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Abstract

Background: Many critical cellular functions are performed by multisubunit circular protein oligomers whose internal
geometry has evolved to meet functional requirements. The subunit number is arguably the most critical parameter of a
circular protein assembly, affecting the internal and external diameters of the assembly and often impacting on the
protein’s function. Although accurate structural information has been obtained for several circular proteins, a lack of
accurate information on alternative oligomeric states has prevented engineering such transitions. In this study we used the
bacterial transcription regulator TRAP as a model system to investigate the features that define the oligomeric state of a
circular protein and to question how the subunit number could be manipulated.

Methodology/Principal Findings: We find that while Bacillus subtilis and Bacillus stearothermophilus TRAP form 11-subunit
oligomers, the Bacillus halodurans TRAP exclusively forms 12-subunit assemblies. Significantly, the two states of TRAP are
related by a simple rigid body rotation of individual subunits around inter-subunit axes. We tested if such a rotation could
be induced by insertion or deletion mutations at the subunit interface. Using wild type 11-subunit TRAP, we demonstrate
that removal of five C-terminal residues at the outer side of the inter-subunit axis or extension of an amino acid side chain at
the opposite, inner side, increased the subunit number from 11 to 12. Our findings are supported by crystal structures of
TRAP oligomers and by native mass spectrometry data.

Conclusions/Significance: The subunit number of the TRAP oligomer can be manipulated by introducing deletion or
addition mutations at the subunit interface. An analysis of available and emerging structural data on alternative oligomeric
states indicates that the same principles may also apply to the subunit number of other circular assemblies suggesting that
the deletion/addition approach could be used generally to engineer transitions between different oligomeric states.
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Introduction

Multisubunit circular proteins play key roles in a variety of

biological mechanisms. A number of proteins including bacterial

toxins [1], viral portal proteins [2], flagellar motor proteins [3,4],

Sm-like proteins [5], components of the type III secretion system [6]

and protective antigen of anthrax toxin [7,8] can form circular

oligomers with alternative oligomeric states. In some cases, for

example for the viral portal proteins, a single functional oligomeric

state is found in vivo and it is not known if the alternative oligomeric

states are active. However, in all cases changing the number of

constituents in the ring will alter the symmetry, the internal cavity

diameter and curvature of the protein ring, these changes may be

critical to the function. Here we examined the factors that define the

oligomeric state in a circular protein oligomer by studying the

Bacillus trp RNA-binding attenuation protein (TRAP).

TRAP regulates transcription and translation of tryptophan

biosynthetic genes in many Bacilli, including Bacillus subtilis, Bacillus

pumilus, Bacillus stearothermophilus, Bacillus licheniformis and Bacillus

halodurans [9,10]. Studies on B. subtilis have shown that when TRAP

is activated by bound tryptophan, it can recognize and bind specific

segments of RNA [11,12]. When the tryptophan concentration is

high transcription attenuation occurs as TRAP, binding to the

leader RNA region of the trpEDCFBA operon transcript, induces the

formation of a transcription terminator hairpin thus preventing the

establishment of an antiterminator structure. When the concentra-

tion of tryptophan is limiting, TRAP is inactive, which allows

transcription to proceed into the structural genes [13].

Previously determined X-ray structures of B. subtilis and B.

stearothermophilus TRAP [14,15] revealed 11-subunit oligomers with

essentially identical architecture. In most Bacillus species the trp

leader segment that interacts with TRAP contains 11 NAG triplets
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(N is predominantly G or U) separated by two or three spacer

nucleotides [15]. The X-ray structure of B. stearothermophilus TRAP

in complex with RNA showed how the 11 triplets of RNA are

matched by 11 binding sites generated at the outer surface of the

11-subunit TRAP [16]. Unlike most other Bacillus species, the

RNA leader region in the alkaliphilic bacterium B. halodurans

contains 19 NAG triplets, which could potentially interact with

TRAP. The oligomeric state of B. halodurans TRAP was unknown

and we speculated that it might contain more than eleven subunits.

B. halodurans grows at pH values above 9.5 and contains a 76

amino acid TRAP protein [17] that shares ,71% sequence

identity with B. subtilis TRAP, Figure 1A. Like B. subtilis TRAP,

B. halodurans TRAP has a high affinity towards the trp leader RNA

[10]. We characterized B. halodurans TRAP by native mass

spectrometry and determined its crystal structure at 1.7 Å

resolution. We show that unlike the 11-subunit TRAP found in

B. subtilis and B. stearothermophilus, B. halodurans TRAP is a 12-

subunit oligomer, implying that this larger oligomeric state has

some functional benefit. The most significant difference between

the structures is a conformation change at the C-terminus. This

change alters the interface interactions and we hypothesized that

these changes were responsible for the change in oligomeric state.

We tested this hypothesis by creating mutant B. subtilis and B.

stearothermophilus TRAP proteins in which the last five amino acids

were removed. X-ray structures of these engineered TRAP,

reported here at a high resolution, together with the native mass

spectrometry data, show that as predicted, these truncated proteins

exist as 12-subunit assemblies. Notably, with the exception of the C-

terminus, the 11-mer to 12-mer transition is not accompanied by

any significant conformational changes within individual subunits.

The 12-mer state is generated from the 11-mer state by a simple

rigid-body rotation of individual subunits around inter-subunit axes,

triggered by the amino acid deletion at one side of the axis. Each

axis crosses a central part of the subunit-subunit interface and is

roughly parallel to the tunnel axis. We tested if the 11-mer to 12-mer

transition could be also induced by an addition at the opposite,

inner side of the axis. We mutated Val11 to Leu in B.subtilis TRAP

and obtained native mass spectrometry data, showing that this

mutation also results in 11-mer to 12-mer transition. We argue that

similar approach could be used for engineering a transition between

different states of other circular proteins.

Results

Crystal structure of B. halodurans TRAP
B. halodurans TRAP (PDB accession code 3ZZL) forms a circular

assembly containing 12-subunits, Figure 1B. The 12-mer in the

crystal is generated by combination of three subunits (present in

Figure 1. Structure of B. halodurans TRAP. (A) Sequence alignment of TRAP proteins from different species produced by ClustalW [18]. The extent
of sequence conservation is depicted in grey with identical residues in black and non-conserved in white. Residues important for the conformation of
the C-terminus are highlighted by red stars and residues that interact with RNA are highlighted by yellow stars. (B) Ribbon diagrams viewed along the
12-fold axis (two opposite views). Each subunit is shown in a different color. The C-terminus of each subunit, starting from residue 71, is shown by a
thick yellow ribbon. L-Tryptophan molecules, bound in deep pockets between adjacent subunits, are shown as van der Waals models with carboxyl
oxygen atoms in red, nitrogen atoms in blue and carbon atoms in yellow.
doi:10.1371/journal.pone.0025296.g001
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the asymmetric unit) with the crystallographic 4-fold axis of the

P4212 space group. The structure was refined with data extending

to 1.67 Å, Table 1. The final electron density maps allowed the

positioning of all residues, except the six N-terminal residues of all

subunits. The diameter of the central tunnel, measured for the Ca
positions of Ser7, is 30.7 Å, an increase from 26.6 Å observed in

the B. stearothermophilus TRAP. Like the 11-mer TRAP molecule,

the 12-mer assembly of B. halodurans TRAP is stabilized by an

identical pattern of main chain - main chain hydrogen bonding

interactions, Table S1. These interactions link a three-stranded b-

sheet from one subunit with a four-stranded b-sheet from the

adjacent subunit resulting in the formation of twelve seven-

stranded inter-subunit b-sheets per oligomer.

Both11-subunitand12-subunitTRAPassembliesexist innature
The crystallographic and mass spectrometry data reported here

show that B. halodurans TRAP exists as 12-subunit oligomer,

Figure 1B and Table 2. Thus, both the eleven and twelve

subunit assemblies have been selected by different species to

perform the same function. It is possible that the increase to 12

subunits is favored by the apparent redundancy in triplet repeats

in B. halodurans [10]. In spite of the difference in the number of

subunits and the angular separation between individual subunits,

the affinity of the B. halodurans TRAP 12-mer towards the trp leader

RNA is essentially the same as for B. subtilis TRAP 11-mer, with

the Kd being ,4 nM in each case [10]. The similar affinities are

generated because of conservation of the RNA-binding residues

leading to similar binding motifs, Figure 1A, and by comparable

distances between adjacent NAG-binding pockets on the protein’s

surface, Table 3.

Rotation of subunits during the 11-mer to 12-mer switch
The main chain r.m.s. difference between residues 8–70 of B.

stearothermophilus TRAP 11-mer (wild type) and B. halodurans TRAP

Table 1. Data collection and refinement statistics.

B. halodurans TRAP B. stearo E71stop TRAP B. subtilis K71stop TRAP

Data collection

Space group P4212 I4 I23

Unit cell a = 109.9 Å, c = 45.7 Å a = 110.2 Å, c = 128.3 Å a = 146.35 Å

Resolution 30–1.67 Å (1.73–1.67 Å) 25–1.49 Å (1.52–1.49 Å) 25–1.75 Å (1.79–1.75 Å)

No. of reflections 32619 (2996) 124338 (6184) 51357 (3760)

Redundancy 8.3 (6.2) 4.9 (3.7) 25.4 (22.3)

Rmerge
a, % 9.1 (63.8) 4.7 (48.1) 8.9 (58.7)

Completeness, % 98.6 (92.8) 99.9 (100) 99.9 (100)

I/s 19.4 (2.0) 31.5 (2.7) 42.9 (6.3)

Wilson B factor 26.8 16.8 23.9

Refinement

Resolution rang 30–1.67 Å (1.71–1.67 Å) 25–1.49 Å (1.52–1.49 Å) 25–1.75 Å (1.79–1.75 Å)

Number of reflections 31492 12301 51357

used in refinement

Number of reflections 1038 1250 1030

excluded from refinement

R factorb, % 18.0 (27.4) 14.7 (21.8) 17.3 (19.2)

Free R factorb, % 21.5 (27.7) 18.3 (26.3) 19.0 (20.3)

Number of atoms

Protein 1977 5950 3129

Ligand 90 135 180

Water 226 962 308

Average B factor (protein) 27.3 14.1 22.6

Average B factor (solvent) 49.1 42.5 40.4

Rmsd bond lengths 0.010 Å 0.007 Å 0.007 Å

Rmsd bond angles 1.2u 1.1u 1.1u

Ramachandran plot

Most favored regions, % 100 99.6 99.4

Additionally allowed 0 0.4 0.6

regions, %

Values in parentheses are for the highest resolution shell.
aRmerge = ghklgi|Ii(h) - ,I(h).|/ghklgiIi(h), where I(h) is intensity of reflection h, ,I(h). is average value of intensity, the sum ghkl is over all measured reflections and the
sum gi is over i measurements of a reflection.

bCrystallographic R = ghkl||Fobs - Fcalc||/ghkl|Fobs|, Rfree was calculated using a randomly chosen set of reflections that were excluded from the refinement.
doi:10.1371/journal.pone.0025296.t001
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12-mer is 0.48 Å, indicating that the 11-mer to 12-mer transition

is not accompanied by significant conformational changes in the

protein. The transition is achieved largely by the 2.7u rigid-body

rotation of individual subunits around inter-subunit axes. These

axes, relating rotational adjustments between adjacent subunits,

Figures 2A and 3, are roughly parallel to the tunnel axis. Each

axis crosses a central part of the subunit-subunit interface thus

minimizing structural changes at the interfaces during the rotation.

The 2.7u rigid-body rotation of individual subunits is accompanied

by much smaller positional adjustments in individual residues

easily accommodated by the plasticity in the protein’s structure.

These adjustments serve to maintain the interface and its

individual contacts while allowing the overall rotation of subunits

with respect to each other. As a result, there are only subtle

changes in subunit-subunit interactions. For example, the lengths

of the inter-subunit main chain hydrogen bonds that link b-strands

belonging to adjacent subunits are very similar in the 12-mer and

11-mer TRAP proteins, Table S1, although the differences

increase with greater distance from the inter-subunit axis.

Role of C-terminal residues in selecting between different
oligomeric states

The 2.7u rotation of neighboring subunits with respect to each

other is possible owing to a significant change in the conformation

of the five C-terminal amino acids in B. halodurans TRAP. In both

B. subtilis and B. stearothermophilus TRAP, Ser72 and Glu73 are

positioned at the subunit-subunit interface, Figures 2B, C. Ser72

is part of a b-strand, making two main chain – main chain

hydrogen bonding interactions with Ala61 from the adjacent b-

strand of the same subunit. Glu73 also has the b-strand

conformation but its main-chain atoms are exposed towards the

adjacent subunit resulting in an inter-subunit main chain

hydrogen bonding interaction formed by its nitrogen atom with

the carbonyl oxygen of Gly41. In B. halodurans TRAP Thr72 and

Glu73 have different conformations being displaced from the

interface towards the outer surface of the molecule, Figure 2D.

This results in the rupture of the main chain - main chain

hydrogen bond between the conserved residues, Gly41 and Glu73.

The different conformation of the C-terminal residues is stabilized

by a new set of salt bridges formed by the pairs of residues Glu73/

Lys15 and Glu76/Lys13, Figure 2D. Stabilizing intersubunit

Table 2. Summary of native mass spectrometry analysis.

Oligomer Calculated Measured Error [measured – calculated]

mass, Da mass, Da mass, Da (%)

B. halodurans

TRAP12:trp12 104361.0 104399.9611.0 38.9 (0.04)

TRAP12:trp11 104156.8 104188.761.2 31.9 (0.03)

TRAP12:trp10 103952.5 103985.160.2 32.6 (0.03)

TRAP12:trp9 103748.3 103773.361.4 25.0 (0.02)

B. stearothermophilus

Wild type

TRAP11:trp11 92912.5 93051.4612.5 138.9 (0.15)

B. stearothermophilus

E71stop mutant

TRAP12:trp12 95004.0 95552.1616.5 548.1 (0.58)

TRAP12:trp11 94799.8 94884.8616.5 84.0 (0.09)

TRAP12:trp10 94595.5 94674.1611.3 78.6 (0.08)

TRAP12:trp9 94391.3 94479.2613.6 87.9 (0.09)

TRAP12:trp8 94187.0 94279.465.2 92.4 (0.10)

TRAP12:trp7 93982.9 94088.2611.0 106.2 (0.11)

TRAP12:trp6 93778.6 93878.2617.4 99.6 (0.11)

B. subtilis

V11L mutant

TRAP12:trp3 100722.6 100844.0960.0 121.49 (0.12)

TRAP12:trp3 100722.6 100877.9960.8 155.39 (0.15)

The oligomeric states of TRAP and numbers of bound tryptophan molecules are indicated in the left column.
doi:10.1371/journal.pone.0025296.t002

Table 3. Average distance (Å) between Ca atoms of RNA-
binding residues belonging to adjacent subunits.

Amino acid B. subtilis B. stearothermophilus B. halodurans

TRAP TRAP TRAP

F32 18.5 18.5 18.0

E36 18.7 18.9 18.4

K37 20.2 20.3 19.6

D39 20.7 20.9 20.2

K56 16.4 16.7 16.4

R58 19.0 19.3 18.7

Amino acid numbering corresponds to B. subtilis TRAP.
doi:10.1371/journal.pone.0025296.t003
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hydrogen bonding interactions are also formed by the side chain of

Lys13 with main chain carbonyls of Asp71 and Lys74. In addition,

most interfaces (8 out of 12) contain a salt bridge between Asp75

and Lys40. The displacement of the C-terminal residues from the

subunit-subunit interface observed in B. halodurans TRAP hinted at

the possibility that the C-terminus plays a key role in selecting

between the 11-mer and 12-mer assemblies.

Design of 12-mer TRAP by deletion or addition at subunit
interface

We hypothesized that the 11-mer to 12-mer switch could be

induced by withdrawal of the C-terminal amino acids from the

subunit-subunit interface, as observed in B. halodurans TRAP. Such

a switch could be engineered by simply removing the C-terminal

amino acids starting from position 72. We tested this idea using

Figure 2. Comparison of 11-mer and 12-mer TRAP assemblies. (A) Dimers of B. halodurans TRAP (red and yellow) and wild-type
B. stearothermophilus TRAP (both subunits in blue) were least-square fitted using main chain atoms of single subunit (shown on the right). Ca-models
are shown with the segment 72–75 highlighted by wide traces. View is from outside the TRAP ring toward its center with the central rotation axis
vertical. The inter-subunit rotational axis relating the 11-mer and 12-mer oligomers is shown by dashed line. (B, C, and D) Comparison of the C-
terminus conformation in 11-mer and 12-mer TRAP. C-terminal residues starting from 71 and residues stabilizing the conformation of the C-terminus
are shown by sticks, the rest of the subunit interface is shown by ribbons.
doi:10.1371/journal.pone.0025296.g002
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B. stearothermophilus TRAP which normally forms 11-mers. The

E71stop B. stearothermophilus TRAP mutant protein was truncated

after residue 71 thus removing the five C-terminal amino acids

and the main chain hydrogen bond between Gly41 and Glu73.

The crystal structure of E71stop TRAP (PDB accession code

3ZZS), refined with data extending to 1.49 Å, Table 1, shows

that this engineered protein indeed forms 12-mers, Figure S1.

Likewise, removing the last four amino acids from the C-terminus

of B. subtilis TRAP, which is shorter by one amino acid compared

to the B. stearothermophilus TRAP (Figure 1A), also generated a 12-

subunit oligomer, Figure S1. The structure of this mutant B.

subtilis TRAP (PDB accession code 3ZZQ) was refined with data

extending to 1.75 Å, Table 1.

Both B. subtilis and B. stearothermophilus engineered 12-mer TRAP

molecules have overall architectures almost identical to that of the

B. halodurans 12-mer TRAP, Figure S1. The conformation of

individual subunits is also very similar, with the main chain r.m.s.

difference with the B. halodrurans TRAP (residues 8–65) of 0.38 Å

and 0.33 Å, respectively, for the engineered B. stearothermophilus

and B. subtilis TRAP. The engineered 12-mer TRAP share almost

identical intersubunit hydrogen bonding patterns with those in

wild type 11-mers, Tables S2 and S3. All TRAP molecules

analyzed have 5 equivalent main-chain hydrogen bonding pairs

generated between the two b-strands belonging to adjacent

subunits, Table S1. All 12-mer TRAP proteins bind tryptophan

molecules in essentially identical manner as 11-mer TRAP, Text
S1 and Figure S2.

We hypothesized that the rotational adjustment of subunits,

similar to that generated by deletion at the outer side of the

intersubunit axis, Figure 3A, could be also achieved by addition at

its inner side, as shown on Figure 3B. We tested this hypothesis by

introducing a slightly bulkier leucine residue in place of valine

(V11L mutation) in B. subtilis TRAP. Although we were not able to

crystallize this mutant TRAP, the mass spectrometry data presented

in the next section clearly demonstrate that unlike the wild type 11-

mer, this mutant TRAP also forms 12-mers, as predicted.

Figure 3. 11-mer to 12-mer transition. Individual TRAP subunits are shown as ball-and-stick models in different shades of grey. Inter-subunit
rotation axes are roughly parallel to the central oligomer axis and are depicted by black crosses shown in yellow circles. (A) Removal of the C-terminal
segment (green) at one side of the axis or (B) introduction of methylene group through Val-11-Leu mutation (blue) at the other side of the axis, allows
subunits to roll around the inter-subunit rotation axis to form a 12-mer.
doi:10.1371/journal.pone.0025296.g003
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Native mass spectrometry of TRAP
Previous analysis of B. subtilis TRAP by native mass spectrometry

showed that its preferred oligomeric state is an 11-mer [19,20] as

found in the crystal structure [14]. We questioned whether the 12-

subunit assemblies of B. halodurans TRAP and B. stearothermophilus

E71stop TRAP predominate in solution or whether these were

selected from a mixture of different oligomeric states during

crystallization. For B. halodurans TRAP, the single stable species

identified from mass spectra is the 12-mer, Figure 4A and Table 2.

In addition, 12-mers with different number of bound L-tryptophan

molecules were observed with maximum of 12 tryptophans per

oligomer. For the B. stearothermophilus E71stop TRAP, again only one

stable species was detected during the mass-spectrometry experi-

ments, which corresponded to the 12-mer assembly. For this mutant

TRAP, states with different number of bound tryptophan molecules

were resolved in the presence of 1 mM L-tryptophan, Figure 4B. In

the case of the B. subtilis V11L TRAP, the single 12-mer specie has

been detected during the experiment, although for this mutant it was

not possible to resolve states corresponding to different number of

bound tryptophan molecules, Figure 4C. Control spectra obtained

for B. stearothermophilus TRAP correspond to the 11-subunit oligomer,

Table 2.

Figure 4. Native mass spectrometry analysis. Nanoflow electrospray mass spectra for (A) B. halodurans TRAP, (B) B. stearothermophilus E71stop
TRAP and (C) B. subtilis V11L TRAP. A stable 12-mer species was identified in each sample; peaks corresponding to different charge states and
different numbers of bound tryptophan molecules are labeled.
doi:10.1371/journal.pone.0025296.g004
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Discussion

Structural reorganization during the transition between
different oligomeric states

Several proteins found in nature can form alternative circular

assemblies. Sm and Sm-like proteins involved in nucleic acid

processing were found as hexamers, heptamers and octamers

[21,22]. Two states corresponding to a hexamer and heptamer

were resolved for the AAA+ domain of the NtrC-like transcrip-

tional regulators [23,24]. Bacteriophage SPP1 portal protein was

found as a 12-mer assembly in mature capsids but forms non-

functional 13-subunit assemblies when over expressed [2]. In this

report we show that B. halodurans TRAP forms 12-subunit

assemblies, unlike the B. subtilis and B. stearothermophilus TRAP

that form 11-subunit oligomers. If like in TRAP, the functional

interactions are at the surface and do not involve the central

tunnel, it is clear that the same function can be accomplished by

different oligomeric states. These structures also suggest that the

oligomeric state could be manipulated so that the protein’s

properties are optimized for the required function.

There are only few cases where accurate structural information

is available on alternative circular oligomers formed by chemically

identical subunits. In addition to TRAP, X-ray structures of

alternative states are available for the SAP-like pentraxin from

Limulus polyphemus [25], for the protective antigen protein of Bacillus

anthracis [7,8] and for the small terminase from bacteriophage SF6

[Bűttner et al., to be published]. The SAP-like pentraxin exists as a

natural mixture of 7-subunit and 8-subunit oligomers. Likewise,

the SF6 small terminase appears to exist as a mixture of 9-subunit

and 10-subunit oligomeric forms. In the case of the protective

antigen however, the transition between 7-mer and 8-mer

oligomers is controlled by the loop of residues 305–324 located

at the outer side of the inter-subunit rotation axis, removal of this

loop stabilizes the 8-mer state [8]. For all four proteins, the

transition from one oligomeric state to another is achieved by a

simple rotation of adjacent subunits around inter-subunit axes, as

seen in TRAP. On the basis of these structural observations we

propose a general mechanism for transition between different

oligomeric states of a multisubunit circular protein, Figure 5,

which involves rigid-body rotation around inter-subunit axes.

These overall rotations are accompanied by minor conformational

adjustments at subunit-subunit interfaces facilitated by proteins’

plasticity. Notably, comparison of the alternative oligomeric states

of all four proteins shows that the transition from an n-subunit to

(n+1)-subunit state roughly doubles the seemingly obvious (n+1)/n

increase in the diameter of the central tunnel, Table 4. This is

because each inter-subunit rotation axis is positioned in the center

of the subunit-subunit interface and not at its inner edge. This

arrangement minimizes structural changes at the interfaces.

C-terminus defines the oligomerization state of TRAP
Comparison of the B. halodurans TRAP structure with the

available structures of TRAP 11-mers indicated that the C-

terminal segment consisting of residues 71–75 plays a critical role

in selecting between 11-mer and 12-mer TRAP. The conforma-

tional change in the C-terminal residues of B. halodurans TRAP

occurs owing to Asp71 forming a salt bridge with the side chain of

Lys15, pulling the C-terminal residues 72–76 out of the subunit-

subunit interface, Figure 2D; there is no such interaction in the

11-mer TRAP proteins since Lys15 is substituted by either Leu15

in B. stearothermophilus TRAP or Val15 in B. subtilis TRAP. Thr72

of B. halodurans TRAP also contributes to the diversion of the main

chain. The carbonyl group of the corresponding residue, Ser72, in

both B. subtilis and B. stearothermophilus TRAP form a hydrogen

bond with the main chain of Ala61, fixing the position of the C-

terminus next to the b-strands of neighboring subunit, Figures 2B
and C. Such an interaction is prohibited in B. halodurans TRAP

owing to steric hindrance caused by the methyl group of Thr72,

thus facilitating the twisting of the main chain, Figure 2D.

Sequence alignments show that, like B. halodurans TRAP, the

TRAP proteins of Paenibacillus sp. and Bacillus clausii also have Lys

at position 15 and Thr at position 72, Figure 1A. It is likely that

these TRAP proteins could also exist as 12-mer assemblies.

It appears that the variation in oligomer number is a

consequence of the evolutionary process. TRAP molecules that

contain eleven subunits may represent a more evolved, minimized

resource efficient version of a common ancestor. Alternatively,

while the strength of the interaction between the RNA leader

region and different TRAP molecules has been shown to be

essentially identical, the potential influence of the oligomeric state

on the interaction with other cellular factors cannot be excluded.

Figure 5. General model for transition between alternative
oligomeric states. Transition from n-subunit to (n+1)-subunit state
could be accomplished either by deletion (green triangles) at the outer
side of the inter-subunit rotation axis (A) or insertion (light blue
triangles) at the inner side of the axis (B). Inserts with three-dimensional
representation show two adjacent subunits of each oligomer, with the
intersubunit axis relating rotation of adjacent subunits during transition
between the two states shown in yellow.
doi:10.1371/journal.pone.0025296.g005
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Artificial 12-mer TRAP molecules have been previously

constructed by linking multiple B. stearothermophilus TRAP

monomers into one continuous polypeptide chain [26]. Linking

the C- and N-termini of three or four adjacent subunits with three-

residue poly-alanine linkers resulted in 12-mers (called TRAP3 in

the case of a three-subunit polypeptide). It was argued that entropy

plays a major role in selecting the oligomeric state of TRAP,

choosing a minimum number of separate polypeptide chains - 11

in the case of wild type TRAP and 4 in the case of TRAP3 [26].

However, structural comparisons and inspection of the electron

density maps shows significant differences in conformation of C-

terminal residues in the artificial 12-mer. In this molecule residue

72 is displaced from the subunit interface towards the oligomer’s

surface and there is no interpretable electron density for residue 73

suggesting it is flexible or has significant conformational variability.

The altered conformation of the C-terminus in the artificial

TRAP3 protein is apparently caused by the three-residue peptide

linker (that links individual polypeptides) being simply too short to

maintain the native configuration of the C-terminus. The

conformational change in the artificial TRAP thus appears to

parallel the behavior in the B. halodurans TRAP 12-mer, creating

space at one side of the rotation axis and allowing a rotational

adjustment between adjacent subunits. Consequently the true

reason for the formation of the artificial TRAP3 12-mer assembly

is the conformational difference in the C-terminus induced by

addition of the polypeptide linkers. This is not to say however that

entropic effects do not contribute to the stability of protein

assembly.

How to change the oligomeric state of a circular
assembly?

To conclude, structural data on alternative oligomeric states of

TRAP and other circular proteins show how essentially identical

subunits could assembly into different oligomeric states. The

similarity in their structural behavior is striking: the conformation

of individual subunits in different oligomeric states remains largely

unchanged with the exception of short segments that modulate

inter-subunit surfaces. The transition is achieved by a simple rigid

body rotation of adjacent subunits.

Structural information on B.halodurans TRAP suggested how

such a transition could be induced by additions or deletions at

inter-subunit surfaces. We tested this hypothesis by introducing

mutations in 11-subunit TRAP, showing that residue deletion at

the outer side of the inter-subunit axis or addition at the inner

side, Figure 4, resulted in transition from an 11-subunit to 12-

subunit state. This approach thus offers a promising route for

controlling and alternating the subunit number of a circular

protein and the size of its central tunnel, Figure 5. For some

protein molecules, which use the central tunnel for their

mechanism, change in the tunnel’s diameter will obviously have

functional implications.

Materials and Methods

Gene cloning, protein purification, crystallization and
data collection

The engineered B. subtilis and B. stearothermophilus TRAP including

point mutations and truncations were generated using the

QuikChange kit (Stratagene, US) and a pET9a plasmid containing

the wild type gene. All TRAP proteins were produced and purified

as described previously [10]. Before crystallization, protein samples

were transferred into solution containing 20 mM Tris (pH 8.5),

300 mM NaCl and purified by size-exclusion chromatography

using Superdex 200 Column (GE healthcare, UK).

Crystallization was carried out at 18uC using hanging drop

vapor diffusion. For crystallization, B. halodurans TRAP was

transferred into solution containing 10 mM triethanolamine

(pH 8.0), 100 mM NaCl, 15 mM L-tryptophan and concentrated

to 30 mg/ml. The reservoir contained 100 mM Hepes (pH 7.5),

20 mM MgCl2 and 16% polyacrylic acid 5100 (v/v). B.

stearothermophilus E71stop TRAP was crystallized using 50 mg/ml

protein solution in 20 mM Tris (pH 8.5), 300 mM NaCl and

5 mM L-tryptophan. The reservoir contained 100 mM Hepes

(pH 7.5), 200 mM MgCl2 and 30% iso-propanol (v/v). For

crystallization, B. subtilis TRAP K71stop was transferred into

solution containing 20 mM triethanolamine (pH 8.5), 100 mM

NaCl and 15 mM L-tryptophan and concentrated to 26 mg/ml.

The reservoir contained 100 mM Bis-Tris-Propane (pH 8.5),

0.2 M Na/K tartrate and 10% PEG 3350 (v/v). Protein crystals

were frozen using solutions containing all the crystallization

ingredients with addition of 20% glycerol (v/v). The X-ray data

were collected at 120 K using synchrotron radiation. In the case of

B. halodurans TRAP the data were collected at the Diamond Light

Source station I24. For B. stearothermophilus E71stop TRAP and

Table 4. Increase in the size of the central tunnel.

Protein

Dn, diameter of the central tunnel
(D, Å)

Dn+1, diameter of the central tunnel
(D, Å) Scaling up factor Observed ratio

in the oligomer with n subunits in the oligomer with (n+1) subunits (n+1)/n (Dn+1)/Dn

TRAP 26.611 31.612 1.09 1.19

Small 13.09 15.510 1.11 1.19

Terminase

Protective 30.97 40.48 1.14 1.31

Antigen

SAP-like 43.87 55.08 1.14 1.26

Pentraxin

The diameters correspond to circles defined by the Ca atoms of residues located at the tunnel’s surface. In the case of TRAP, the small terminase (Bűttner et al., to be
published) and the SAP-like pentraxin [25], which are composed of compact subunits containing single domains, the indicated diameter corresponds to residues 7, 95
and 185, respectively. In the case of the protective antigen [7], which contains multiple domains per subunit, the indicated diameter corresponds to residue 473 located
in the oligomerization part of domain 2 where subunits interact with each other.
doi:10.1371/journal.pone.0025296.t004
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B. subtilis K71stop TRAP, the data were collected at the ESRF

station ID14-2 and station ID14-4, respectively. Data were

processed using HKL2000 [27], Table 1.

Structure determination and refinement
All crystallographic calculations were carried out using the

CCP4 program package [28]. The structures were solved by

molecular replacement using MOLREP [29] with three adjacent

subunits of B. stearothermophilus TRAP as a search model.

Refinement was performed by REFMAC [30] and model

rebuilding was done using COOT [31]. Water molecules were

added automatically with the program ARP/wARP [32] and

further corrected using maximum likelihood-weighted 2|Fo| -

|Fc| and |Fo| - |Fc| electron density maps. Molecular contacts

between adjacent monomers of TRAP were examined by

CONTACT [28]. All figures were generated using CCP4mg [33].

Native Mass spectrometry
All protein samples were in solution containing 100 mM

ammonium acetate (pH 7.5) and 10 mM L-tryptophan at a

concentration of 0.1–0.4 mg/ml. Mass spectrometry was per-

formed using an orthogonal acceleration time-of-flight LCT

premier XE system (Waters, MA, US), equipped with an offline

nanoflow emitter (New Objective, MA, US). Mass spectra were

acquired over the range 2000 to 8000 m/z, integrated over 5 sec

intervals. Masslynx 4.1 software (Waters, MA, US) was employed

to analyze the results. Molecular masses and standard deviations

were calculated from the centroid values of species with at least

three charge states. The data were calibrated externally with CsI

solution (10 mg/ml). Measured masses (Table 2) are somewhat

greater than calculated, as observed earlier for other systems [34].
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