered deter-

ministically. This model is structurally neutral [52], meaning that if two identical strains are

simulated (e.g. if � = 0 and c = 0), they will continue to persist ad infinitum at the same level at

which they were initiated.

Absence of coexistence in an unstructured population

We first consider the dynamics of competition between drug-resistant and drug-sensitive

strains in a single large, well-mixed deme (an unstructured population) (Fig 3A). A fraction f
of all individuals infected by either strain will receive drug treatment for the duration of infec-

tion. The dynamics are described by a set of four differential equations, tracking the propor-

tion of total individuals in each of four infected states (drug-sensitive untreated, drug-sensitive

treated, drug-resistant untreated, drug-resistant treated), while the remaining individuals are

uninfected (see Methods).

The basic reproductive ratio (R0), defined as the average number of secondary infections

caused by a single infected individual in an otherwise uninfected population, can be defined

for each disease strain in this model and completely determines the equilibrium behavior

(details in S1 Text). If both infections have R0 < 1, then neither strain of infection will persist

and the equilibrium consists only of uninfected individuals. Otherwise, only the strain with

the larger R0 will persist (at a prevalence 1 − 1/R0, Fig 3B) while the other will go extinct. Based

on the formulas for R0, the resistant strain persists if and only if the coverage and efficacy of

treatment are enough to offset the cost of resistance, �f> c (Fig 3C). Therefore, when the popu-

lation is well-mixed, the heterogeneity introduced by partial treatment coverage (0< f< 1) is

insufficient to allow coexistence of wild-type and drug-resistant infections, and competitive

exclusion always occurs, in agreement with other studies [26, 30–32].

Limited coexistence in two connected subpopulations with heterogeneous

treatment distribution

We next consider the case of two separate but connected subpopulations of equal size (Fig

3D). As an extreme example, we assume that individuals in one of the demes always receive
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treatment, while individuals in the other deme are never treated. The system is described by a

set of equations tracking the proportion of individuals of each infection status (uninfected,

infected with drug sensitive, infected with drug resistant) in each deme (treated vs untreated).

The basic reproductive ratio can be derived for each strain (Rw
0

and Rr
0
) (see Methods).

Fig 3. Competition between drug-sensitive and drug-resistant strains in a single well-mixed population (A-C) and two interconnected

subpopulations (D-G). A) A population of individuals in a single well-mixed deme, in which a fraction f receive drug treatment (blue haloes).

Individuals may be uninfected (hollow blue circles), or infected with either the wild-type (green circles) or drug-resistant (red circles) strain. B) The

total prevalence of infection (wild-type + drug-resistant) as a function of the fraction of treated individuals (f) for different costs of resistance (c). C) The

% of infections that are drug-resistant as a function of the fraction of treated individuals (f) for different parameters. Infection switches between 0% and

100% resistant when f = c/�. Coexistence never occurs. D) Schematic of a two-deme population (left-untreated, right-treated) and the two strains

(green-wild type, red-resistant) considered in the model. E-G) Each panel shows the infection level (shading) as a function of the relative connectivity

between demes (β/κ) and the cost of resistance (c). E) The % of all infections that are drug-resistant strain across the entire population. F) The % of

individuals in each deme who are infected with the wild type strain. G) The % of individuals in each deme who are infected with the resistant strain.For

all results, the transmission rate is κ = 0.25/day, the recovery rate is g = 0.1/day, and the treatment efficacy is � = 0.9.

https://doi.org/10.1371/journal.pcbi.1008010.g003
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This population supports qualitatively different infection dynamics than the single-deme

case (Fig 3E–3G). While most parameter regimes still lead to persistence of only the drug-sen-

sitive or the drug-resistant strain (even when R0 > 1 for both), there is now a stable equilibria

where there is a mixture of both strains coexisting (Fig 3D). This region of coexistence occurs

when the between-deme infection rate is relatively low compared to the within-deme rate

(β/κ< 0.7 when � = 0.9) and for intermediate values of the cost of resistance c. The mathemati-

cal derivations of these boundary regions and their physical intuition is included in S1 Text.

Interestingly, in this mixed equilibrium, both demes contain a mixture of sensitive and resis-

tant strains, a stricter type of strain coexistence than a situation in which each strain dominates

a different deme.

This simple example, consisting of only two preferentially-mixing subgroups of equal size,

demonstrates that co-clustering of transmission and propensity for antibiotic use can lead to

stable coexistence of sensitive and resistant strains at not only the population level but also the

subpopulation level, suggesting a resolution for the ubiquity of coexistence in empirical data

(observation (I)). This host population structure produces a situation in which even though

a strain is disfavored in a global sense by having a smaller R0 value than its competitors, it can

be locally favored and thus avoid extinction. However, in this simple example, the region in

parameter space where coexistence is seen is relatively small, even for this extreme example of

treatment clustering, motivating the question of whether more complex structures will expand

the stability of coexistence. Moreover, this two-deme example cannot explain the observation

that regions receiving the same amount of treatment or regions neighboring one another often

support very different levels of resistance (observations II and III). Replicating real-world data

requires finding situations in which neighbors with the same level of drug treatment still have

very different levels of resistance. In the subsequent sections, we examine whether more com-

plex population structures can recreate these observed patterns.

Robust coexistence in more complex population structures

Our results for simple one- and two-deme scenarios suggest that host population structure can

promote coexistence of drug-sensitive and resistant strains of an infection. To investigate this

relationship further, we extended our model to include an arbitrary number of demes and con-

nectivity patterns (Fig 2A). For simplicity, we first assumed that each deme in the population

was the same size and was connected randomly to a fixed number of other “neighbor” demes,

therefore creating a collection of random regular graphs [53] (Fig 4A). Although in reality

much more complex human population structures are possible, these simplified networks pro-

vide a good base to examine the impact of specific properties on infection dynamics. Each

deme was independently assigned to be “treated” (meaning individuals in that deme receive

treatment, while individuals in “untreated” demes do not). We relax these assumptions in later

sections.

Using these “meta-populations”, we found that coexistence is possible for a broad range of

costs of resistance, treatment levels, and population structures. As observed in data, the overall

prevalence of resistance in a population is roughly correlated with the treatment coverage,

increasing gradually as treatment levels increase (Fig 4B). Moreover, when resistance levels

were intermediate, coexistence also persisted at the level of individual demes. We defined

‘robust’ coexistence to mean that at least 80% of demes had at least 10% of infections caused by

each strain. For the baseline parameter values we used a 20% cost of resistance, treatment levels

between 20 and 40% supported robust coexistence in at least some population structures and

treatment allocation schemes. For a lower cost of resistance (c = 0.05), robust coexistence

occurred at a lower range of treatment levels (Fig 4C). When the amount of infection spread
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(β) arising from contact between “neighboring” demes increases relative to the within-deme

spread (κ), resistance increases more sharply with treatment level, but regions of robust coexis-

tence remain (teal color, and more parameter values in S14 and S15 Figs).

These results show that even relatively simple host population structures can reconcile

mathematical models with empirical observations of long-term coexistence between drug-sen-

sitive and drug-resistant strains. These results also provide a connection between our model

and the data for another spatio-temporal observation, (II): the same overall rate of drug con-

sumption can lead to different prevalence of drug resistance in different populations (even if

treatment efficacy and cost of resistance are the same). For example, in Fig 4B, a particular

treatment level (e.g. 20% for the red parameter set) can be associated with very different fre-

quencies of resistance in different population structures (up to 30% difference between graph

Fig 4. Dynamics of drug-resistant infections in populations consisting of networks of inter-connected demes. A) Randomly generated population

structures on which infection was simulated. Each node represents a deme (a well-mixed sub-population of individuals), and each edge indicates that

infection can spread in either direction between those two demes. Ten example populations were selected out of 1000 total simulated, each with twenty

demes randomly connected to three neighbors each, to represent a broad range of outcomes. B) Fraction of infections that are resistant in the entire

population (y-axis) versus fraction of demes treated, ρ (x-axis). Each color represents a different parameter set (blue background—baseline, red

background—lower cost of resistance, teal background—more between-deme connectivity). Numbers show data points for the ten example

populations. The colored envelope is created by shading between sigmoidal curves that encompass all the data. C) For each population structure shown

(y-axis) and each treatment level (x-axis), the proportion of simulations that resulted in robust coexistence between drug-sensitive and drug-resistant

strains is shown (by the colored area of the box). Robust coexistence was defined as at least 80% of demes supporting both strains at frequencies above

10%. D) Differences in resistance levels (% of all infections that are with the drug resistant-strain) are measured between all pairs of directly-connected

untreated demes. E) Histograms showing the distribution of pairwise differences in resistance for a given population structure. Lighter shaded

histograms combine results from all population graphs. All simulations used kinetic parameters κ = 0.25/day, g = 0.1/day, and � = 0.9, and pooled

results from 100 simulations with different random allocation of treatment across demes. Pairwise differences were calculated with 30% treatment.

https://doi.org/10.1371/journal.pcbi.1008010.g004
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6 and 9, similar to the data in Fig 1). A more detailed study of the role of higher-order network

properties is presented in a later section.

Large differences in resistance levels are possible even between connected

regions

With these complex multi-deme populations, we examined whether neighboring regions

with equal levels of antibiotic consumption could sustain vastly different amounts of resis-

tance (observation (III)). For each population structure, random treatment allocation, and

parameter set, we chose all nearest-neighbor pairs which were both untreated, and generated

a distribution of the pairwise differences in resistance levels between these neighbors (Fig 4D

and 4E). We found that large differences in resistance levels between neighbors were com-

mon, with 34% of pairs receiving no treatment differing by more than 10% resistance preva-

lence, for our baseline parameter values when averaging across all population structures (Fig

4E). In the same simulations, 2% of pairs overall—and up to 15% in some structures—dif-

fered by greater than 30% resistance frequency, a value near the upper limit of observations

from data shown in Fig 1. Differences of up to 60% between neighbors were observed in

some individual simulations.

While populations with higher levels of between-deme mixing (higher β/κ, teal color) often

supported persistence of both drug-sensitive and drug-resistant strains at equilibrium (Fig

4B), they supported smaller differences in resistance levels between demes receiving the same

treatment (Fig 4E). In this parameter regime, sensitive and resistant strains are more segre-

gated between untreated and treated demes, respectively, explaining why simulations on these

structures rarely produced “robust” coexistence as we defined it (over 80% of demes support-

ing at least 10% of each strain) (Fig 4C). We also found that populations with weak connec-

tions between all demes were less likely to have large pairwise differences in prevalence of

resistance (S11 Fig). Overall, these findings corroborate the intuition that adding edges

between demes or raising the between-deme infection rate of connected demes brings the sys-

tem closer to well-mixed population and hinders coexistence.

Properties contributing to higher resistance

In order to understand how specific properties of host population structure contribute to the

frequency of resistance and the likelihood of coexistence, we simulated infection dynamics on

a large set of transmission networks and then statistically analyzed the results. To first generate

a large ensemble of population structures which varied in many graph-theoretic properties,

we used the Watts-Strogatz [54] algorithm to create 1000 unique networks of 50 demes each,

which had different average degree, variance in degree, clustering, centrality, efficiency, and

mean path length (see Methods for definitions of these properties and S3 Fig for their values).

For each graph, we generated 50 different allocations of treatment, keeping the overall popula-

tion treatment level the same. Then, we collected the results and employed LASSO (least abso-

lute shrinkage and selection operator) regression to identify the most important properties

contributing to the frequency of resistant infections (Table 1). The regression was conducted

both at the level of individual demes (i.e. to identify local properties of demes that influenced

the level of resistance within a deme) and at the level of the whole population (i.e. to identify

properties of the whole population that influenced the overall level of resistance). The simula-

tions and the regression were repeated for a “low resistance” case, in which overall 24% of indi-

viduals in the population were treated and as a result less than half of infections were resistant

at equilibrium, and a “high resistance” case, where 40% were treated and over half of infections

were resistant (S4 Fig). Properties were classified based on whether they were always associated
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with an increase or decrease in resistance, or whether they pushed resistance towards interme-

diate levels (i.e. facilitated coexistence) or towards extreme levels (i.e. hindered coexistence).

We first examined predictors of the resistance level within a deme (Table 1, left side). The

most important contributor to resistance was whether or not the deme itself was treated, and

the distribution of treatment among the deme’s first, second, and third nearest neighbors were

also important– albeit less so—predictors. The next strongest predictor was the total number

of first degree neighbors of a deme (the “degree”). Higher degree is associated with lower resis-

tance when resistance is rare, but higher resistance when it is common, and hence pushes resis-

tance to more extreme levels, acting against coexistence of both strains within a deme (− /+ in

Table 1). The same is true for the eigencentrality of the deme, a measure of its overall level of

connectivity within the network. These results imply that highly-interconnected, hub-like

demes are more likely to harbor the more common strain, while demes that are on the periph-

ery of a network are more likely to support coexistence of the strain that is rarer in the popula-

tion overall. Hence, when resistance is rare, it may be preferentially found in less connected

demes, whereas when it is more common, it may cluster in more central demes.

We next evaluated predictors of resistance at the level of the entire population (Table 1,

right side). Surprisingly, the simplest statistics of a graph—including the mean and variance in

the number of neighbors of each deme—were the least important contributors to resistance.

Rather, the best predictors involved a mix of treatment-clustering properties, like the propor-

tion of sets of three connected demes where two of the demes were treated (“U-T-T”), and

node-clustering properties, such as measures of “efficiency”. Treatment promotes consistently

higher resistance levels when it is distributed more evenly throughout the population (e.g.

treated and untreated demes are interspersed in the network, “U-T-T”, “U-T”), but more

extreme clustering of communities receiving the most treatment (“T-T-T”) instead facilitates

coexistence. This suggests that the effect of increasing antibiotic consumption on resistance

Table 1. Properties of demes and graphs that accurately and sparsely predict the frequency of drug-resistant infections according to LASSO regression.

Regression on deme properties Regression on graph properties

Rank Property Associated with Rank Property Associated with

1 Treated " resistance (+/+) 1 U-U-T # coexistence (-/+)

2 Degree # coexistence (-/+) 2 U-T " resistance (+/+)

3 % treated 1 edge away " resistance (+/+) 3 T-T " resistance (+/+)

4 % treated 2 edges away " resistance (+/+) 4 U-T-T " resistance (+/+)

5 Eigencentrality # coexistence (-/+) 5 T-T-T " coexistence (+/-)

6 % treated 3 edges away " resistance (+/+) 6 Local efficiency # coexistence (-/+)

7 Clustering coefficient # resistance (-/-)

8 Global efficiency # coexistence (-/+)

9 Mean path length " coexistence (+/-)

11,12 Mean,variance of degree —, —

After running thousands of infection simulations with varying transmission networks and treatment allocations, we used LASSO regression to to determine the

association of each property with the prevalence of resistant infections. Regression was conducted separately at the deme (left) and graph (right) level and properties

were ranked based on their predictive strength (see Methods). For each regression, the sign of the direction of the relationship between the property and the frequency

of resistance was determined (+ or -), and used to summarize the associations: “" resistance”: (+/+) the property is always associated with increased resistance, “#

resistance”: (-/-) the property is always associated with decreased resistance, “" coexistence”: (+/-) the property is associated with increased resistance when resistance is

rare but decreased resistance when resistance is common, “# coexistence”: (-/+) the property is associated with decreased resistance when resistance is rare but increased

resistance when resistance is common, “—”: the property is not used in the “best” (error-minimizing) model. The shorthand with “U” and “T” indicates the frequency of

pairs and triplets (including triangles) of untreated and treated demes; thus, U-T-T indicates the frequency of three connected demes of which two are drug-treated,

normalized by the number of all three-deme combinations in the graph.

https://doi.org/10.1371/journal.pcbi.1008010.t001
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levels will depend strongly on which communities experience the increases. The clustering

coefficient and local efficiency are both measures of how interconnected the neighbors of a

given deme are, on average. Global efficiency and mean path length are both measures of the

ease of moving between any two random demes in the whole population. Coexistence is pro-

moted by higher mean path length, which leads to graphs with more segregated transmission

clusters, but hindered by global and local efficiency. The more interconnected a network is,

the harder it is for multiple strains to coexist. The reason why the clustering coefficient always

acts against resistance is not entirely clear, but its interpretation is complicated by the fact that

the treatment-clustering properties are partially determined by the level of clustering in the

graph.

Robustness of results to mechanism of treatment action

Throughout this paper, we have modeled the effect of antibiotic treatment as reducing the abil-

ity of an infected individual to spread infection to others. Hence, treated individuals are still

infected, and therefore immune to infection with the other strain, but do not contribute to

transmission (or contribute less, if treatment is imperfect, � < 1). Alternatively, treatment

could instead accelerate the rate at which an individual recovers from infection, a mechanism

that has been used in many previous models of antibiotic resistance [30, 31]. To determine if

the mechanism of treatment action had any influence on our findings about the spatiotempo-

ral patterns of resistance and to facilitate comparison of our results with those of other models,

we considered a variant of the model where in treated individuals, the recovery rate increases

from g! g + τ (see S1 Text. for details). We found that all of the results reported in the main

text are recapitulated when treatment increases recovery rate, including the absence of coexis-

tence in partially-treated well-mixed populations (Fig 1C), a limited though larger parameter

regime of coexistence in two-deme populations (S7E Fig), common coexistence in multi-deme

populations (S8B and S8C Fig) and divergent resistance levels between neighboring demes

receiving the same treatment level (S8E Fig).

Robustness of results to variations in treatment distribution and

community structure

The results presented so far consider communities of demes where each deme is connected to

the same number of other demes (e.g. “uniform networks”), where each deme is of the same

size, and where there is either a 0% or 100% chance of receiving treatment if infected. While

these simplifications allowed us to evaluate whether population structure alone could recreate

observed spatiotemporal resistance trends in a minimal model, it is obviously not capturing

many sources of variability that occur in the real world. Therefore, we also considered how

relaxing each of these assumptions impacted our results. Populations described by graphs with

heterogeneous connectivity (mean degree = 3, variance up to 10, S9 Fig) supported similar

levels of coexistence and between-neighbor differences in resistance levels as homogeneous

graphs. Variation in deme size also did not seem to change the overall results (coefficient of

variation up to 30%, S10 Fig). We also created networks in which every deme was connected

to every other deme at a fractional weight relative to the main network connections (S11 Fig).

Only as this level approached 1 did the likelihood of coexistence shrink. Intermediate levels of

this background mixing (e.g. 0.01, 0.1) actually promoted robust coexistence (S11C Fig), by

allowing wild type and resistant strains to distribute throughout the population while still

maintaining high and low treatment niches that selected for one or the other. Finally, we con-

sidered continuous distributions of treatment levels across demes, ranging from bimodal dis-

tributions where low and high levels of treatment were more common than intermediate
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levels, and unimodal distributions where the average treatment level was most likely and there

was only a small variation between demes (S12 Fig). In general, extreme differences in treat-

ment levels support coexistence over a wider range of parameters (S13 and S14 Figs), but are

not strictly necessary for it to occur and be distributed across most demes in the population

(S15 Fig). When differences in antibiotic consumption across groups is small, coexistence only

occurs when the average population-level drug efficacy is roughly equal to the cost of resis-

tance (ρ�� c, assuming groups are otherwise equal). In this case, other mechanisms may be

needed to explain the pervasiveness of coexistence in the real world.

Discussion

The prevalence of antibiotic-resistant bacterial infections displays several surprising spatial

and temporal trends that defy canonical predictions of infection dynamics. The goal of this

paper was to examine a simple and flexible model for competition between drug-sensitive and

drug-resistant strains of an infection in a structured host population to see whether it could

capture several of these trends. The first perplexing pattern observed in the data is the long-

term coexistence of both sensitive and resistant strains at intermediate levels, which many

other studies have attempted to explain [26, 30–33]. Our simulations reproduce coexistence

for a wide range of parameter values and suggest that it is a natural feature to be expected in

spatially (or otherwise) heterogeneous populations with competing infection. In addition, we

also captured more nuanced trends observed in surveillance data that other models have

ignored. Regions that administer similar amounts of a particular antibiotic may experience

persistent differences in drug resistance levels for many years, and these “frozen gradients” are

observed even if regions are neighboring one another. These phenomena were reproduced

even in our simple model (Fig 5A), but also occurred for more realistically variable population

structures and treatment distributions (S9–S13 Figs). We found that in a collection of par-

tially-mixing subpopulations, subtle details about the pattern of connectivity and how treat-

ment is distributed between them can lead to large differences in resistance prevalence

between regions that otherwise seem similar (Fig 5A). We were able to identify specific covari-

ates that contribute to resistance levels and to promoting coexistence with drug-sensitive

strains. Similar to the use of “risk-mapping” to predict the distribution of vector-borne dis-

eases based on environmental [55–58] and human [58–62] factors, these findings suggest that

spatial risk-based assessment may be useful for the study of drug resistance. Surveillance on a

finer scale will be needed to test these ideas on empirical data.

Increasing levels of antibiotic resistance are widely considered to be a major public health

threat, and attempts are continually underway to forecast resistance levels with or without

additional interventions using at least some type of mathematical modeling. Our findings

highlight the fact that infection models which rely on assumptions of well-mixed populations

are unlikely to be a useful tool for this task. As these models cannot reproduce ubiquitous

trends observed in existing data on drug resistance epidemiology, they are unlikely to make

predictions that are even qualitatively trustworthy (Fig 5B). For example, it is very important

to know whether resistance for specific bug-drug combinations will tend towards 100% or

settle at an intermediate level, and so any model must be able to explain the phenomena of

coexistence for most strains. While clearly any degree of resistance complicates clinical man-

agement, the economic impact of partial vs complete resistance in a population could differ

dramatically. In addition, by ignoring the details of spatial or demographic heterogeneity, we

may miss an opportunity to more effectively target intervention or surveillance to particular

subpopulations. The obvious difficulty is that such models may have to be highly-tailored

towards a particular disease, and currently, there is a stark lack of data required to construct or
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calibrate realistic spatial models. While good-quality data is available on antibiotic consump-

tion and drug resistance at the level of US states [63] and European countries [14, 16], and

could be combined with other datasets tracking inter-region travel, this is likely too large of

a spatial scale to capture the relevant heterogeneity for this mechanism. More routine high-

resolution mapping of resistance levels over space and time [39, 64], combined with spatial or

demographic patterns of antibiotic consumption [45, 65–68] and data to estimate population

connectivity patterns over which disease spreads, are sorely needed.

Throughout this paper we have considered a relatively simple type of population structure,

while in reality it could be much more complicated. There may be multiple levels of structure

—from a household to countries—with much more complicated patterns of connectivity and a

continuum of transmission rates. Structures may be dynamic, as movement and interaction

patterns of humans, animals, or disease-carrying material change over time. The mechanism

leading to population structure varies depending on the infection of interest. For hospital-

acquired infections, the movement of medical staff or the spatial arrangement of patients may

be most important, while for community-acquired infections, the nature of close household,

school, or workplace contacts may be of primary interest. For sexually-transmitted infections,

networks of sexual contacts determine disease spread, while for diseases of livestock, relatively

well-mixed contact within crowded farms along with patterns of transfer between farms may

Fig 5. Implications for interpreting and predicting resistance levels. A) Our analysis suggests two possible

explanations for large differences in resistance levels between two regions (orange and blue) receiving similar amounts

of antibiotics. Left: The regions may differ in the distribution of antibiotic consumption within the population and its

connection with the underlying transmission network. Right: The regions may differ in their connectivity to other

regions which consume different amounts of antibiotics. B) Predictions about the impact of interventions on future

resistance levels can be incorrect if population structure isn’t accounted for. Left: A population consisting of 100 sub-

populations, with 20% treatment coverage at baseline. Right: Simulations of resistance levels in the “true” structured

population (blue) with and without a hypothetical intervention (reduction to 15% treatment) applied at year 5. For

comparison, predictions of a well-mixed model that with the same parameters (black), which approximates the

dynamics before year 5 but diverges afterwards. The well-mixed model would predict large reductions in resistance in

the short term but eventual fixation of resistance nonetheless (black dashed line), whereas the structured model

predicts modest but sustained reductions which depend on the particular sub-populations targeted (blue dotted lines),

and long-term coexistence. All simulations used kinetic parameters κ = 0.25/day, β = 0.05/day, g = 0.1/day, and c = 0.2.

For the left of (A) and for (B), � = 0.9, and for the right of (A), � = 0.5. The population in (B) is a Watts-Strogatz

network with degree 4 and re-wiring probability 0.1.

https://doi.org/10.1371/journal.pcbi.1008010.g005
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create an overall “meta-population” structure. Host population structures are notoriously diffi-

cult to measure in practice, but some approximation of them is likely needed to create realistic

models for the spread of drug resistant infections. Technological advancements that allow bet-

ter tracking of human mobility, such as wearable proximity censors [69–71] or fitness trackers,

cell phone location data [72–75], or large-scale transit networks [76, 77], provide one source of

population structure data. Advances in genetic epidemiology allow us to retrospectively trace

the spread of infection between individual hosts or communities using pathogen phylogenies

[78–82], which also provides information on population structure. Only with better empirical

characterization of transmission-relevant population structures and variations in antibiotic

use can we test whether the mechanism described here can explain coexistence for specific

bug-drug pairs.

Our model of competition between drug-sensitive and resistant strains is deterministic; we

do not consider the stochastic early-stage invasion of an initial resistant mutant or the possibil-

ity of extinction of either strain. This approach is justified as we are interested in the dynamics

of resistant strains that are already well-established and at high prevalence in the population.

Since most antibiotics are closely related to natural products, resistance genes also naturally

occur in environmental microbes, making “extinction” of resistant strains unlikely. Previous

work by our group and others has examined how spatial heterogeneity or transmission net-

work structure can accelerate the initial probability of emergence of drug resistance mutations

[83–89] and also on the loss of resistant strains when drug is withdrawn [90]. Models for the

emergence of methicillin-resistant Staphylococcus aureus (MRSA) in which demes represent

hospital vs community settings have found that stochastic effects can create a new regime

of dynamics, whereby sporadic subcritical outbreaks can sometimes overwhelm control

resources and push the system to endemic infection [91]. Even in our context of established

resistance, some important differences could occur in a stochastic version of our model. If

deme sizes are relatively small, the balanced coexistence of sensitive and resistant strains we

observe at equilibrium could actually be a dynamic process of repeated colonization and

extinction at the deme level (as described by metapopulation theory [92]). Extinction times

for competing epidemics in homogeneous populations have only recently been estimated for

homogeneous populations [93], and the added complexity of our model suggests we are far

from an analytic theory of invasion and extinction for infections in structured populations.

Our paper focuses on explaining trends observed for antibiotic resistance, but drug resis-

tance is also a problem for antimicrobial therapy more broadly, including antivirals and anti-

parasitic drugs. To our knowledge, long-term coexistence of resistant and sensitive strains

despite constant drug exposure has not been observed for HIV or malaria, the viral and para-

sitic infections for which targeted therapy is most widespread. In the case of HIV, rapid

within-host evolution, including both de novo generation of resistant strains and reversion to

susceptible strain in the absence of treatment would be expected to promote coexistence even

in the absence of population structure. However, the prevalence of resistance appears to be

changing rapidly along with dramatic changes in antiretroviral treatment availability and qual-

ity [94]. For example, the prevalence of resistance at the time of diagnosis (before treatment

administration) has been increasing rapidly in South Africa and other low and middle income

countries [95, 96], where widespread access to treatment is recent but follow-up care and resis-

tance testing are still limited. In contrast, this primary resistance has been steadily decreasing

in Europe, where treatment has been common since the 1990s albeit originally with subopti-

mal drugs (e.g. [97]). For malaria, it appears that resistance levels in a population continually

increase under drug exposure, as extremely high levels of chloroquine or sulfadoxine/pyri-

methamine resistance have been observed (e.g. [98]). However, antimalarial treatment is not

generally individualized and international guidelines suggest that country or region-wide
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treatment recommendations switch to new drug classes once suspected resistance is above a

threshold of around 15-25%. Consequently, the removal of selection for those resistance

strains and their subsequent decline(e.g. [99]) likely precludes the occurrence of stable coexis-

tence. Interestingly, a recent modeling study examining the role of co-infection with resistant

and sensitive strains of malaria showed how this can suppress selection for resistance [100],

very similar to recent ideas suggested for promoting coexistence in commensal bacterial infec-

tions [32].

Spatial heterogeneity has been understood by population geneticists to be an important fac-

tor in the spread of genes since the days of Fisher [101] and later Kimura [102]. Other classic

work uncovered mechanisms by which the coexistence—as opposed to competitive exclusion

—of species could be promoted by spatial heterogeneity [103, 104]. More recently, Gavrilets &

Gibson [105] examined a two-deme system with two competing types, each of which has

higher fitness than the other in one of the two demes, and observed a phase diagram very simi-

lar to that for our two-deme infection model (Fig 3), in which polymorphic equilibria were

possible. This idea was later extended to multiple connected demes [106], where it was demon-

strated that spatial heterogeneity can preserve a species in spite of fitness differences which in a

well-mixed model would drive it to extinction. Other work involving more complex popula-

tion structures [107] or more complex fitness distributions across space [108, 109] has exam-

ined how the rate of invasion of rare mutants depends on spatial heterogeneity. This previous

work all involved traditional population-genetic models, such as Moran or Wright-Fisher

processes, and before this study it was not clear which results would generalize to infection

dynamics models. For example, the role of network structure in modulating the fixation prob-

ability of new strains differs dramatically between Moran processes [107] and infection models

[88].

Several other recent studies have examined the role of population structure in facilitating

coexistence of drug resistant infections. Kouyos et al. [110] considered populations divided

into community members and hospitalized patients, and examined if such structure could

support the coexistence of two separate strains of methicillin-resistant Staphylococcus aureus
(MRSA). Similar to our model one strain was more resistant yet more costly, and was favored

in more highly-treated hospitalized individuals, while the other strain was less resistant but

more transmittable. They found a relatively narrow parameter regime supporting coexistence,

which could be increased only somewhat if they additionally structured the population into

different age groups. Interestingly, they found that beyond the parameter region that sup-

ported coexistence at equilibrium, there was a much wider regime leading to decades-long

transient coexistence, suggesting that our estimates of the extent of coexistence are likely very

conservative underestimates. Cobey et al. [31] examined the role of age structure in supporting

coexistence of drug sensitive and resistant strains of S. pneumoniae, and found that this mecha-

nism could lead to coexistence but only for a relatively narrow range of costs of resistance. In

addition, their model included a mixture of different serotypes, and they found that apparent

population-level coexistence often occurred due to summing many unique serotypes which

were each nearly all resistant or all sensitive. Similar to us, Blanquart et al. [33] considered a

population consisting of a set of interconnected “demes” with different treatment levels, but in

contrast, for mathematical tractability, they restricted their analysis to structures in which

either all demes are connected to all others with equal weight, or are completely isolated. Their

model was parameterized such that the maximal force of infection from all outside demes

equaled to the force of infection from within the same deme, whereas in our model the force of

infection from outside can be much larger than from inside. They also concluded that popula-

tion structure can support coexistence, but in contrast to our findings, under their model

assumptions coexistence only occurs with very weak inter-deme mixing. By considering larger
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and more variable transmission network structures and treatment distributions, our work thus

suggests the potential for a more prominent role of population structure in supporting coexis-

tence. Compared to previous work, our criteria for the occurrence of coexistence in models is

more stringent, since we require at least 5% prevalence of each strain (compared to>0% [33,

110] or >2% [31]), and additionally require coexistence within each individual subpopulation

(“robust coexistence”). Our paper additionally differs from these previous works by going

beyond coexistence to examine other common spatial trends in resistance data (i.e. trends (II)

and (III)), and by comparing the role of a range of spatial metrics describing population struc-

ture and treatment allocation patterns in promoting coexistence (Table 1).

While our results show that population structure can explain observed spatiotemporal

patterns of antibiotic resistance, it is unlikely to be the only mechanism contributing to

either long-term coexistence or differences between regions. Persistence of both drug-sensi-

tive and drug-resistant strains is also promoted by co-infection and superinfection [30–32],

by overlaps between resistance status and serotype [30, 31] or other traits under balancing

selection [36], and by heterogeneities in transmission or recovery rates as opposed to treat-

ment coverage [30, 31]. Regions receiving similar overall levels of drug but experiencing dif-

ferent frequencies of resistant infections could alternatively be explained by local differences

in i) prescribed vs consumed doses, ii) who receives drugs (e.g. age group, hospital vs outpa-

tient) and for what type of condition, iii) genetic background of the pathogen and the cost

of resistance, iv) transmission or recovery rates, or v) strain-specific control measures. For

example, take two regions with identical transmission networks, drug consumption, pre-

scribing behavior, and infection burden. If one region institutes a control policy whereby

individuals infected with the drug-resistant strain are isolated, then in that region the cost of

resistance (c) is effectively higher—even for a genetically identical strain—and the resistance

level will be lower. It is difficult to judge precisely how realistic our results are, since our

models of infection dynamics and population structure are both dramatically simplified,

but it likely cannot explain coexistence over the entire range of parameters for which it is

observed empirically. In addition, in our results it is relatively rare to see large differences in

resistance prevalence between regions with similar treatment rates unless they have very dif-

ferent connectivity patterns within or between them, and unless there are large spatial or

demographic heterogeneities in treatment use that overlap with clustering of disease trans-

mission. In reality, multiple mechanisms probably act in concert to explain the observed pat-

terns. Moreover, there is unlikely to be a single explanation for each different bug-drug pair

for which these trends are observed. Other disease-specific factors that may be relevant to

the ecology of antibiotic resistance include whether the bacteria is primarily pathogenic or

also a commensal colonizer, whether infection is more common in the community or in

healthcare facilities, whether resistance is carried on plasmids or chromosomally, and

whether there are environmental reservoirs and if they are exposed to antibiotics.

Methods

Model assumptions

Our two-strain model of infectious disease dynamics makes a number of simplifying assump-

tions. We assume that individuals can transmit the infection immediately upon becoming

infected, hence ignoring any sort of “latent” phase or “exposed” class. Birth, death, and migra-

tion into and out of the population are not modeled. The infection is assumed to be non-lethal,

and may even represent a non-pathogenic “colonized” state with a commensal organism.

Infected individuals all recover to be susceptible again, which presumes that there is no long-

lasting immunity to re-infection. We do not allow for any co-infection (simultaneous infection
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with both strains) or super-infection (replacement of one strain within an individual by

another), which implies that there is complete cross-immunity during infection. We model

resistance as a binary trait: there are only two strains, either completely sensitive to the drug,

or completely resistant. In reality, there may be strains with intermediate levels of resistance.

Individuals who are assigned a status of “treated” will receive treatment immediately upon

being infected, every time they are infected. This ignores the possibility that there may be a

delay to receiving treatment or that treatment behavior may vary within an individual over

time. Treatment is assumed to reduce transmission of the infection, but may not be perfectly

effective at doing this (which could approximate the effect of treatment delay or imperfect

drug efficacy). In S1 Text. we consider an alternative model in which treatment acts to increase

the rate of recovery from infection instead. In reality, treatment likely has both effects, since it

generally acts to reduce pathogen loads within a host, which leads to reduced contagiousness

and reduced duration of infection. Although we track uninfected (susceptible) individuals as

either “untreated” or “treated”, our results are independent of whether uninfected individuals

actually ever receive drug.

Our population structure consists ofM subpopulations (“demes”) of equal size D for a total

population of size N. The structure is assumed to be static. For each model, the transmission

rates κ and β were scaled so that the model behavior did not depend on N, D, orM. In the one-

and two-deme case, κ was multiplied by N, and in the multi-deme cases, both κ and β were

multiplied by D. A more detailed derivation of this scaling is given in S1 Text. This scaling is

equivalent to saying that individuals are limited in how many contacts they can have with oth-

ers, and that this limit is independent of the total population size.

By using differential equations to model infection, we assume that the population sizes of

individual demes are large enough so that variation from the average behavior is not impor-

tant. We additionally assume that resistance is pre-existing and that stochastic extinction of

either strain from the population is not possible. For the most part, we examine only the equi-

librium behavior of the models.

Model equations

Well-mixed population (single deme): Infection spreads between all individuals with the

within-deme transmission rate κ. A fraction f of all individuals are treated with drug immediately

upon infection by either strain. We track the proportion of the total population who are infected

with the wild type and untreated (wu), infected with the wild type and treated (wt), infected with

the resistant strain and untreated (ru), and infected with the resistant strain and treated (rt).
The number of uninfected (susceptible) individuals is given by s = 1 − wu − wt − ru − rt. The

dynamics are then described by the following set of differential equations (see S1 Text. for a

derivation):

_wu ¼ kðwu þ ð1 � �ÞwtÞðð1 � f Þ � wu � ruÞ � gwu;

_ru ¼ kð1 � cÞðru þ rtÞðð1 � f Þ � wu � ruÞ � gru;

_wt ¼ kðwu þ ð1 � �ÞwtÞðf � wt � rtÞ � gwt;

_rt ¼ kð1 � cÞðru þ rtÞðf � wt � rtÞ � grt:

ð1Þ

Two deme population: Infection spreads between all individuals in the same deme with

rate κ, and between any two individuals in different demes at rate β. The demes are of equal

size D. Treatment is assigned to all individuals within only one of the two demes. We track

the proportion of individuals in the treated deme that are infected with the wild-type/drug-

PLOS COMPUTATIONAL BIOLOGY Population structure explains patterns of antibiotic-resistant infections

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008010 July 6, 2020 19 / 34

https://doi.org/10.1371/journal.pcbi.1008010


sensitive strain (wu) and infected with the resistant strain (ru), and the same proportions

for the treated deme (wt and rt). The number of uninfected (susceptible) individuals in the

untreated deme is su = 1 − wu − ru and in the treated deme is st = 1 − wt − rt. The system is then

described by the following set of differential equations (see S1 Text. for a derivation and gener-

alization to unequal deme sizes):

_wu ¼ ð1=2Þðkwu þ bð1 � �ÞwtÞð1 � wu � ruÞ � gwu;

_ru ¼ ð1=2Þð1 � cÞðkru þ brtÞð1 � wu � ruÞ � gru;

_wt ¼ ð1=2Þðbwu þ kð1 � �ÞwtÞð1 � wt � rtÞ � gwt;

_rt ¼ ð1=2Þð1 � cÞðbru þ krtÞð1 � wt � rtÞ � grt:

ð2Þ

Multi-deme population: Infection spreads between all individuals in the same deme with

rate κ, and between any two individuals in different but connected demes at rate β. There are

M demes each of size (D). Each deme may only be able to spread infection to a sub-set of other

demes, and the connectivity of the population is described by the adjacency matrix Δij (Δij = 1

if an individual in deme j can be infected by an individual in deme i). The degree of deme i, di,
is the number of neighbors it is connected to, di = SiΔij. Treatment is assigned at the level of

the deme, described by indicator variable Ti (where Ti = 1 if deme i is drug-treated and Ti = 0

otherwise). The fraction of demes that are treated is ρ. The system of equations describing the

fraction of individuals in each deme who are infected, with either the wild-type (wi) or drug-

resistant strain (ri) is:

_wi ¼ kð1 � �TiÞwi þ b
X

j

Djið1 � �TjÞwj

" #

ð1 � wi � riÞ � gwi;

_ri ¼ ð1 � cÞ kri þ b
X

j

Djirj

" #

ð1 � wi � riÞ � gri:

ð3Þ

A derivation that is generalized to the case of demes of unequal size and with arbitrary treat-

ment levels in each deme is provided in S1 Text. Note that in constructing the adjacency matri-

ces Δij we ensure that the graph contains a single giant component, and not multiple isolated

parts.

Derivations for the equilibria, stability conditions, and basic reproductive ratio (using the

next-generation technique [111]) are given in S1 Text.

Numerical results

The differential equations were numerically integrated in MATLAB, using the Runge-Kutta

solver provided in the function ode45. The initial condition for each parameter-population

structure combination was each deme having a level of infection with the wild type that would

occur if there were no resistant strain (a fraction 1 − 1/R0 of individuals are infected with the

wild type), and a very small level of infection with the resistant strain (10−3). The rest of the

population was uninfected.

The system was integrated until an equilibrium was reached, which was defined as the

point at which the sum of the time derivatives for the fraction of each strains in all demes

became less than 10−4/M per day, whereM is the number of demes. To ensure that the equilib-

rium reached by the solver is stable, once an equilibrium was reached by the above standard,

we applied a small random fluctuation with magnitude not exceeding 1% to the value of all
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strains in all demes. If the same equilibrium was arrived at after repeating this process three

times, the equilibrium was taken to be sufficiently stable and used as the result of that simula-

tion. We also explored using more stringent thresholds, but found that our results were nearly

always within 0.01% of the value that would be achieved and reduced simulation times (S16

Fig). To determine whether there was only a single positive and stable equilibrium for the

multi-deme system for a given structure and parameter set, we simulated the same systems

many times with uniformly-at-random initial conditions. For each deme, the initial fractions

[wi, ri] were both drawn from the uniform distribution on [0, 0.7]. If their sum exceeded 1,

both were re-drawn. Previous work has proven mathematically that stable equilibria exist for

these systems [112, 113]. We found that the same equilibrium was always reached (S17 Fig).

More details are given in S1 Text.

Network generation

Random regular graphs: Random regular graphs are randomly-generated graphs in which

every node has the same degree (number of incident edges). There are multiple existing algo-

rithms to create random regular graphs. Our random regular graphs were generated according

to a pairwise-construction mechanism [114] implemented in MATLAB [115]. For most results

presented in the paper we used networks withM = 20 total nodes and degree d = 3.

Watts-Strogatz graphs: The Watts-Strogatz algorithm is a method of constructing networks

withM total nodes and M�d total edges, but with heterogeneous properties. In the original

construction, a ring lattice is formed with each of the M nodes connected with d edges to

neighbors in a ring formation. Then, with probability p, the target of each edge is rewired to

a uniformly random node. For our 1000 graphs, we selected M = 50, but allowed degree d to

be selected uniformly-at-random for each graph from {3, 4, 5, or 6}, and allowed p to be

selected uniformly-at-random for each graph from [0.1, 0.6]. The resulting graphs have a

broad distribution all graph properties of interest (S3 Fig) and of the frequency of resistance

(S4 Fig).

Network statistics

A set of graph-theoretical properties were tested for their relationship to resistance levels

within demes and within populations. A description of these properties is given below.

Eigencentrality: For a node i, its eigencentrality is a measure of not only its centrality

(having a high degree, for example), but is also weighted according to how high the centrality

scores of its neighbors are; as an example, an academic paper with many citations may have

high centrality, but if the papers citing it have themselves low centrality then the eigencentral-

ity of the original paper may be low. Formally, the eigencentrality is the leading right eigen-

value of the adjacency matrix, and so satisfies the implicity equation Ei: Ei = (1/λ)∑j Δij Ej,
where λ is a normalization factor.

Global efficiency: In general, the average efficiency of a graph is defined as

EffðGÞ ¼ 1

MðM� 1Þ

P
i6¼jd

� 1
ij , where M is the number of demes/nodes and dij is the smallest

number of edges between nodes i and j. Therefore, graphs that have higher efficiency have

on average shorter path lengths between nodes. Since M = 50 is fixed in all of our structures

examined in this section, the only varying factor is the distances between nodes; the smaller

the distances between all given nodes, the higher the efficiency. Global efficiency involves

comparing the graph to the most efficient possible graph with as many nodes. Since this

simply involves another prefactor which is equal for all of our graphs, our global efficiency

is proportional to the average efficiency.
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Local efficiency: Local efficiency is defined as Effl(G) =M−1∑i Eff(Gi), where Gi is the sub-

graph in which we keep the neighbors of node i but remove i itself, and the efficiency is defined

as above.

Clustering coefficient: The network average clustering coefficient was calculated by aver-

aging the local clustering coefficient over all nodes. The local clustering coefficient is calculated

for a node i as the fraction of all possible edges that could exist between the neighbors of i
which actually do exist in the network. Said another way, the local clustering coefficient is

determined by counting all triplets (sets of three connected nodes) centered on node i and

then calculating the fraction of these triplets that are triangles (all three nodes connected to

each other).

Mean path length: Given any two nodes, we can calculate the path length as the smallest

number of edges that must be traversed to move from one to the other. The average path

length is the average over the distribution that arises from calculating this smallest number for

all possible pairs of nodes.

LASSO regression

LASSO (least absolute shrinkage and selection operator) [116] is an advanced regression tech-

nique that favors sparse models. This is accomplished by forcing the sum of all the regression

coefficients to be less than a certain number; in optimal fitting, some coefficients are then set

to zero (i.e., deemed unimportant) rather than assigned a non-zero value. This is usually

accomplished by adding the sum of all the regression coefficients, multiplied by a regulariza-

tion parameter λ, to the quantity being minimized (such as sum of the squared error). When λ
is large, having few covariates in a model becomes more important than the model fitting the

data accurately. Therefore, the error-minimizing model usually occurs for some intermediate

value of λ.

We employed Matlab’s lasso (and lassoPlot) function, which imposes the LASSO

constraint on the L1 norm of all fit coefficients onto a linear regression. In the “deme-level”

regression, the outcome variable was the proportion of infections that were with the resistant

strain within that deme, and the possible predictors were local properties of that deme. In the

“population-level” regression, the outcome variable was the proportion of resistant infections

across the entire population, and the possible predictors were properties of the entire popula-

tion graph. At each level, the regression was conducted both under low resistance level condi-

tions (24% demes treated, leads to< 50% resistant) and high resistance level conditions (40%

demes treated, leads to> 50% resistant).

Although a rigorous and robust significance test for the LASSO is still lacking, we can com-

pute the mean-squared error of the predictions of the model to the actual data for cross-valida-

tion. Here we choose five-fold validation, meaning that the data is randomly split into five

chunks of equal size. Four of these chunks are used to fit the regression, and then the mean-

squared error between the actual fifth chunk and its prediction by the regression is measured.

If this mean-squared error is sufficiently small, the model is a good fit. The results of this

cross-validation procedure for LASSO regression fits to both deme and population-level prop-

erties are shown in S5 Fig.

The rank of each property displayed in Table 1 is determined from the magnitude of the

regression coefficient at the value of the regularization constraint λ that minimizes the mean-

squared error after five-fold cross-validation (S5 and S6 Figs), averaged over both the low and

high treatment case.
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Supporting information

S1 Text. Supplementary methods. Additional information on model derivation and analysis,

equations for models with alternative drug action, and computational methods.

(PDF)

S1 Fig. Stable spatial heterogeneity in resistance levels in Europe. Percent of Klebsiella pneu-
moniae isolates resistant to carbapenems in Austria, Belgium, Croatia, France, Germany, Italy,

Luxembourg, and Slovenia from 2013-2016 as reported in the ECDC’s European Antibiotic

Resistance Surveillance Network [13, 14] and Switzerland as reported by the Swiss Centre for

Antibiotic Resistance from 2015-2016. Each country is labeled with the resistance level (%).

The year-to-year deviation in Italy from the average value shown in Fig 1 is less than 1% for all

years. For all other countries, the frequency of resistance never reaches even 1/10 of the aver-

age value seen in Italy.

(TIFF)

S2 Fig. Spatial heterogeneity in resistance levels in Europe for more bug-drug pairs. Per-

cent of isolates resistant to particular antibiotics as reported in the ECDC’s European Antibi-

otic Resistance Surveillance Network [13, 14] in 2017. Each country is labeled with the

resistance level (%). Four example bug-drug pairs are shown: Staphylococcus aureaus + methi-

cillin, Pseudomonas aeruginosa + ceftazadime, Eschericia coli + cephalosporins, Enterococcus
faecium + vancomycin.

(TIF)

S3 Fig. The distribution of graph-theoretic properties of simulated populations used in

LASSO regression analysis. Populations were created as random networks of 50 demes using

a variant of the Watts-Strogatz algorithm. Treatment was randomly assigned to a portion ρ of

demes so that an overall desired fraction treated was achieved (here, ρ = 0.24). Distributions

show properties for 1000 such networks. The first six properties are intrinsic to the network

structure, while the latter six describe how treatment is allocated over the network. Quantities

of the form X-Y give the proportion of all pairs of connected demes in which one deme has

treatment status X and one has treatment status Y (U = untreated, T = treated). Quantities of

the form X-Y-Z give the same information for triples of connected demes (order ignored). A

description of the methods for creating the networks and for calculating each property is given

in the Methods.

(TIF)

S4 Fig. The distribution of the fraction of all infections which are drug-resistant in the sim-

ulated populations used in the LASSO regression analysis. Populations were created as ran-

dom networks of 50 demes using a variant of the Watts-Strogatz algorithm. Treatment was

randomly assigned to a portion ρ of demes so that an overall desired fraction treated was

achieved (on the left ρ = 0.24, and on the right ρ = 0.4). Infection dynamics were simulated (Eq

(3)) until an equilibrium was reached, at which the proportion of all infections with the drug-

resistant strain was recorded. Distributions show results for 1000 such simulations each with a

unique random network and treatment allocation. Parameters used were κ = 0.25/day, β =

0.05/day, g = 0.1/day, � = 0.9, c = 0.2.

(TIF)

S5 Fig. Five-fold cross-validation of LASSO regression models. Mean-squared error of

model predictions vs sub-sample of 1/5 of data after model fitting to 4/5 of data, as a function

of the internal parameter penalizing the L1 norm for fitted coefficients (λ). Red dots show the

mean-squared error of the model, with grey bars showing the standard error of the mean. The
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green circle/line indicates the value of λ that gives the minimum cross-validation error,

whereas the blue circle/line locates the λ value where the mean-squared error is one standard

error above that of the λ value with minimum cross-validation error.

(TIF)

S6 Fig. Results of LASSO regression to identify predictors of resistance. Plots show the

regression coefficients obtained as a function of the internal constraint on L1 norm of coeffi-

cients (“regularization parameter”, λ). Each curve is a different predictor variable (described in

Table 1). Analysis were separately run to predict deme-level resistance from deme-level prop-

erties (left side) or population-level resistance from graph-level properties (right side). Each

analysis was conducted for two different levels of drug coverage in the population (either a

fraction ρ = 0.24 or ρ = 0.4 of demes treated). The labels on the curves match the names of the

predictors in Table 1.

(TIF)

S7 Fig. Competition between drug-sensitive and drug-resistant strains in one and two

deme populations, when treatment increases recovery rate. A) A population of individuals

in a single well-mixed deme, in which a fraction f will receive drug treatment when infected

(blue haloes). Individuals may be uninfected (hollow blue circles), or infected with either the

wild-type (green circles) or drug-resistant (red circles) strain. B) The total prevalence of infec-

tion (wild-type + drug-resistant) as a function of the fraction of treated individuals (f) for dif-

ferent costs of resistance (c). C) The % of infections that are drug-resistant as a function of the

fraction of treated individuals (f) for different parameters. Infection switches between 0% and

100% resistant when f ¼ cðgþtÞ
t

. Coexistence never occurs. D) Schematic of a two-deme popula-

tion (left-untreated, right-treated) and the two strains (green-wild type, red-resistant) consid-

ered in the model. E-G) Each panel shows the infection level (shading) as a function of the

relative connectivity between demes (β/κ) and the cost of resistance (c). E) The % of all infec-

tions that are drug-resistant strain across the entire population. F) The % of individuals in

each deme who are infected with the wild type strain. G) The % of individuals in each deme

who are infected with the resistant strain. For all results, the transmission rate is κ = 0.25/day,

the recovery rate is g = 0.1/day, and the increase in recovery rate due to treatment is treatment

efficacy is τ = 0.9/day.

(TIF)

S8 Fig. Dynamics of drug-resistant infections in populations consisting of networks of

inter-connected demes, when treatment increases recovery rate. A) Randomly generated

population structures on which infection was simulated. Each node represents a deme (a well-

mixed sub-population of individuals), and each edge indicates that infection can spread in

either direction between those two demes. Ten example populations were selected out of 1000

total simulated, each with twenty demes randomly connected to three neighbors each, to rep-

resent a broad range of outcomes. B) Fraction of infections that are resistant in the entire pop-

ulation (y-axis) versus fraction of demes treated, ρ (x-axis). Each color represents a different

parameter set (blue background—baseline, red background—lower cost of resistance, teal

background—more between-deme connectivity). Numbers show data points for the ten exam-

ple populations. The colored envelope is created by shading between sigmoidal curves that

encompass all the data. C) For each population structure shown (y-axis) and each treatment

level (x-axis), the proportion of simulations that resulted in robust coexistence between drug-

sensitive and drug-resistant strains is shown (by the colored area of the box). Robust coexis-

tence was defined as at least 80% of demes supporting both strains at frequencies above 10%.

D) Differences in resistance levels (% of all infections that are with the drug resistant-strain)
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are measured between all pairs of directly-connected untreated demes. E) Histograms showing

the distribution of pairwise differences in resistance for a given population structure. Lighter

shaded histograms combine results from all population graphs. All simulations used kinetic

parameters κ = 0.25, g = 0.1, and τ = 0.9, and pooled results from 100 simulations with differ-

ent random allocation of treatment across demes. Pairwise differences were calculated with

30% treatment.

(TIF)

S9 Fig. Dynamics of drug-resistant infections in populations consisting of networks of

inter-connected demes with heterogeneous connectivity. A) Randomly generated popula-

tion structures on which infection was simulated. Each node represents a deme (a well-mixed

sub-population of individuals), and each edge indicates that infection can spread in either

direction between those two demes. Each network had twenty demes and the number of

neighbors of each deme was drawn from a gamma distribution with mean three and a different

variance. Ten example populations were selected out of 1000 total simulated to represent a

broad range of variances in connectivity: from graph 1:4.4, 2:5.7, 3:6.2, 4:6.6, 5:6.9, 6:7.2, 7:7.5,

8:8.0, 9:8.6, 10:10.5. B) Fraction of infections that are resistant in the entire population (y-axis)

versus fraction of demes treated, ρ (x-axis). Each color represents a different parameter set

(blue background—baseline, red background—lower cost of resistance, teal background—

more between-deme connectivity). Numbers show data points for the ten example popula-

tions. The colored envelope is created by shading between sigmoidal curves that encompass all

the data. C) For each population structure shown (y-axis) and each treatment level (x-axis),

the proportion of simulations that resulted in robust coexistence between drug-sensitive and

drug-resistant strains is shown (by the colored area of the box). Robust coexistence was

defined as at least 80% of demes supporting both strains at frequencies above 10%. D) Differ-

ences in resistance levels (% of all infections that are with the drug resistant-strain) are mea-

sured between all pairs of directly-connected untreated demes. E) Histograms showing the

distribution of pairwise differences in resistance for a given population structure. Lighter

shaded histograms combine results from all population graphs. All simulations used kinetic

parameters κ = 0.25/day, g = 0.1/day, and � = 0.9, and pooled results from 100 simulations

with different random allocation of treatment across demes. Pairwise differences were calcu-

lated with 30% treatment.

(TIF)

S10 Fig. Dynamics of drug-resistant infections in populations consisting of networks of

inter-connected demes, with varying deme size. A) Randomly generated population struc-

tures on which infection was simulated. Each node represents a deme (a well-mixed sub-popu-

lation of individuals), and each edge indicates that infection can spread in either direction

between those two demes. Ten example populations were selected out of 1000 total simulated,

each with twenty demes randomly connected to three neighbors each, to represent a broad

range of outcomes. Deme sizes were chosen from a normal distribution with coefficient of var-

iation of σ = 0, 0.1, of 0.3. B) Fraction of infections that are resistant in the entire population

(y-axis) versus fraction of demes treated, ρ (x-axis). Each color represents a different level of

heterogeneity in deme size (n navy blue—uniform sizes (σ = 0), medium blue—σ = 0.1, light

blue—σ = 0.3). Numbers show data points for the ten example populations. The colored enve-

lope is created by shading between sigmoidal curves that encompass all the data. C) For each

population structure shown (y-axis) and each treatment level (x-axis), the proportion of simu-

lations that resulted in robust coexistence between drug-sensitive and drug-resistant strains is

shown (by the colored area of the box). Robust coexistence was defined as at least 80% of

demes supporting both strains at frequencies above 10%. D) Differences in resistance levels (%
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of all infections that are with the drug resistant-strain) are measured between all pairs of

directly-connected untreated demes. E) Histograms showing the distribution of pairwise dif-

ferences in resistance for a given population structure. Lighter shaded histograms combine

results from all population graphs. All simulations used kinetic parameters κ = 0.25/day, β =

0.05/day, g = 0.1/day, c = 0.2, and � = 0.9, and pooled results from 100 simulations with differ-

ent random allocation of deme sizes and treatment across demes. Pairwise differences were

calculated with 30% treatment.

(TIF)

S11 Fig. Dynamics of drug-resistant infections in populations consisting of networks of

inter-connected demes, with varying levels of background mixing between demes. A) Ran-

domly generated population structures on which infection was simulated. Each node repre-

sents a deme (a well-mixed sub-population of individuals), and each edge indicates that

infection can spread in either direction between those two demes. Each population consisted

of twenty demes randomly connected to three neighbors each, and additionally connected

with relative weight α to all other demes. Ten example populations were selected out of 1000

total simulated to represent a broad range of outcomes. B) Fraction of infections that are resis-

tant in the entire population (y-axis) versus fraction of demes treated, ρ (x-axis). Each color

represents a different level of background connectivity between all demes (navy blue—no

background mixing (α = 0), dark blue—α = 0.01, medium blue—α = 0.1, light blue—α = 1).

Numbers show data points for the ten example populations. The colored envelope is created

by shading between sigmoidal curves that encompass all the data. C) For each population

structure shown (y-axis) and each treatment level (x-axis), the proportion of simulations that

resulted in robust coexistence between drug-sensitive and drug-resistant strains is shown (by

the colored area of the box). Robust coexistence was defined as at least 80% of demes support-

ing both strains at frequencies above 10%. D) Differences in resistance levels (% of all infec-

tions that are with the drug resistant-strain) are measured between all pairs of directly-

connected untreated demes. E) Histograms showing the distribution of pairwise differences in

resistance for a given population structure. Lighter shaded histograms combine results from

all population graphs. All simulations used kinetic parameters κ = 0.25/day, β = 0.05/day,

g = 0.1/day, c = 0.2, and � = 0.9, and pooled results from 100 simulations with different random

allocation of treatment across demes. Pairwise differences were calculated with 30% treatment.

(TIF)

S12 Fig. Alternate distributions of treatment across demes. Each panel shows a distribution

across demes of the fraction of individuals within the deme receiving treatment if infected.

Treatment levels were drawn from Beta distributions with varying mean (ρ, rows) and shape

parameter (α, columns). The left most column corresponds to the results presented in the rest

of the paper, where individuals in each deme either have a 0 or 100% chance of being treated if

infected.

(TIF)

S13 Fig. Frequency of drug resistant infections for alternate distributions of treatment

across demes. The percent of infections over the whole population that are caused by the the

drug resistant strain as a function of the average treatment level across demes (ρ, y-axis) and

the Beta-distribution parameter describing the spread of treatment levels (α, x-axis). Dotted

lines border the region where resistance levels fall between 5% and 95%. Each panel shows a

distribution across demes of the fraction of individuals within the deme receiving treatment if

infected. Treatment levels were drawn from Beta distributions with varying mean (ρ, rows)

and shape parameter (α, columns). Example treatment distributions are shown in S12 Fig. The
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left most edge of the graph (α = 0) corresponds to the results presented in the rest of the paper,

where individuals in each deme either have a 0 or 100% chance of being treated if infected.

Higher α values correspond to more continuous, unimodal treatment distributions with lower

variance. The population consisted of twenty demes randomly connected to three neighbors

each. Results were averaged over 1000 graphs with with 1000 random treatment allocations for

each. For all results, the transmission rates are κ = 0.25/day (intra-deme) and β = 0.05/day

(inter-deme), the recovery rate is g = 0.1/day, the cost of resistance is c = 0.1, and the treatment

efficacy is � = 0.9.

(TIF)

S14 Fig. Frequency of drug resistant infections for alternate distributions of treatment

across demes. Each panel shows the average fraction of infections that are resistant in the

entire population as a function of the relative connectivity between demes (β/κ) and the cost of

resistance (c). Dotted lines border the region where resistance levels fall between 5% and 95%.

The mean and variance in the amount of treatment per deme varied between panels and is

given by the distributions in S12 Fig. The left most column corresponds to the case where indi-

viduals in each deme either have a 0 or 100% chance of being treated if infected. Higher α val-

ues correspond to more continuous, unimodal treatment distributions with lower variance.

The population consisted of twenty demes randomly connected to three neighbors each.

Results were averaged over 1000 graphs with with 1000 random treatment allocations for each.

For all results, the intra-deme transmission rate is κ = 0.25/day, the recovery rate is g = 0.1/

day, and the treatment efficacy is � = 0.9.

(TIF)

S15 Fig. Distributed coexistence for alternate distributions of treatment across demes.

Each panel shows the average fraction of demes that supported both strains at frequencies of at

least 10%, as a function of the relative connectivity between demes (β/κ) and the cost of resis-

tance (c). The mean and variance in the amount of treatment per deme varied between panels

and is given by the distributions in S12 Fig. The left most column corresponds to the case

where individuals in each deme either have a 0 or 100% chance of being treated if infected.

The population consisted of twenty demes randomly connected to three neighbors each.

Results were averaged over 1000 graphs with with 1000 random treatment allocations for each.

For all results, the intra-deme transmission rate is κ = 0.25/day, the recovery rate is g = 0.1/

day, and the treatment efficacy is � = 0.9.

(TIF)

S16 Fig. Sensitivity of results to the simulation stopping parameter. We tested the sensitiv-

ity of our results to the value of the derivative which we considered ‘‘at equilibrium’’, defined

as the point where the sum of the derivatives of all strains in each deme was less than the stop-

ping parameter divided by the number of demes. (Top row) We considered 10−7, the smallest

value tested, as the ‘‘true’’ solution and measured this solution against other solutions with all

parameters held equal, but the stopping parameter increased. Box plots show two representa-

tives of the error from this solution as the stopping parameter is increased up to our parameter

10−4 used in the main-text results and beyond: (left), the matrix 2-norm (also known as L2

norm, Frobenius norm, or Euclidean distance). (Right): the maximum demewise error (L1

norm). (Bottom row: For these same simulations, we show: (left), the time in internal units

(simulated days) until equilibrium was reached; (right), the physical computation time of the

simulation. The measures of error for our chosen parameter are small given the advancement

in computation time afforded by that choice.

(TIF)
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S17 Fig. Difference between equilibrium values obtained for infection dynamics in multi-

deme systems as initial conditions vary. For 10 different random regular graphs with 20

demes and degree (d) 3, 4, or 5, treatment was allocated randomly across demes with an overall

proportion treated ρ = 0.35. For each graph-treatment allocation combination, 100 different

sets of initial conditions (levels of resistant and sensitive infections in each deme) were chosen

uniformly at randomly, and infection dynamics were run until an equilibrium was reached as

described in the Methods. The maximum difference (in matrix 2-norm, also known as L2

norm, Frobenius norm, or Euclidean distance) was calculated between the equilibria seen in

any of 100 trials and the equilibrium values used for results reported in the main text. Very low

maximum norm values suggest there is a single stable equilibrium value for each parameter

set.

(TIF)
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