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Recently, many clinical reports have suggested that the ascorbyl free radical (Asc∙) can be treated as a noninvasive, reliable, real-
time marker of oxidative stress, but its generation mechanisms in human blood have rarely been discussed. In this study, we used
upstream substances, enzyme inhibitors, and free radical scavengers to delineate the mechanisms of Asc∙ formation in human
platelet-rich plasma (PRP). Our results show that the doublet signal was detected in PRP samples by using electron spin resonance,
and the hyperfine splitting of the doublet signal was 𝑎H = 1.88 gauss and 𝑔-factor = 2.00627, which was determined to be the
Asc∙. We observed that the inhibitors of NADPH oxidase (NOX), cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450
(CYP450), mitochondria complex III, and nitric oxide synthase (NOS), but not xanthine oxidase, diminished the intensity of the
Asc∙ signal dose dependently. All enzyme inhibitors showed no obvious antioxidant activity during a Fenton reaction assay. In
summary, the obtained data suggest that Asc∙ formation is associated with NOX, COX, LOX, CYP450, eNOS, and mitochondria
in human PRP.

1. Introduction

Interest in treating oxidative stress has grown in medicine
over the past 2 decades. The oxidative status of a biosystem
represents a relative level of oxidation in living organisms and
is crucial for understanding numerous human physiological
and pathophysiological processes [1]. Overproduction of
ROS results in oxidative stress, a pathophysiological process
that can damage cell structures and induce cancer, car-
diovascular disease, atherosclerosis, hypertension, diabetes
mellitus, neurodegenerative diseases, rheumatoid arthritis,
and ageing. In contrast, ROS play a physiological role in
protection against infectious organisms, in the function of
several cellular signalling pathways, and the generation of
a mitogenic response at low/moderate concentrations [1].
Oxidative status can be estimated using biochemical assays,

such as the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonic
acid) assay [2], and by measuring the activity of superoxide
dismutating enzymes (Mn superoxide dismutase (SOD) and
CuZnSOD), catalase (CAT), GSH peroxidase, and reductase
[3–5], as well as the level of S-glutathionylation [6]. However,
Spasojević suggested that these techniques be supplemented
by electron spin resonance (ESR) spectroscopy to enable
acquiring data on oxidative status that are more specific [7].
Certain endogenous paramagnetic molecules, such as the
ascorbyl free radical (Asc∙), tocopheryl radical, and melanin
radical, are biomarkers of oxidative status that can be detected
using ESR spectroscopy [7].

Ascorbic acid is an essential biological component that
can be oxidized through a two-step oxidation process involv-
ing a free radical intermediate; this oxidation process may
be performed by nearly all oxidizing species intrinsic to the

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 614506, 10 pages
http://dx.doi.org/10.1155/2014/614506

http://dx.doi.org/10.1155/2014/614506


2 BioMed Research International

biological environment [7]. When using ESR spectroscopy,
the concentration of the Asc∙ can be measured using a lower
limit of approximately 5 nM with a standard deviation of
<1 nM [8]. The characteristics of the Asc∙ are relatively stable
and it has a long half-life, indicating that it is the most useful
biomarker of oxidative status in living systems [7].

ESR spectroscopy was first applied in detecting the Asc∙
in oxidative status research in 1993 [9]. Thus far, the Asc∙ has
been treated as a noninvasive, reliable, real-time biomarker
of oxidative stress in various biological samples including
plasma, serum,whole blood, cerebrospinal fluid, extracellular
fluid, synovial fluid, seminal fluid, tumor, and heart tissue
samples [7]; however, the generation mechanisms of the Asc∙
in human blood have rarely been discussed.

Ascorbate (the reduced form of vitamin C) is an impor-
tant radical scavenger and antioxidant in human plasma.
Asc∙ has been detected by ESR in various biological samples
including plasma, serum, whole blood, cerebrospinal fluid,
skin, extracellular fluid, synovial fluid, gastric mucosa, sem-
inal fluid, tumors, heart tissue, and others [7]. We recently
applied ESR spectroscopy in detecting the Asc∙ to investigate
the mechanisms of oxidative stress caused by lymphedema
in mice [10]. In this study, we used upstream substances,
enzyme inhibitors, and free radical scavengers to delineate
the mechanisms of Asc∙ formation in human platelet-rich
plasma (PRP).

2. Materials and Methods

2.1. Materials. AA861, allopurinol, antimycin, arachidonic
acid (AA), baicalein, CAT, clotrimazole, dimethyl sul-
foxide (DMSO), diphenyleneiodonium (DPI), ethylene-
diaminetetraacetic acid, hemoglobin, indomethacin, NG-
nitro-L-arginine methyl ester (L-NAME), quinacrine, and
SOD were purchased from Sigma Chemical (St. Louis, MO,
USA). L(+)-ascorbic acid was purchased from Wako Pure
Chemical Industries (Osaka, Japan).

2.2. Human Blood Collection Procedure. This study was
approved by the Institutional Review Board of TaipeiMedical
University and conformed to the principles outlined in
the Helsinki Declaration. All human volunteers provided
informed consent to participate.

2.3. Preparation of Human Blood Components. Whole blood
was collected from healthy human volunteers who had taken
no medicine during the preceding 2wk and was mixed
with acid/citrate/glucose. After centrifugation at 120×g for
10min at room temperature, the supernatant (PRP) was
supplemented with PGE

1

(0.5 𝜇M) and heparin (6.4 IU/mL)
and then incubated for 10min at 30∘C and centrifuged at
500×g for 10min. The supernatant was platelet-poor plasma
(PPP) and was used in subsequent experiments.

2.4. Isolation of Red Blood Cells. Whole blood was centri-
fuged at 650×g for 5min. Plasma was removed carefully and
the white buffy layer was completely removed through as-
piration using a pipette with utmost care. The red blood

cells (RBCs) were then washed three additional times with
Tyrode’s solution.

2.5. Measurement of the Ascorbyl Free Radical in Platelet-Rich
Plasma Using Electron Paramagnetic Resonance Spectrometry.
The ESR method involved using a Bruker EMX ESR spec-
trometer (Bruker Instruments Inc., Billerica, MA, USA) as
described previously [11]. The PRP was prewarmed to 37∘C
for 2min, and enzyme inhibitors or other reagents were then
added. ESR spectra were recorded at room temperature by
using a quartz flat cell designed for aqueous solutions. ESR
spectrometry was conducted under the following conditions:
20mW of power at 9.78GHz, with a scan range of 100G and
a receiver gain of 5 × 104. The modulation amplitude, sweep
time, and time constant are provided in the figure legends.

2.6. Fenton Reaction Model System with Electron Param-
agnetic Resonance Detection of the Hydroxyl Radical. The
hydroxyl radical generated in a standard Fenton reaction was
trapped using DMPO according to the method previously
described [12]. A Fenton reaction solution (50𝜇MFeSO

4

+
500𝜇MH

2

O
2

) was pretreated with a solvent control (0.6%
DMSO) or reagent (10 𝜇M). The ESR spectra were recorded
after precisely 3min.

2.7. Statistical Analysis. The experimental results are
expressed as the mean ± SEM and are accompanied by the
number (𝑛) of observations. The data were assessed using an
analysis of variance (ANOVA). When this analysis indicated
significant differences among the group means, each group
was compared using the Newman-Keuls method. A 𝑃 value
<0.05 was considered statistically significant.

3. Results

3.1. Electron Spin Resonance Investigations of Free Radicals
Formed in Human Blood Components. Free radical signals
were detected using ESR in human PPP, PRP, RBCs, and
whole blood. A doublet signal radical was observed in PPP
and PRP, but not in RBCs or whole blood (Figure 1(a)).
PRP exhibited the strongest signal among the human blood
components and was used in subsequent experiments. The
hyperfine splitting and 𝑔-factor of this doublet signal were
1.88G and 2.00627, respectively. In each instance, the signals
exhibited doublet peaks and a line width of approximately
4G. The radical species was identified to be ascorbyl based
on the close similarity of the hyperfine coupling constants
and 𝑔-factor of the observed signal to those of published
data [13, 14]. No notable oxygen-derived free radicals were
detected in this study, probably because of the presence of
ascorbic acid and other antioxidants in human PRP.

3.2. Effect of Exogenous Ascorbic Acid on the 𝑔 = 2.00627
Radical Formation in Human Platelet-Rich Plasma. To con-
firm that the 𝑔 = 2.00627 radical was a typical Asc∙, we
added exogenous ascorbic acid to human PRP. The intensity
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Figure 1: Free radical doublet (a) detected using ESR spectroscopy
in (A) PPP, (B) PRP, (C) RBCs, and (D) whole blood. The ESR
signal was examined at room temperature, and the following
instrument parameters were used in ESR spectroscopy: standard
frequency (X-band): 9GHz; microwave power: 20mW; modulation
frequency: 100 kHz; time constant: 163.84ms; conversion time:
40.96ms; receiver gain: 5.02×105; and the number of dataX-scans: 4.
The free radical doublet ismarkedwith arrows: “↓”. Effect of ascorbic
acid on the 𝑔 = 2.00627 radical formation in human PRP. The
intensity of the 𝑔 = 2.00627 radical obtained from the reaction of
PRP (approximately 8 × 106 cells/mL, control) and 30 𝜇M, 100 𝜇M,
300 𝜇M, and 1000 𝜇M ascorbic acid in the presence of 100mM
DMPO. ESR analysis was exactly 30 s after the final addition. ESR
spectra are labeled to show their components: DMPO- Asc∙ adduct
(∗). The values of the ESR signal intensity in the bar chart (b) are
shown as themeans± SEM(𝑛 = 4). ∗∗∗𝑃 < 0.001 comparedwith the
control.The instrument parameters were identical to those shown in
(a).

of the 𝑔 = 2.00627 radical induced by exogenous ascorbic
acid increased dose dependently (Figure 1(b)).

3.3. Effect of Superoxide and the Nitric Oxide Scavenger
on Ascorbyl Free Radical Formation in Human Platelet-Rich
Plasma. We propose that the Asc∙ is a secondary radical;
therefore, we determined which types of primary radical
may be involved in the formation of this radical species.
The effects of superoxide and the nitric oxide scavenger
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Figure 2: Effect of superoxide and the nitric oxide scavenger on
Asc∙ formation in human PRP. ESR spectra (a) obtained from
the reaction of (A) PRP (approximately 8 × 106 cells/mL) and (B)
superoxide scavenger (120U/mL SOD and 1000U/mLCAT) and the
(C) nitric oxide scavenger (1 𝜇g/mL of hemoglobin) in the presence
of 100mM DMPO for 3min. The ESR spectra are labeled to show
their components: DMPO-Asc∙ adduct (∗).TheESR signal intensity
rates in the bar chart (b) are shown as the means ± SEM (𝑛 > 3).
∗∗

𝑃 < 0.01, ∗𝑃 < 0.05 compared with the control. The instrument
parameters were identical to those shown in Figure 1(a).

were examined on the 𝑔 = 2.00627 radical formation, as
shown in Figure 2. The 𝑔 = 2.00627 signal formed by PRP
was arbitrarily designated 100% and was inhibited by the
superoxide scavenger (120U/mL of SOD and 1000U/mL of
CAT) and nitric oxide scavenger (1 𝜇g/mL of hemoglobin)
to 26.1% (𝑃 < 0.01) and 13.5% (𝑃 < 0.05), respectively.
This result indicates that superoxide and nitric oxide may be
primary radicals that induce Asc∙ formation.

3.4. Effect of the NADPH Oxidase Inhibitor on Ascorbyl Free
Radical Formation in Human Platelet-Rich Plasma. It was
reported that NOX on the cell membrane of leucocytes may
be the primary source of superoxide formation in blood [15].
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Figure 3: Effect of the NOX inhibitor (a), XO inhibitor (b), and NOS inhibitor (c) on Asc∙ formation in human PRP (approximately 8 ×
10
6 platelets/mL). The ESR signal intensity rates in the bar chart are expressed as the means ± SEM (𝑛 ≧ 5). ∗∗∗𝑃 < 0.001, ∗𝑃 < 0.05

compared with the solvent control. The instrument parameters were identical to those shown in Figure 1(a).

To investigate the involvement of NOX in Asc∙ formation in
PRP, we used DPI as a NOX nonselective inhibitor. The Asc∙
signal of a solvent control group was arbitrarily designated
100% and was dose dependently inhibited by DPI (3 𝜇M =
17.7%, 𝑃 < 0.05; 10 𝜇M = 23.8%, 𝑃 < 0.001, Figure 3(a)). This
result indicates that NOX may be involved in the formation
of Asc∙ in PRP.

3.5. Effect of the Xanthine Oxidase Inhibitor on Ascorbyl Free
Radical Formation in Human Platelet-Rich Plasma. XO is a
superoxide-producing enzymenormally present in the serum
and lungs [16]. To investigate the involvement of XO in Asc∙
formation in PRP, we used allopurinol as a nonselective XO
inhibitor. The Asc∙ signal of a solvent control group was
arbitrarily designated 100%, and allopurinol (1–10𝜇M) did
not significantly influence Asc∙ formation in PRP (𝑃 > 0.05,
Figure 3(b)).

3.6. Effect of the Nitric Oxide Synthase Inhibitor on Ascorbyl
Free Radical Formation in Human Platelet-Rich Plasma. We
determined whether NOS is involved in Asc∙ formation in
PRP. We used L-NAME as an NOS inhibitor. The Asc∙ signal
of a solvent control groupwas arbitrarily designated 100%and
was inhibited by L-NAME (1–10𝜇M)dose dependently (3 𝜇M
= 18.6%,𝑃 < 0.05; 10 𝜇M=25.4%,𝑃 < 0.01, Figure 3(c)).This
result indicates that NOS-derived NO is associated with the
formation of Asc∙ in PRP.

3.7. Effect of Arachidonic Acid onAscorbyl Free Radical Forma-
tion in Human Platelet-Rich Plasma. Reactive oxygen species
(ROS) are generated by AA metabolites, which are released
from the cell membrane. AA-induced ROS generation may
occur through the oxidative metabolic processes induced by
COX and LOX [11]. AA has also been reported to induce
ROS formation through NOX [17, 18]. Our results showed
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that NOX may be involved in the formation of the Asc∙ in
PRP (Figure 3(a)). Therefore, we determined whether AA
metabolite pathways are associated with the Asc∙ formation.
The Asc∙ signal formed by PRP was, respectively, increased
39.1% (𝑃 < 0.05) and 62.4% (𝑃 < 0.001) by 10 𝜇M and
100 𝜇M AA compared with a solvent control (Figure 4(a)).
In addition, the Asc∙ signal of the solvent control group was
arbitrarily designated 100% and was inhibited by quinacrine
(2.5–10 𝜇M), a phospholipidase A

2

(PLA
2

) inhibitor, dose
dependently (5𝜇M = 20.9%, 𝑃 < 0.001; 10 𝜇M = 26.2%, 𝑃 <
0.001, Figure 4(b)). This result indicates that AA metabolite
pathways are associatedwith the formation of theAsc∙ in PRP.

3.8. Effect of the Cyclooxygenase Inhibitor on Ascorbyl Free
Radical Formation in Human Platelet-Rich Plasma. In down-
stream pathways of the AA metabolism, COX [19], P450
[20], and LOX [21] are vital sources of extracellular ROS
release. To investigate the involvement of COX in Asc∙
formation in PRP, we used indomethacin as a nonselective
COX inhibitor. The Asc∙ signal of a solvent control group
was arbitrarily designated 100%; 3 and 10 𝜇M indomethacin
produced a 13.4% (𝑃 < 0.05) and 14.5% (𝑃 < 0.01)
reduction of the Asc∙ signal, respectively. However, the signal
was not significantly changed when a low dose (1𝜇M) of
indomethacin (Figure 5(a))was used.This result suggests that
COX may be involved in the formation of the Asc∙ in PRP.

3.9. Effect of the Lipoxygenase Inhibitor on Ascorbyl Free Radi-
cal Formation in Human Platelet-Rich Plasma. To investigate
the involvement of LOX in Asc∙ formation in PRP, we used
AA861 as a nonselective LOX inhibitor. The Asc∙ signal of
a solvent control group was arbitrarily designated 100% and
was inhibited byAA861 (1–10𝜇M)dose dependently (10 𝜇M=
25.7%, 𝑃 < 0.001, Figure 5(b)). This result suggests that LOX
may also be involved in the formation of Asc∙ in PRP.

3.10. Effect of the P450 Inhibitor on Ascorbyl Free Radical
Formation inHuman Platelet-Rich Plasma. To investigate the
involvement of P450 in Asc∙ formation in PRP, we used
clotrimazole as a nonselective P450 inhibitor. As shown in
Figure 5(c), 1 and 10 𝜇M clotrimazole produced 13.7% (𝑃 <
0.01) and 19.5% (𝑃 < 0.01) depressions of the Asc∙ signal,
respectively.

3.11. Influence of the Mitochondrial Respiratory Chain on
Ascorbyl Free Radical Formation in Human Platelet-Rich
Plasma. In the mitochondrial respiratory chain, some elec-
trons may leak to oxygen, partially reducing oxygen to a
superoxide anion [22]. We determined whether oxidative
stress induced by the mitochondrial respiratory chain is
associated with Asc∙ formation in PRP. We used antimycin
as a mitochondrial complex III inhibitor. The Asc∙ signal
of a solvent control group was arbitrarily designated 100%,
and 10, 30, and 100 𝜇M antimycin, respectively, produced
19.2% (𝑃 < 0.001), 23.3% (𝑃 < 0.001), and 32.5% (𝑃 <
0.001) depressions of theAsc∙ signal (Figure 6).This indicates
that mitochondrial respiratory chain oxidative stress plays a
partial role in Asc∙ formation in PRP.
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Figure 4: Effect of AA (a) and the PLA
2

inhibitor (b) on Asc∙
formation in human PRP (approximately 8 × 106 platelets/mL). The
ESR signal intensity and data in the bar chart are expressed as the
means ± SEM (𝑛 ≧ 5). ∗𝑃 < 0.05, ∗∗∗𝑃 < 0.001 compared with the
solvent control group. The instrument parameters were identical to
those shown in Figure 1(a).

3.12. Antioxidative Assay of Enzyme Inhibitors. Higashi et
al. demonstrated that nordihydroguaiaretic acid, AA-861,
and baicalein are LOX inhibitors and also have antioxidant
activity [23]. However, Pallast et al. showed that AA-861
inhibits both 12/15-LOX and 5-LOX but does not have antiox-
idant activity [24]. Therefore, we selected AA-861 as a LOX
inhibitor in this study.However, some enzyme inhibitors used
in this study still potentially elicit antioxidative effects and
inhibit Asc∙ signal production. To exclude this possibility,
we used the Fenton reaction assay to determine whether
the enzyme inhibitors were also antioxidants. The enzyme
inhibitors were divided into lipid-soluble (Figure 7(a)) and
water-soluble (Figure 7(b)) groups. Our result showed that
DPI (10 𝜇M), AA861 (10 𝜇M), L-NAME (10 𝜇M), allopuri-
nol (10 𝜇M), clotrimazole (10 𝜇M), indomethacin (10 𝜇M),
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Figure 5: Effect of the COX inhibitor (a), LOX inhibitor (b), and CYP450 inhibitor (c) on Asc∙ formation in human PRP (approximately
8 × 10

6 platelets/mL). The ESR spectra are labeled to show their components: DMPO- Asc∙ adduct (∗). The ESR signal intensity rates and
data in the bar chart are expressed as the means ± SEM (𝑛 ≧ 4). ∗∗𝑃 < 0.01, ∗𝑃 < 0.05 compared with the solvent control. The instrument
parameters were identical to those shown in Figure 1(a).

quinacrine (10 𝜇M), and antimycin (10 𝜇M) did not exhibit
significant antioxidative activity in the Fenton reaction assay
(𝑃 > 0.05).

4. Discussion

Thevascular endothelium plays an essential role in regulating
vascular tone, modulating vascular growth, platelet aggre-
gation and coagulation, and inflammation. Therefore, the
degree of endothelial dysfunction may predict the outcomes
of cardiovascular diseases [25]. Although the precise mecha-
nisms of endothelial dysfunction have not been elucidated,
a considerable amount of evidence suggests that increased
oxidative stress may play a critical role in this state [26].
Oxidative stress can be described as an “imbalance between

proxidants and antioxidants in favor of the proxidants, poten-
tially leading to damage” [27]. Currently, reducing oxidative
stress remains a prominent objective for cardiovascular pre-
vention and therapy. However, clear knowledge of its source
is required to provide novel perspectives for treatment.

ROS participate in the growth, apoptosis, and migration
of vascular smooth muscle cells and in the remodeling of
the vessel wall. Each of these responses may contribute to
vascular diseases in uncontrolled conditions [28]. Therefore,
the sources of ROS may be crucial therapeutic targets of
cardiovascular disease.

In this study, we found that Asc∙ signals were observed in
PPP and PRP, but not in RBCs or whole blood (Figure 1(a)).
A study of ESR spectra of whole blood from normal and
tumour bearing patients showed twomain lines with 𝑔 values
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Figure 6: Effect of the mitochondrial complex III inhibitor on Asc∙ formation in human PRP.The ESR spectra show (a) the effect of a solvent
control, (A) 0.6% DMSO, and 10, 30 (data not shown), and (B) 100𝜇M antimycin in the presence of 100mM DMPO for 30min on Asc∙
formation in human PRP (approximately 8 × 106 platelets/mL). The ESR spectra are labeled to show their components: DMPO- Asc∙ adduct
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Figure 7: Effect of the fat-soluble (a) and water-soluble (b) enzyme inhibitor on hydroxyl free radical formation in the Fenton reaction. (a)
The effect of the Fenton reaction solution (500 𝜇M hydrogen peroxide + 50 𝜇MFeSO

4

, positive control), 0.6% DMSO, 10 𝜇M DPI, 10𝜇M
AA861, 10 𝜇M L-NAME, 10 𝜇M allopurinol, 10𝜇M clotrimazole, and 10 𝜇M indomethacin in the presence of 150mM DMPO for 3min on
hydroxyl radical formation. (b) The effect of the Fenton reaction solution (positive control), 10𝜇M quinacrine, and 100𝜇M antimycin in the
presence of 150mMDMPO for 3min on hydroxyl radical formation.The signal intensity rates and data shown in the bar chart are expressed
as the means ± SEM (𝑛 ≧ 3). 𝑃 > 0.05 compared with the solvent control. The instrument parameters were identical to those shown in
Figure 1(a).

of 4.2 and 2.049 [29]. The authors suggested that the line at
𝑔 = 2.049 may be due to the copper protein ceruloplasmin.
In addition, smaller signals were found with 𝑔 values of 2.16,
2.005, and 1.98. We suggest that some paramagnetic species
in whole blood with 𝑔 values nearby 2.0 that restrict the
signal intensity of ascorbyl radical.Therefore, in this study, we

used ESR spectroscopy in detecting the Asc∙ to determine the
sources of oxidative stress in human PRP. Asc∙ formationmay
be induced by nearly all ROS intrinsic to the biological envi-
ronment, including superoxide radicals, hydroxyl radicals,
alkyl peroxyl radicals, lipid peroxyl radicals, peroxynitrite,
thiyl radicals, protein radicals, and catalytic metals [7].
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In the vasculature wall, ROS are produced by all of
the layers, and the major vascular ROS is the superoxide
anion, which inactivates NO and, thus, impairs relaxation
[30]. Superoxide-generating enzymes involved in increased
oxidative stress within vascular tissue include uncoupled
NOS, NOX, XO, and mitochondrial superoxide-generating
enzymes [31]. In this study, we observed that the AA pathway
enzymes, such as COX, LOX, and CYP450, also contributed
to the increased oxidative stress in human PRP. However,
the XO did not seem to play an important role in this event
(Figure 8).

XO is capable of generating superoxide and hydrogen per-
oxide when supplied with its substrates, xanthine and hypox-
anthine, which accumulate during ischemia [32]. Although
studies have shown that XO is present in human arterial and
venous endothelial cells and can generate sufficient levels
of oxygen radicals to trigger endothelial injury, questions
remain regarding the role of xanthine and hypoxanthine
formation in triggering this process. Because the samples in
this study were not subjected to ischemic conditions, we did
not observe XO contributing to oxidative stress in human
PRP.

NO is released from endothelial cellsmainly by eNOS and
is a main mediator of endothelium-dependent vasodilata-
tion.WhenROSproduction is increased, tetrahydrobiopterin

generation is reduced, causing eNOS to uncouple and
produce superoxide; when NO is insufficiently formed or
quenched too quickly, the process of atherosclerosis is initi-
ated or accelerated [33]. In pathological conditions, NO may
be scavenged by excess ROS generated in blood vessels by
vascular NOX [15]. eNOS has been observed not only in the
endothelium but also in platelets [34]. Therefore, based on
our results, we suggest that platelet eNOS is also a source of
ROS in human PRP.

We recently applied ESR spectroscopy in detecting Asc∙
to investigate the oxidative status of lymphedema, suggesting
that COX-derived oxidative stress plays a major role in the
pathological mechanisms of surgically induced lymphedema
[10]. However, in the current study, COX-derived oxidative
stress played only a minor role in oxidative stress in human
PRP.

5. Conclusion

In this study, we investigated the potential sources of Asc∙
production that contribute to oxidative stress in human
PRP. We provide evidence that no single source of Asc∙
can be identified in human PRP, but Asc∙ are typically
generated through NOX, COX, LOX, CYP450, eNOS, and
mitochondrial superoxide-generating enzyme pathways.
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